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EMBEDDED EIGENVALUES AND VIRTUAL POLES

JAMES S. HOWLAND

An embedded eigenvalue of simple multiplicity is perturb-
ed by an operator of finite rank, The resulting spectral con-
centration is shown to be due to the pole of the continuation
of a certain analytic function.

If A, is point eigenvalue of the selfadjoint operator T,, then it
may happen that )\, “disappears” under perturbation in the sense that
the perturbed operator T.=T,+¢V has a purely continuous spectrum
near A, for arbitrarily small positive ¢. As McLeod [10] remarks,
there are two parts of the theory of this phenomenon. There is, first
of all, the theory of spectral concentration, in which it is shown that
as ¢— 0+ there is an asymptotic “concentration” of the spectral
measure of T. near \,. Spectral concentration has been discussed for
isolated eigenvalues by many authors (see [1], [10], and [8, Chap.
VIII]), and for eigenvalues embedded in the continuous spectrum by
Friedrichs [4] and the present author [5]. Secondly, there is the con-
jecture, verified in certain examples (see [2], [10]), that this concen-
tration of the spectral measure is due to a wvirtwal pole of the
resolvent R(z,¢) = (T.—2)"'. For example, if T. is a differential
operator and R(z, ¢) an integral operator with Green’s function kernel
gz, ¥; z), this means that g¢. can be continued meromorphicly from
Imz > 0 to a neighborhood of A, (on which the continuation will not
agree with the values of g.(z, v;2) for Imz < 0), and that this con-
tinuation will have, slightly below the axis, a pole {(¢) which tends
to A, as ¢ — 0+, and which accounts for the concentration in much
the same way that a pole on the axis might account for a point eigen-
value. This example defines the problem—in a more general situation,
the first step toward a solution is to find a replacement for the Green’s
function which can be continued meromorphicly.

In [5], the author considered spectral concentration of embedded
eigenvalues of simple multiplicity, under perturbations of finite rank.
In the present paper, we shall discuss virtual poles in the context.
The quantity chosen to replace the Green’s function is the inverse
Weinstein-Aronszajn matrix; that is to say, the inverse of the matrix
of the restriction of I+ eV(T, — 2)~* to the (finite dimensional) range
of the perturbation V (cf. [8, Chap. IV, §6]).

The organization of the paper is as follows. In § 1, we state the
basic assumptions and note a formula (Lemma 1.1) which is funda-
mental to our approach. The formulation of the problem is similar
to that of Kuroda [9]. The existence of a virtual pole {(¢) is then
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proved for sufficiently small ¢ in § 2. The spectral theory of T. is
discussed in § 4, where it is shown that 7. has an eigenvalue near
N, if and only if {(¢) is real, in which case the eigenvalue is (¢) it-
self. Section 3 contains a general result on continuations of Stieltjes
transforms which is used in §4. Next, we consider the asymptotic
spectral theory of T. as ¢— 04, in the case that {(¢) is mot real.
In §5, we obtain an asymptotic formula on the range of V for the
spectral density near \,, which corresponds to the formula of Wigner
and Weiskopff mentioned by Friedrichs [4]. This formula is used in
§6 to prove a result on spectral concentration near \,. Finally, in
§ 7, we discuss, under certain conditions of nondegeneracy, the rela-
tionship between {(¢) and the formal perturbation series for the per-
turbed eigenvalue, obtaining in this case an asymptotic formula for
the imaginary part of {(¢). Section 8 discusses three examples.

1. Assumptions and preliminary facts. Let T, be a self-adjoint
operator on a Hilbert space 57 with domain & (T,), and V a bound-
ed self-adjoint operator of finite rank ». V may then be written in
the form V = 37, ¢(-, p;)p; where ¢, ---, ¢, are nonvanishing real
numbers and {p,, ---, @,} is a finite orthonormal set spanning the range
#Z (V) of V. If ¢ >0, then the operator T.=T,+¢eV with 2(T.)=
(T, is also self-adjoint. Let

Ry(z) = (T, — 2)~* and R(z,¢) = (T. — 2)"

be the resolvents of T, and T., and E,(\) and E.(\) the corresponding
spectral resolutions. If S is a Borel set, we define

E[S] = SSdEs(x)

for ¢ = 0.
The following assumption will be made throughout the paper, and
is an implicit hypothesis of all theorems.

Basic HypPoTHESIS. Let \, be an etgenvalue of T, of simple mul-
tiplicity and v, a corresponding normalized eigenvector. Let P, =
(vy o)y and P=1— P,. We shall assume that for i,5 =1,--+,7
the analytic function (Ry(2)Pp;, p;) has an analytic continuation from
the upper half-plane into a neighborhood of N, itn the complex plane.

In the sequel, we shall let N = {z:]z—\,| < d,} be a fixed closed
disc contained in the above neighborhoods for all 7,7 =1, ..., r. Since
[R,(2)]* = Ry(z), it is a consequence of the above assumption that
(R,(2)Pp;, p;) has a corresponding continuation from the lower half-
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plane to a neighborhood of N. These two continuations are in general
not tdentical on N, since ), need not be an isolated eigenvalue. In
order to distinguish between them, we shall introduce the following
notation: Let F(z) be a function defined and analytic for Imz == 0.
The continuation of F(2) from Imz > 0 to N will be denoted by a
subseript ‘+’, while the continuation from Imz < 0 to N will be de-
noted by a subscript ¢ —’. For example, (R,(2)p;, @;)+ denotes the
continuation from Imz > 0. Similarly, we shall encounter such nota-
tions as W.(z, ¢) and [W,(z, ¢)]..

The matrix whose elements are a,;,%,5 =1, ---, r, will be denot-
ed by mat {a;;}.

For Imz = 0, let W(z,¢) be the restriction of I+ eVR\(z) to
A(V). Since (V) is invariant under I + eVR,(z), W(z,¢) is an
operator on the finite dimensional space <Z(V), and is easily seen to
have the matrix

(1.1) mat {9;; + ec;(Ry(2)p:, 1)}

with respect to the basis @, -++, .. Moreover, W='(z, ¢) exists for
Imz=+0 and every ¢ =0, and is the restriction to Z(V) of the
operator I — eVR(z,¢) (see [5, §1] or [10]). We also define W,(z, ¢)
to be the restriction to & (V) of I+ eVR,(z)P, so that

1.2) W(z,e) = Wiz, €) + (M — 2)7'VE, .
In analogy with (1.1), W.,.(z, ¢) has the matrix
(1.3) mat {0;; + ec;(Ry(2)Pp;, p;)} -

The following formula for W—'(z, ¢) is basic to our approach.

LEMMA 1.1. Wz, ¢) exists for Imz = 0 and
(1.4) W-(z, €) = W' (2, &)[I — A(z, e)(W;'(2, &)+, o) Vijro]
where

1.5) A(z, €) = &[hy — 2 + e(W'(2, &) Virg, 4] "
For the proof, see [5, §1, Lemma 1.1].

ProrosiTION. Under the Basic Hypothesis, the following hold
Jor all sufficiently small positive e:

(@) Wz, ¢) and W,'(z, €) have analytic continuations to a neigh-
borhood of N from both half-planes. For a suitably small ¢, > 0,
these comtinuations, [W.(?,¢)]: and [W,'(z,¢)]. are bounded on N,
untformly for 0 < e < e,
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(b) If VP,#0, then W(z,¢), W7'(z, €), and 4(z,€) have meromor-
phic continuations to a mneighborhood of N from both half-planes.
W.(z,¢€) is analytic on N with the exception of a simple pole at \,.
The poles of W3'(z,¢€) coincide with those of A4.(z,¢). The residues
at these poles have rank one.

Proof. Existence and uniform boundedness of the continuations
[W.(z, €)]. is immediate from the Basic Hypothesis and (1.3). The
Neumann series expansion of W;'(z,¢) in powers of ¢ (cf. [5; §3])
converges uniformly on N, so that the rest of (a) follows. (b) follows
easily from (a) and an inspection of formulae (1.2), (1.4) and (1.5).

2. Virtual poles. We are now able to prove the existence of
a virtual pole of W—'(z, ¢).

THEOREM 1. Let VP, 0. Then for all sufficiently small posi-
tive ¢, Wiz, ¢) has a unique pole {(¢) in N. {(¢) is a simple pole
with residue of rank one, Im {(¢) < 0 and () — N, as €—0+. More-
over, £(¢) is a complex analytic function of ¢ at ¢ = 0.

Proof. By the Proposition of §1, it suffices to consider solutions
of the equation

(2.1) €47z, €) = N — 2 + (W' (2, &) Vo, ¥0) + = 0.

Let 0 < o < 0,. Then since (W;'(z, &)V, 4). is bounded on N uni-
formly in e, €47'(z, &)—(N\,—#) can be made arbitrarily small uniform-
ly on |2 — X\, = p, by choosing ¢ sufficiently small. By Rouche’s
Theorem, e47%(z,€) and (A,—z) have the same number of zeros (count-
ing multiplicities) inside |z — \,|=p. Choosing p = p, gives existence,
uniqueness and simplicity of the pole (¢) of 4.(z,¢) in N, while
choosing o arbitrarily small shows that {(¢) —\, as ¢ —0-+. Since the
coefficient of 4.(z,¢€) in (1.4) is of rank one, the residue of W3(z, ¢€)
has rank one, If Imz>0, W3'(z, ¢) is the restriction of I—eVR(z, &)}
to “#(V), and therefore has no pole. Hence, Im £(¢) < 0. Analyticity
of {(¢) follows from a general result [3; p. 101, Th. 7.1] on analy-
ticity of inverse functions.

COROLLARY. WZ=(z,¢€) has, for sufficiently small positive ¢, the
unique pole (_(8) = C(e). As a complex analytic function of

&, (. () = C(e).

Proof. We simply observe that for real ¢, 4_ (z, ¢) = A, (Z, €) since
Ry(z) = R{(z). The result follows easily.
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3. Continuations of Stieltjes transforms. The following simple
result on meromorphic continuations of Stieltjes transforms of matrix-
valued measures will be used in the next section.

THEOREM 2. Let M be a positive Hermitian matriz-valued, finite
Borel measure on (— oo, + ), and

H@:Sia—zwwmw Imz + 0

its Stieltjes transform. If F(z) has a wmeromorphic continuation
F. (2) from Imz > 0 to a disc D about the origin, then

(a) F(z) has a meromorphic continuation F_(z) from Imz <0
to D.

(b) The poles of F_(z) have nonnegative imaginary parts and
are the reflections in the real axis of the poles of F.(2).

(¢) If F.(2) has a simple pole at z =0, then M has a point
mass at the origin, equal to the residue of F.(2) at the origin.

Proof. From Imz =0, we have F(z) = F'*(z), and hence by con-
tinuation

(3.1) F_(z) = F1@)

which proves (a) and (b). For (c), observe that if
(3.2) F.(z) = (4]2) + 0(1)

and

(3.3) F_(z) = (B/z) + O(1)

on D, then by (3.1)

(3.4) B = A*.

Now observe that for sufficiently small real », we have

M'(\) = 12x0)[F.(0) — F-(\)]
= (A — A*)/(2miN) + O(1)
where M’()\) is the spectral density for the absolutely continuous part

of M. Since M’'(\) is a positive Hermitian matrix both for x > 0 and
A < 0, we must have

(3.5) A=A*=B.

Now if 6 >0 is sufficiently small, it is clear that M is absolutely
continuous on (—J, +0) with smooth derivative, except possibly at
2z = 0. It is therefore easy to see that
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2riM(~5, +0) = | _ Fla)d
(3.6) jo1=0
= gl l:6F+(’z)dz + L[F‘(z) — F.(2)]dz

where C is the lower half of the (positively oriented) contour |z|= 4.
But the first term of the right side of (3.6) is equal to 2774, while
the second is O(9), since its integrand is bounded on C by (3.2), (3.3)
and (3.4). Hence,

lim M(—é, +d) = A

00+

which proves the result.

4. Spectral theory. If T = SkdE(k) is self-adjoint and S is a

Borel subset of the reals, then the part of T im S is the operator
TE[S], considered as an operator on E[S]2# T is absolutely con-
tinuous on S if and only if the part of 7 in S is absolutely continuous,
or equivalently if and only if the measure d(E(\)E|[S ]z, x) is absolute-
ly continuous with respect to Lebesgue measure for every z in 5%

If _# is the smallest subspace of 2# which contains ¢, ---, @,
and reduces T,, then _# also reduces T,, and T. = T, on the ortho-
gonal complement _~ '+ of _#. For our purposes, it therefore suffices
to assume that 7 = 52 (see [5, 7, 9]). Let G = (N — 05, My + 00)
be the intersection of the interior of N with the real axis.

THEOREM 3. Assume that S5F = _#. Then VP, 0 and, for
all sufficiently small positive ¢,

(@) T. has an eigenvalue in G tf and only if Im{(e) =0, in
which case {(€) itself is the unique eigenvalue of T. in G, and has
simple multiplicity.

(b) The continuous part of T.in G is absolutely continuous and
unitarily equivalent to the part of T, in G ~ {\}.

Proof. Since
(4.1) W=z, ¢) = I — e mat {¢;(R(z, &)@, p,)}

it follows that for ¢,5 =1, .-, r, (R(2, €)p;, ;) is continuous on G ~
{C(e)}, and hence that d(E.(\)p;, @;) is absolutely continuous on G~ {{(¢)}.
Since 57 = _7, it follows that T. is absolutely continuous on G ~
{C(e)}. (See [5], proof of Theorem 1). However, the absolutely con-
tinuous parts of T, and T, are unitarily equivalent by the Rosenblum-
Kato Theorem [8; Th. 4.4, p. 540], so that part (b) follows. Since
G ~ {¢(e)} = G when Im{(¢) < 0, it remains only to show that {(¢)
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is an eigenvalue of simple multiplicity whenever Im {(¢) = 0. Observe
that the Stieltjes transform mat {(R(z, €)p;, p;)} of the matrixvalued
measure dM = mat {d(E.(\)p;, @;)} satisfies the hypotheses of Theorem 2
if {(e) is taken as the origin. It follows that {(¢) is a point mass
of M, and hence a point eigenvalue of T..

Let Q, be the orthogonal projection on the eigenspace of {(¢) and
@ the orthogonal projection on (V). Then the point mass of M at
{(¢) is the matrix of the operator QQ,Q on .ZZ(V), and since this is
the residue of mat {(R(z, €)p;, @;)}, it has rank one. It follows that
if 4, and +, are in the range of @,, there exists a linear combination
W = an, + @y, such that QQ,Q+ = 0. But then

0 = (R, Q¥) = || QQV |?
so that Q,Qv = 0 and

0 =(Qv, Q) = (Q¥,v) = Qv

Thus, if _#, is the orthogonal complement of the subspace spanned
by +r, then _#, reduces T. (since 4 is an eigenvector) and contains
(V) (since Qy=0). Hence, _#, also reduces T,, so that _7Z,=2#
and « = 0. Therefore +, and +, are linearly dependent, and {(¢) has
simple multiplicity.

REMARK. Note that by analyticity of {(¢), either (a) Im {(¢) = 0
for all sufficiently small positive ¢ or (b) Im {(¢)=0 for all sufficient-
ly small positive e.

5. Asymptotic spectral theory. In this section, an asymptotic
formula for the spectral density matrix defined by
E’()‘*! E) = mat {d(Ee()‘*)@u g’a)/dk‘}

is obtained. The result is valid near Re{(¢) as ¢ — 0+ in the case
Im {(¢)#0, and corresponds to the formula of Wigner and Weisskopf
referred to by Friedrichs [4].

LeMMA 5.1. If we define

R+(Z, 6) = mat {(R(Z, 5)@,;, @j)+}

then (z — ((&))R.(z,¢) is analytic in z and € on N X {e:|e| < &} for
some suffictently small positive e¢,.

Proof. Observe that €474z, €) = A, — 2z + O(¢) uniformly on N. If
[N — 2| = po, then |ed7'| = (0,/2) for ¢ small, and hence |4, = (2¢/0,)
uniformly on |:\, — 2| = 0,. From (4.1) and Theorem 1, R.(z,¢) is
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analytic in z for each ¢, and by the above is analytic in ¢ on |z — A\, | =
0,. Thus, we have by Cauchy’s formula

(2 = LOR (e, ) = (L/2mi) | (5 = &7 — LR, o)ds

where the contour N has the positive orientation. By differentiation
under the integral sign, we have analyticity in ¢ in a neighborhood
of ¢ = 0.

Let {(s) =N, — eI, so that I, = 0, and let | J| be the Lebesgue
meagsure of J.

THEOREM 4. Assume that Im{(s) = 0, and let {J.:e > 0} be an
arbitrary family of open intervals containing . and such that |J.| =
oY) as e—0+. Then for ved,

E° (N, €) = (L mI(v — N+ TE7'B(e) + 0(1)

as € — 0+, where B(e) ts the real part of the residue of R.(z,¢) at
the pole {(¢). B(e) is analytic in ¢ and B(0) = mat {(Pyp;, ¢,)}.

Proof. By Lemma 5.1, we have
(5.1) R (z,¢) = (z — L(e))"A(e) + O(1)

as € — 0+, uniformly on N. Since
Afe) = (1/27ri)g R.(z, &)dz
aN

differentiation under the integral sign shows that A(¢) is analytic near
¢ = 0, and hence that B(¢) is real analytic for real ¢. Let
A(e) = B(e) + 1C(e) .
Then by (5.1) we have for »eJ.
(5.2)  E’(\ €)= (1) Im R, (\, &)
= (/I — M) + 1727 B(e)
+ @/m)(v = N = N)* + 1 7C(e) + O(1)

as ¢ —0+. Observe now that C(¢) = O(™?); for if we note that
E’(\,e) =0 and set v = A, + [''%, then (5.2) implies that

(5.3) =P, + I (Ce)x, ) + 0(1) = 0

for every x € (V). But if I'7Y*(C(e)x, ) were unbounded as ¢ — 0+,
then since either sign of I". can be taken, (5.3) could not hold. It
now follows easily that the second term of (5.2) is O(1) as ¢ -0+,
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which completes the proof.

6. Spectral concentration. Let {T.:¢ =0} be a family of self-
adjoint operators. If E.(\) is the spectral resolution of T., we define

E[S] = SSdEs(N) for every Borel set S. Following [1], we say that

the spectrum of T. is concentrated at N\, to order p as € — 0+ if
and only if there exists a family {J.:e > 0} of intervals such that
E[J.]— EJ{\}] strongly and |J.| = O(¢?) as ¢ — 0+, where |J.| is
the Lebesgue measure of J..

THEOREM 5. Let {J,: >0} be an arbitrary family of intervals,
symmetric about ©., and such that |J.|=0({":"?) as e —0+. Assume
that Im () = 0. Then

(a) If B =lim|J,|/2I". exists as

8-"0+10§B§ co,

then E[J.] — (2/7) arctan(B) P, weakly as ¢ — 0+
(b) E[J.]— P, strongly if and only if lim|J, |/, = oo,

COROLLARY 6.1. Let I'. = O(¢?) as ¢ —0+. Then the spectrum
of T. ts concentrated at N\, to order p for 0 < p < q, but not for
»=q.

Proof of Theorem 5. If we recall that (B(e)z,y) — (Px,y) as
e — 0+ for every z,yc #Z(V), the proof is essentially the same as
the proof of Theorem 4 of [5]. Only a few simple changes need to
be made to compensate for the fact that in [5], I". = O(&?).

REMARK. In defining concentration of order p, the authors of
[1] permit {J.} to be Borel sets. The distinction is relevant for eigen-
values ), of multiplicity greater than one, but not for simple mul-

tiplicity—at least for isolated eigenvalues. We have therefore chosen
the simpler definition.

7. Perturbation series. One of the classical problems of per-
turbation theory (discussed, for example, by Frierdrichs [4] and Kato
[8, Chap. III]) is the interpretation of the formal perturbation series
in cases where it exists (at least to a certain number of terms), but
there is no corresponding perturbed eigenvalue. This is usually done in
terms of spectral concentration (see [1, 8, 10] where further references
are given). In the preceding section, we have related spectral con-
centration to the position of the pole {(¢), and we shall now discuss
the connection between {(¢) and the formal series. Under some rea-
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sonable nondegeneracy conditions, we obtain rather instructive results,
which involve the order of vanishing of the unperturbed spectral densi-
ty at X,. To be precise, we shall prove the following theorem:

THEOREM 6. Let y be the order of vanishing of the matrizvalued
Sunction mat {d(E,(N)Pp;, p;)/dN} at N, and assume that

A(E(N) P Vo, vro)/dN

vanishes at N, of order exactly v. Let

(7.1) Z(e) = % ™
be the series expansion of {(¢), and let
(7.2) Co8) = N + Npe” + O(e"™)

where N, # 0, p = 1 and {(¢) is the quantity defined in Lemma 7.2
below. Then

(@) The first nonreal coefficient in (7.1) @s a,.,, and we have
(7.8) I, = +&77(\) + O(e7+)
where
YN = (N — X)) A E(N)P Voo, Vbr)Jdh .

(b) The formal perturbation series exists up through terms of
order vp + 1 and coincides with 3273 a,&”.

For the proof, we shall require two lemmas,

LemMMA 7.1. Let C be the contour consisting of the real awis
outside of G = (Ny — 0p, Ny + 0,), together with the lower boundary of
N, all positively oriented. Then for any n =0 and Imz > 0, we
have
(7.4) Wiz, €) = I + €Q,(2) + (& — No)"D,(2)
where Q,(z) 1s the matrixz polynomial 3 7=; Q¥ (2~\)*, with coefficients
(1.5) Q¥ = mat{e, | (v = N UEMN P, 1)}

C

and

(7.6) Dn(z) = mat {Cj SC(X - xo)_n ()" - z)_ld(Eo(K)Pg)iy ?j)} .
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REMARKS. (1) The meaning of the rather cryptic integrals on
the right sides of (7.5) and (7.6) is the following. The integral has
its usual meaning over |\ — \,| = p,, while on the lower part of oN,
d(E,(\)Pyp;, @;) is to be replaced by

(7.7) (1/270)[(Ro(N) Ppi, 23)+ — (Bo(M) Py, @j)-1dN .

The coefficient of d\ in (7.7) is simply the analytic continuation of
d(E,(\N)@;, @:)/dN from G to N.

(2) Note that since D,(z) is well defined and analytic on the
interior of N, and @Q.(2) is a polynomial, (7.4) holds on the interior
of N, provided that W,(z, ¢) is replaced by [W,.(z, ¢€)]. on the left. A
similar formula can be obtained for [W,(z, ¢)]- simply by making C
traverse the (negatively oriented) upper half of the boundary of N
rather than the lower half.

Proof of Lemma 7.1. Fix z with Imz > 0 and note the finite
binomial expansion

=2 = (0 — M) S {2 — MOV — A
(7.8) k=0

+ (@ =" = ) — 27
Integrate (7.8) over C with respect to the matrix measure
mat {ec;d(E,(\) Pp;, p;)}
(see Remark (1) above). On the right, we obtain
€Q.(2) + &(z — N)"D.(2)
and on the left
(7.9) mat {ee;| (v = D AEM P, )} -

For Imz > 0, the integrand of (7.9) is analytic between C and the
real axis, and we may therefore deform the contour C in (7.9) to the
real axis. When this is done, we find that (7.9) is equal to W,(z, €) — I,
which yields the result. ‘

LEMMA 7.2. (a) For sufficiently small ¢, there exists im N a
unique solution z = {(¢) of the equation

(7.10) 2 =N + e([L + eQ,(2)]7 Vo, o)

Co(e) is analytic in ¢ at € = 0, and {(0) = N,
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Moreover, (b) L) is real for real € and
(¢) coincides with the formal perturbation series up to and in-
cluding terms of order e?*',

Proof of parts (a) and (b). The equation (7.10) is sufficiently like
(2.1) that part (a) can be proved just as Theorem 1. For part (b),
observe that since mat {d(E,(\)Pp;, ¢;)/d\} vanishes at A, of order v,
the contour of integration in (7.5) can be deformed back to the real
axis to obtain

0" — mat {cjgw (v — M) d(Ey(\) Pops, g),.)}
= mat {c,(S""'p;, p,)}
where S is the reduced resolvent (cf. [1] and [8]), defined by
S = (T,P — \P)* on Ps#
=0 on P,o7.

Now S is self-adjoint, and hence the matrix polynomial
n—1
S() = 5, mat {(S*'p,, )"

is Hermitian for real z. It follows by a simple calculation that the
matrix

[{+ eQ.(x)]7'V = [I + eVSR)]V

is Hermitian, and hence that the right side of (7.10) is real for real
z in N. However, it now follows by the Schwartz reflection principle
that the complex conjugate of any solution of (7.10) is also a solution.
Since {,(¢) is unique, it is therefore real.

For the proof of (c), we shall require the following.

PRrROPOSITION. Let F(z, €) and Fy(z, ¢) be analytic in z on the unit
disc, for each fixed ¢,0 < ¢ <e¢&, Let dF/dz be bounded on the unit
disc uniformly in ¢, and suppose that for some m = 0

F(z,¢) — Fi(z,¢) = 0(sz™)

unvformly in . Then if there exist unique solutions z(e) and z,(€)
of the equations z = c¢F(z,¢) and 2,=(2,, €) wn the unit disc, we have

(7.11) 2(e) — z(e) = O(e%7)

as € — 0+,

Proof. We have, uniformly in e,
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2 — 2, = &F(z,8) — eF(2,, €)
= eF(z, €) — eF(z,, ) + O(%=7")
= e0(z — z,) + O(e%T)
where the final equality uses uniform boundedness of dF/dz. Hence
(z — z)(1 + O(e)) = O(e%7")
which implies (7.11) as ¢ — 0.
Proof of part (c¢). Consider first the case where X\, is an isolated
eigenvalue of 7T, (see [8, Chap. VII]) so that dE,(A)P/d» =0 on a

neighborhood of G. In this case, there is a perturbed eigenvalue {(¢)
which satisfies the equation

(7.12) 2 =N + &([L + eKR)] Vo, Vo)

where K(z) is the matrix mat {¢;(R,(2)Pp;, ¢;)}. Now as an operator
on 57, Ry(z)P is analytic on a neighborhood of N, so that

VE(2)P = V S [R(PIz — M)

for z in N, from which it is immediate that
K(z) = Q.(z) + O((z — Np)")

for every m = 0. By the above proposition, taking A, as the origin,
we may compare the solutions of (7.10) and (7.12) for n=v to obtain
that

(7.13) E(e) — L&) = O(e™*?)

where {, corresponds to @,, and p is given by (7.2).

Now the formal perturbation series may be defined as the series
whose terms are formally the same as those of ((¢) in the isolated
case, leaving aside all questions of convergence and existence of terms.
Moreover, the coefficients of {,(¢) obtained from (7.10) are formally
the same in all cases, provided only that the terms of Q,(z) exist.
Hence, even in the present case, the equation (7.13) must hold in the
formal semse, which is all that is required. This rather devious proof
avoids a direct calculation of the formal series, a task which sceptics
are invited to perform.

Proof of Theorem 6. Applying the formula
T+a+b0)"=UT+a)*— T+ a)b(I + a)= + 0O(b?

to (7.4) with » = v, we obtain
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Wiz, €) = [I + eQ.(2)]™*
— [I + eQ.(2)]7'e(z — X))’ D, ()L + Q. (2)]™
+ O(e(z — N)™)
= [I + eQ.(2)]" — &z — M)’ D,(2) + Oz — \y)*) .

(7.14)

Define {,(e)={(e)—{,(¢). Since {(¢) satisfies (2.1), we obtain from (7.14)

(Co(8) = No) + Cule) = e[ + eQu(EEN]™ Vo, o)

7.15
(19 — &¥(E(&) — M) (D.(E(E)) Vo, vro) + O('(E(e) — Mo)*) -

Now {(¢) can be replaced by {,(¢) in the first term on the right side
of (7.15), to within a term which is O(e,(¢)). By definition of & (e),
the resulting term will exactly cancel {,(¢) — A, on the left side, yielding

Ci(e) + O(eCi(e)) = —€(C(e) — M) (D.(E(E)) ViAo, 2h0)
+ 0(E'(E(E) — o)) -

The second term on the left side may clearly be dropped as ¢ — 0+.
Observe now that if v > 0, then

(7.16)

(€(e) = X" = (L&) — No)* + (Co(e) — X)) O(Li(e)) -

If this expression is inserted into the two terms on the right side of
(7.16), it is seen in a similar way that of the four resulting terms,
the two involving {,(¢) may both be dropped. We therefore obtain

(1.17)  (e) = —&%(Eo(e) — M) (D.(L(E)) Vo, o) + O(%(Co(€) — No)*)

for v > 0; however, it is trivial from (7.16) that (7.17) also holds for
vy =0.
Now, since {,(¢) is real for real ¢,

.= —Im{(e) = —Im{(e).
Taking the imaginary part of (7.17) and using (7.2), we have that
(7.18) I, = e\ Im (D, (8(e) Vg, 4ro) + O(e77%) .

Since D,(z) is analytie, {(¢) may be replaced by \, on the right side of
(7.18), with the remainder being absorbed in the second term. However,
by (7.6), we have

I (D,W) Vi ) = lim |7 [Im (u—2) 10— dB0) PV, V)
2= 25450 J—oo
which is just a Poisson integral, convergent to v(\,). (7.3) now follows

from (7.18), and the remainder of part (a) follows from (7.3). For
part (b), observe that by (7.17)
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L(e) — Lule) = O(e™)

and that, by Lemma 7.2, {,(¢) differs from the formal series by terms
which are O(e*?*%),

8. Examples. We shall first consider the classical example of
Friedrichs [4, §*6-8 and 10]. Let .# be a closed interval and 5% =
Ly(_#) @ C where C is the one-dimensional space of complex numbers.
Let

To[u(k), E] = [Mo()»), 7\4051
where )\, is in the interior of _Z T, is self-adjoint with spectrum

# and has absolutely continuous spectral measure, except for an
eigenvalue )\, of simple multiplicity with eigenvector v, = [0,1]. Let

V=0 o+ (5 9f

where f = [f(\), 0]. We shall assume that (a) f(») is Holder continu-
ous on (— oo, + o) and has its support in .7 (b) f(A) does not vanish
on the interior of _# and (c)

Lifm Py =1.

V is self-adjoint of rank two, and .<2(V) has the orthonormal basis
{f, 4}, We shall compute matrices on <Z(V) with respect to this
basis; the fact that V is not diagonal is of no importance.

Let

T.=T,+ V.
For the matrix of I+ eVRy(z) on <Z(V) with respect to the basis
{f, ¥} we obtain
1 el — 2)t

(8.1) Wiz, ¢) = IeF(z) 1

where
F@) = | 1700F 0 = 2an .

The inverse matrix is

Ny — 2) —€

@2 WEO =Dz —CF@ _ ' pe e—2)

Since f(\) is Holder continuous, F(z) is continuous up to the real
axis and

(8.3) Im F(x» 4+ 40) =z | f(V) .
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By assumption (b), this quantity does not vanish on the interior of
/. Hence, T. is absolutely continuous on the interior of ._7 and the
eigenvalue ), disappears under the perturbation ¢V.

Now if | f(\)|* is analytic near A, then by Theorem 2 and (8.3),
F(z) will have a continuation F,(z). It is clear from (8.2) that the
virtual poles are solutions of

(8.4) N —2—EF () =0.

In the following three examples, _# = (—oo, +c0) and )\, = 0.

ExAmMPLE 8.1. Let
(8.5) S ]F = @/m) @ + A7
Then for Imz >0
Fiz)= —(+ 19
so that by continuation
F.(z) = —(z + 7)™
for all z. (8.4) therefore becomes
—z+ &R +1)"=0

which, by the quadratic formula, has one solution —i + O(¢*) and
another

(8.6) z(e) = —1e® + O(g) .
In order to apply (7.3), note that v = 0 and hence by (8.3) that
(8.7) YN = Td(E(N)PVap,, Vapo)fdy = 7| f(N) [P
By (8.5), this gives
') = & + 0O(&)
which agrees with the actual value
I'(e) = & + 0
obtained from (8.6).
ExaMPLE 8.2. If, instead of (8.5), we choose
(8.8) [ SO [P = @/mN(A 4 A)~2.
Then
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F.(2) = —z(z + 1)
and (8.4) becomes
-2+ &2z +1)7=0
which has the exact solutions
2=0 and z= —1t +¢".

Therefore, this perturbation does not remove the eigenvalue A, = 0.
Theorem 6 does not apply; for although the condition involving v is
satisfied, a computation shows that, in the basis {f, v},

z 0
Q.(2) = Qu(2) = ’ 0 Ol
from which it follows that {(¢) = 0.

ExampLE 8.3. In order to illustrate (7.3) when v # 0, we consider
a slightly different perturbation. Let

Vl[u(N), E] = [Oy >\'f]
where A, is real and nonzero, and define
T.=T,+ eV +eV,.

Then 2 (V 4+ V,) = #(V), and (8.1) acquires an additional term to
become

eNy — &)1

(8.9) Wiz, ¢) = eF(z) 1+ en(h, —2)! .

The inverse is

()"o + &N — z) —¢

W(z,¢) =[N + &N, — 2 — EF ()] —e(v — 2)F (@) (A — ?)

and the equation for virtual poles becomes
o+ EN — 2+ EFR)=0.
If | f\)|? is again given by (8.8), this equationbecomes
(—z+en)(z+ 1) +62=0.
By successive approximations, the relevant root is

2(e) = e, — 0\ — 2\ + O(e%)
so that
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(8.10) I'(e) = 2\t + O(ed)

by actual computation. To apply (7.3), note that v = 2 and {,(¢) =
en, + O(&%) so that »p = 1. Hence,

(8.11) I'(e) = e\ (0) + O(&)
where, by (8.7)

YO = A | FOV [P = 2(1 + A3,
Thus v(0) = 2, and (8.11) agrees with (8.10).
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