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EMBEDDED EIGENVALUES AND VIRTUAL POLES

JAMES S. HOWL AND

An embedded eigenvalue of simple multiplicity is perturb-
ed by an operator of finite rank. The resulting spectral con-
centration is shown to be due to the pole of the continuation
of a certain analytic function.

If λ0 is point eigenvalue of the selfadjoint operator To, then it
may happen that λ0 " disappears " under perturbation in the sense that
the perturbed operator Te=T0 + eV has a purely continuous spectrum
near λ0 for arbitrarily small positive e. As McLeod [10] remarks,
there are two parts of the theory of this phenomenon. There is, first
of all, the theory of spectral concentration, in which it is shown that
as ε —* 0 + there is an asymptotic " concentration" of the spectral
measure of Tε near λ0. Spectral concentration has been discussed for
isolated eigenvalues by many authors (see [1], [10], and [8, Chap.
VIII]), and for eigenvalues embedded in the continuous spectrum by
Friedrichs [4] and the present author [5]. Secondly, there is the con-
jecture, verified in certain examples (see [2], [10]), that this concen-
tration of the spectral measure is due to a virtual pole of the
resolvent R(z, ε) = (Tε — z)~\ For example, if T£ is a differential
operator and R(z, ε) an integral operator with Green's function kernel
gε(x, y; z), this means that gε can be continued meromorphicly from
Im z > 0 to a neighborhood of λ0 (on which the continuation will not
agree with the values of gε(x, y; z) for Imz < 0), and that this con-
tinuation will have, slightly below the axis, a pole ζ(ε) which tends
to λ0 as ε—>0+, and which accounts for the concentration in much
the same way that a pole on the axis might account for a point eigen-
value. This example defines the problem—in a more general situation,
the first step toward a solution is to find a replacement for the Green's
function which can be continued meromorphicly.

In [5], the author considered spectral concentration of embedded
eigenvalues of simple multiplicity, under perturbations of finite rank.
In the present paper, we shall discuss virtual poles in the context.
The quantity chosen to replace the Green's function is the inverse
Weinstein-Aronszajn matrix; that is to say, the inverse of the matrix
of the restriction of I + εV(T0 — z)~ι to the (finite dimensional) range
of the perturbation V (cf. [8, Chap. IV, §6]).

The organization of the paper is as follows. In § 1, we state the
basic assumptions and note a formula (Lemma 1.1) which is funda-
mental to our approach. The formulation of the problem is similar
to that of Kuroda [9]. The existence of a virtual pole ζ(ε) is then
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proved for sufficiently small ε in § 2. The spectral theory of Tε is
discussed in § 4, where it is shown that Tε has an eigenvalue near
λ0 if and only if ζ(ε) is real, in which case the eigenvalue is ζ(ε) it-
self. Section 3 contains a general result on continuations of Stieltjes
transforms which is used in § 4. Next, we consider the asymptotic
spectral theory of Tε as ε—>0-{-, in the case that ζ(ε) is not real.
In § 5, we obtain an asymptotic formula on the range of V for the
spectral density near λ0, which corresponds to the formula of Wigner
and Weiskopff mentioned by Friedrichs [4], This formula is used in
§ 6 to prove a result on spectral concentration near λ0. Finally, in
§ 7, we discuss, under certain conditions of nondegeneracy, the rela-
tionship between ζ(ε) and the formal perturbation series for the per-
turbed eigenvalue, obtaining in this case an asymptotic formula for
the imaginary part of ζ(ε). Section 8 discusses three examples.

1* Assumptions and preliminary facts* Let To be a self-adjoint
operator on a Hubert space έ%f with domain &{T0), and V a bound-
ed self-adjoint operator of finite rank r. V may then be written in
the form V = Σί=i c;(*> φϊϊψ% where c19 * ,c r are nonvanishing real
numbers and {φu , φr) is a finite orthonormal set spanning the range

of V. If ε > 0, then the operator Te=TQ + εV with &(Tε) =
is also self-adjoint. Let

R0(z) = (To - z)~ι and R(z, ε) = (Γε - z)-1

be the resolvents of To and Tε, and EQ(X) and E£(X) the corresponding
spectral resolutions. If S is a Borel set, we define

E [S] = \

for ε ^ 0.
The following assumption will be made throughout the paper, and

is an implicit hypothesis of all theorems.

BASIC HYPOTHESIS. Let λ0 be an eigenvalue of TQ of simple mul-
tiplicity and ψ0 a corresponding normalized eigenvector. Let Po —
( , ψQ)ψ0 and P = I — Po. We shall assume that for i,j = l, ,r
the analytic function (R0(z)Pφi9 φd) has an analytic continuation from
the upper half-plane into a neighborhood of λ0 in the complex plane.

In the sequel, we shall let N — {z: \ z — λo | ^ <J0} be a fixed closed
disc contained in the above neighborhoods for all iy j — 1, , r. Since
[βo(^)]* — Ro(z), it is a consequence of the above assumption that
(RQ(z)Pφi1 cpj) has a corresponding continuation from the lower half-
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plane to a neighborhood of N. These two continuations are in general
not identical on N, since λ0 need not be an isolated eigenvalue. In
order to distinguish between them, we shall introduce the following
notation: Let F{z) be a function defined and analytic for Im z Φ 0.
The continuation of F(z) from lmz > 0 to N will be denoted by a
subscript ' + ' , while the continuation from Im z < 0 to N will be de-
noted by a subscript * — \ For example, (R0(z)φif φs)+ denotes the
continuation from Im z > 0. Similarly, we shall encounter such nota-
tions as W±(z,ε) and [Wa(z, ε)]±.

The matrix whose elements are ai3 , i,j = 1, , r, will be denot-
ed by mat {<%}.

For I m z ^ O , let W(z, ε) be the restriction of I + εVR0(z) to
&(V). Since &(V) is invariant under I + εVRQ(z), W(z, ε) is an
operator on the finite dimensional space &(V), and is easily seen to
have the matrix

(1.1) mat {δiS + ecό{RQ(z)φiJ Ψj)}

with respect to the basis φu , φr. Moreover, W~\z, e) exists for
ImzΦO and every ε ^ 0, and is the restriction to &(V) of the
operator I-εVR(zyε) (see [5, §1] or [10]). We also define Wa(z, ε)
to be the restriction to &(V) of I + εVRQ(z)P, so that

(1.2) W(z, ε) = Wa(z, ε) + (λ0 - z)

In analogy with (1.1), Wa(z, ε) has the matrix

(1.3) mat {δid + εcj(RQ(z)Pφi1 φά)} .

The following formula for W~\z, ε) is basic to our approach.

LEMMA 1.1. W~\z, ε) exists for Imz Φ 0 and

(1.4) W-ι(z, ε) - Wzι(z, ε)[I - A{z, ε){ W?(z, ε)., ψ0) Vψ0]

where

(1.5) zί(̂ , ε) - ε[λ0 -z + ε(Wά\z, ε)Vψ0, to)]"1 .

For the proof, see [5, §1, Lemma 1.1].

PROPOSITION. Under the Basic Hypothesis, the following hold
for all sufficiently small positive ε:

(a) Wa(z, ε) and W^ι(z, ε) have analytic continuations to a neigh-
borhood of N from both half-planes. For a suitably small ε0 > 0,
these continuations, [Wα(z, ε)]± and [W^iz, ε)]± are bounded on Ny

uniformly for 0 ^ ε <̂  ε0.
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(b) If VPQΦO, then W(z,ε), W^iz, ε), and A{z,ε) have meromor-
phic continuations to a neighborhood of N from both half-planes.
W±(z, ε) is analytic on N with the exception of a simple pole at λ0.
The poles of W~£(z, ε) coincide with those of Δ±{z, ε). The residues
at these poles have rank one.

Proof. Existence and uniform boundedness of the continuations
[Wa(z,e)]± is immediate from the Basic Hypothesis and (1.3). The
Neumann series expansion of W~ι{z,ε) in powers of ε (cf. [5; §3])
converges uniformly on N, so that the rest of (a) follows, (b) follows
easily from (a) and an inspection of formulae (1.2), (1.4) and (1.5).

2* Virtual poles. We are now able to prove the existence of
a virtual pole of W~ι(z, ε).

THEOREM 1. Let VP0 Φ 0. Then for all sufficiently small posi-
tive ε, W+^z, ε) has a unique pole ζ(ε) in N. ζ(ε) is a simple pole
with residue of rank one, Imζ(ε) <̂  0 and ζ(ε) —*λ0 as s—*0 + . More-
over, ζ(ε) is a complex analytic function of ε at ε — 0.

Proof. By the Proposition of § 1, it suffices to consider solutions
of the equation

(2.1) εΔ?{z, ε) = λ0 - z + ε(W?(z, ε)Vf0, ψQ)+ = 0 .

Let 0 < p <̂  ρQ. Then since {W~\z, ε)Vψ0, τ/ro)+ is bounded on JV uni-
formly in ε, εd+^z, ε) — (λ0 — z) can be made arbitrarily small uniform-
ly on I z — λ01 = p, by choosing ε sufficiently small. By Rouche's
Theorem, εj+1(zf ε) and (λ0 — z) have the same number of zeros (count-
ing multiplicities) inside \z — X0\=ρ. Choosing p = p0 gives existence,
uniqueness and simplicity of the pole ζ(ε) of J+(z, ε) in N, while
choosing p arbitrarily small shows that ζ(ε)—>λ0 as ε—>0 + . Since the
coefficient of Λ+(z, ε) in (1.4) is of rank one, the residue of W+\z, e)
has rank one. If Imz>0, W+^z, ε) is the restriction of /— εVR(z, ε)
to &{V)j and therefore has no pole. Hence, Imζ(ε) <̂  0. Analyticity
of ζ(ε) follows from a general result [3; p. 101, Th. 7.1] on analy-
ticity of inverse functions.

COROLLARY. WZ\Z, ε) has, for sufficiently small positive ε, the
unique pole ζ_ (ε) = ζ(ε). As a complex analytic function of
ε, ζ_ (ε) = ζ(έ).

Proof. We simply observe that for real ε, J_ (z, ε) — Δ+ (z, ε) since
RQ(z) = R*(z). The result follows easily.
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3* Continuations of Stieltjes transforms* The following simple
result on meromorphic continuations of Stieltjes transforms of matrix-
valued measures will be used in the next section.

THEOREM 2. Let M be a positive Hermitian matrix-valued, finite
Borel measure on (—00, + 00), and

F(z) = [+O°(t - z)~ιdM(t) Im z Φ 0
J-00

its Stieltjes transform. If F(z) has a meromorphic continuation
F+(z) from Im z > 0 to a disc D about the origin, then

( a ) F(z) has a meromorphic continuation F_(z) from Im z < 0
to D.

(b) The poles of F_(z) have nonnegative imaginary parts and
are the reflections in the real axis of the poles of F+(z).

(c) If F+(z) has a simple pole at z = 0, then M has a point
mass at the origin, equal to the residue of F+(z) at the origin.

Proof. From imzφO, we have F(z) = F*(z)9 and hence by con-
tinuation

(3.1) F_(z) = Fϊ(z)

which proves (a) and (b). For (c), observe that if

(3.2) F+(z) = (A/z) + 0(1)

and

(3.3) F_(z) = {Biz) + 0(1)

on D, then by (3.1)

(3.4) B = A* .

Now observe that for sufficiently small real λ, we have

M'(X) =

= (A- A*)/(2ττίλ) + 0(1)

where M\X) is the spectral density for the absolutely continuous part
of M. Since M'(X) is a positive Hermitian matrix both for λ > 0 and
λ < 0, we must have

(3.5) A = A* = B .

Now if d > 0 is sufficiently small, it is clear that M is absolutely
continuous on ( — δ, +<5) with smooth derivative, except possibly at
z — 0. It is therefore easy to see that
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2πiM(-δ, + δ) = \ F(z)dz
(3.6) '"- '

F+(z)dz + [F-(z) - F+(z)]dz
J\z\=δ )C

where C is the lower half of the (positively oriented) contour \z\ = δ.
But the first term of the right side of (3.6) is equal to 2πiA, while
the second is O(δ), since its integrand is bounded on C by (3.2), (3.3)
and (3.4). Hence,

limM(-δ, +δ) = A
δ->0+

which proves the result.

4* Spectral theory. If T = I XdE(X) is self-adjoint and S is a
Borel subset of the reals, then the part of T in S is the operator
TE[S], considered as an operator on E\S\3ίf. T is absolutely con-
tinuous on S if and only if the part of T in S is absolutely continuous,
or equivalently if and only if the measure d(E(X)E[S]x, x) is absolute-
ly continuous with respect to Lebesgue measure for every x in £ίf.

If ^ is the smallest subspace of 3$f which contains <p19 , φr

and reduces Γo, then ^ C also reduces Te, and Tε = To on the ortho-
gonal complement ^fL of ^/ί. For our purposes, it therefore suffices
to assume that ^y£ = ^f (see [5, 7, 9]). Let G = (λ0 — /)0, λ0 + p0)
be the intersection of the interior of N with the real axis.

THEOREM 3. Assume that ^f — ̂ C Then VPQ Φ 0 and, for
all sufficiently small positive ε,

(a) Tε has an eigenvalue in G if and only if Im ζ(ε) = 0, in
which case ζ(s) itself is the unique eigenvalue of Tε in G, and has
simple multiplicity.

(b) The continuous part of Tε in G is absolutely continuous and
unitarily equivalent to the part of TQ in G ~ {λ0}.

Proof. Since

(4.1) W~\z, e) = I - ε mat {c,.(R(z, ε)φif Ψi)}

it follows that for i, j = 1, , r, (R(z, ε)φiy φά) is continuous on G ^
{ζ(ε)}, and hence that d(Eε(X)φif φt) is absolutely continuous on £?~{ζ(ε)}.
Since β^ = ^f, it follows that Tε is absolutely continuous on G ~
{ζ(ε)}. (See [5], proof of Theorem 1). However, the absolutely con-
tinuous parts of To and Tε are unitarily equivalent by the Rosenblum-
Kato Theorem [8; Th. 4.4, p. 540], so that part (b) follows. Since
G ~ {ζ(ε)} = G when Im ζ(ε) < 0, it remains only to show that ζ(ε)
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is an eigenvalue of simple multiplicity whenever Im ζ(ε) = 0. Observe
that the Stieltjes transform mat {(R(z, ε)φif φd)} of the matrixvalued
measure dM = mat {d(Eε(X)φiy φό)} satisfies the hypotheses of Theorem 2
if ζ(ε) is taken as the origin. It follows that ζ(ε) is a point mass
of M, and hence a point eigenvalue of Te.

Let Qo be the orthogonal projection on the eigenspace of ζ(ε) and
Q the orthogonal projection on &(V). Then the point mass of M at
ζ(ε) is the matrix of the operator QQ0Q on <^(F), and since this is
the residue of ms,t{(R(z9ε)φi9φj)}9 it has rank one. It follows that
if ψt and ψ2 are in the range of Qo> there exists a linear combination
ψ = a1ψ1 + a2ψ2 such that QQoQψ = 0. But then

so that Q^Qψ — 0 and

Ψ) = WQΨII2

Thus, if ^/to is the orthogonal complement of the subspace spanned
by φ, then ^f0 reduces Tε (since ψ is an eigenvector) and contains
&(V) (since Qψ — G). Hence, ^/^ also reduces TQ, so that ^/^ — ^f
and ψ = 0. Therefore ψ1 and ψ2 are linearly dependent, and ζ(ε) has
simple multiplicity.

REMARK. Note that by analyticity of ζ(ε), either (a) Imζ(ε) Φ 0
for all sufficiently small positive ε or (b) Imζ(ε) = 0 for all sufficient-
ly small positive ε.

5. Asymptotic spectral theory* In this section, an asymptotic
formula for the spectral density matrix defined by

E'(X, ε) = mat {d(E£(X)φif φd)/dX}

is obtained. The result is valid near Re ζ(ε) as ε —* 0 + in the case
Imζ(ε)^0, and corresponds to the formula of Wigner and Weisskopf
referred to by Friedrichs [4].

LEMMA 5.1. If we define

R+(z, ε) = mat {(R(z, ε)φiy φό)+}

then (z — ζ(ε))R+(z, ε) is analytic in z and ε on N x {ε: | ε | < εj for
some sufficiently small positive ε1#

Proof. Observe that εAz^iz, ε) — λ0 — z + O(ε) uniformly on N. If
I A,o _ z\ = pOf then lε^ 1 ! >̂ (ρo/2) for ε small, and hence \4+\ ^ (2ε/p0)
uniformly on | λ0 — z\ = p0. From (4.1) and Theorem 1, R+(z, ε) is
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analytic in z for each ε, and by the above is analytic in ε on | z — λ01 =
pQ. Thus, we have by Cauchy's formula

(z - ζ(e))R+(z, ε) = (l/2πi) \ (ξ - z)-\ξ - ζ(ε))Λ+(f, e)dξ

where the contour dN has the positive orientation. By differentiation
under the integral sign, we have analyticity in ε in a neighborhood
of ε = 0.

Let ζ(ε) — λε — iΓc, so that Γε ^ 0, and let \ J\ be the Lebesgue
measure of J.

THEOREM 4. Assume that Imζ(ε) Φ 0, and let {Jε: ε > 0} be an
arbitrary family of open intervals containing X£ and such that \Jε\ =
O(Γε

1/2) as ε —> 0 + . Then for XeJε

E'(X, ε) = (Γε/τr)[(λ - λε)
2 + Γε]-Ή(ε) + 0(1)

as ε—>0 + , where B(ε) is the real part of the residue of R+(z,ε) at
the pole ζ(ε). B(ε) is analytic in ε and B(0) = mat {(P0<Pi, ψj)}*

Proof. By Lemma 5.1, we have

(5.1) R+(z, e) = (z- ζ(ε))-^(ε) + 0(1)

as ε —> 0 + , uniformly on N. Since

A(ε) = (l/2πi) [ R+(z, ε)dz

differentiation under the integral sign shows that A(ε) is analytic near
ε = 0, and hence that JS(ε) is real analytic for real ε. Let

A(ε) = B(ε) + iC(ε) .

Then by (5.1) we have for XeJε

(5.2) E'(X, ε) = (1/ττ) Im R+(X, ε)

= (Γε/ττ)[(λ - λc)
2 + Γl\-'B(ε)

+ (l/ττ)(λ - λβ)[(λ - λε)
2 + Γ f ] - 1 ^ ) + 0(1)

as ε—>0 + . Observe now that C(ε) — O(ΓLJ2); for if we note that
E'(X, ε) ^ 0 and set λ = X£ ± Γl>\ then (5.2) implies that

(5.3) ±Γ ε

1 / 2[Γ ε + Γϊ]-\C(ε)x, x) + 0(1) ^ 0

for every x e &(V). But if Γε"
1/2(C(ε)$, x) were unbounded as ε—>0 + ,

then since either sign of Γε can be taken, (5.3) could not hold. It
now follows easily that the second term of (5.2) is 0(1) as ε-^0 + ,
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which completes the proof.

6* Spectral concentration. Let {Tε: ε :> 0} be a family of self-

adjoint operators. If Eε(X) is the spectral resolution of Ta we define

Eε[S] = I dEε(X) for every Borel set S. Following [1], we say that
JS

the spectrum of Tε is concentrated at λ0 to order p as ε —> 0 + if
and only if there exists a family {Jε: ε > 0} of intervals such t h a t

Eε[Jε] -> EQ[{XQ}] strongly and \Jε\ = O(ep) as ε-~»0+, where \Jε\ is

t h e Lebesgue measure of Jε.

THEOREM 5. Let {J£:ε>0} be an arbitrary family of intervals,
symmetric about λε, and such that \ Jε \ — 0{Γψ) as ε—»0 + . Assume
that Im ζ(ε) Φ 0. Then

(a) Ifβ = lim | Jε \/2Γε exists as

ε->0 + ,0 ^ β ^ oo,

then Eε[Jε]-^(2/π) arctan(β) Po weakly as ε —»0 +

(b) Eε[Jε] —> Po strongly if and only if lim | Jε \/Γε = °o.

COROLLARY 6.1. Let Γε — O(εq) as ε—>0+. Then the spectrum
of Tε is concentrated at λ0 to order p for 0 <̂  p < q, but not for

Proof of Theorem 5. If we recall that (B(ε)x, y) —* (PQx, y) as
ε—*0+ for every x, ye&(V), the proof is essentially the same as
the proof of Theorem 4 of [5]. Only a few simple changes need to
be made to compensate for the fact that in [5], Γε = O(ε2).

REMARK. In defining concentration of order p, the authors of
[1] permit {Jε} to be Borel sets. The distinction is relevant for eigen-
values λ0 of multiplicity greater than one, but not for simple mul-
tiplicity—at least for isolated eigenvalues. We have therefore chosen
the simpler definition.

7* Perturbation series* One of the classical problems of per-
turbation theory (discussed, for example, by Frierdrichs [4] and Kato
[8, Chap. Ill]) is the interpretation of the formal perturbation series
in cases where it exists (at least to a certain number of terms), but
there is no corresponding perturbed eigenvalue. This is usually done in
terms of spectral concentration (see [1, 8, 10] where further references
are given). In the preceding section, we have related spectral con-
centration to the position of the pole ζ(ε), and we shall now discuss
the connection between ζ(ε) and the formal series. Under some rea-
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sonable nondegeneracy conditions, we obtain rather instructive results,
which involve the order of vanishing of the unperturbed spectral densi-
ty at λ0. To be precise, we shall prove the following theorem:

THEOREM 6. Let v be the order of vanishing of the matrixvalued
function mat {rf(£r

0(λ)P< ί̂, φ^/dX} at λ0, and assume that

d(E0(X)PVψ0, fo

vanishes at λ0 of order exactly v. Let

(7.1) ζ(s) - Σ a«

be the series expansion of ζ($), and let

(7.2) ζo(e) = λ0 + Xpε» +

where Xp Φ 0, p >̂ 1 and ζo(ε) is the quantity defined in Lemma 7.2
below. Then

(a) The first nonreal coefficient in (7.1) is a2+up and we have

(7.3) Γ. - + ε 2 + ^

where

7 ( λ ) = π(χ - χo)-»d(Eo(X)PVψo, Vfo)jdX .

(b) The formal perturbation series exists up through terms of
order vp + 1 and coincides with ΣnlY ane

n.

For the proof, we shall require two lemmas.

LEMMA 7.1. Let C be the contour consisting of the real axis
outside of G ~ (λ0 — ρOf x0 + ρ0), together with the lower boundary of
N, all positively oriented. Then for any n > 0 and Im z > 0, we
have

(7.4) Wa(zy e) = I+ εQn(z) + e(z - X0)
nDn(z)

where Qn(z) is the matrix polynomial Σϊ=ί Q{k)(z — \)k, with coefficients

(7.5) Q(Λ) = matjcy ( (λ - XQrk~1d(E0(X)Pφif φΛ
I jc )

and

(7.6) Όn(z) = mat | C y J^(λ - X0)~n(X - z)-ιd(E0(X)Pφi,
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REMARKS. (1) The meaning of the rather cryptic integrals on
the right sides of (7.5) and (7.6) is the following. The integral has
its usual meaning over | λ — λ01 ^ pQ, while on the lower part of dN,
d(EQ(X)Pg>i, cpj) is to be replaced by

(7.7) (l/2πi)[(RQ(X)Pφi, φs)+ - (R0(\)Pφif ψjUdX .

The coefficient of dx in (7.7) is simply the analytic continuation of
d(E0(X)φiy (pi)jdX from G to N.

(2) Note that since Dn(z) is well defined and analytic on the
interior of N, and Qn(z) is a polynomial, (7.4) holds on the interior
of N9 provided that Wa{z, ε) is replaced by [TFα(2, ε)]+ on the left. A
similar formula can be obtained for [ΫFα(£, ε)]__ simply by making C
traverse the (negatively oriented) upper half of the boundary of N
rather than the lower half.

Proof of Lemma 7.1. Fix z with Imz > 0 and note the finite
binomial expansion

(λ _ z)-1 = (λ - λo)-1 Σ ' {(« ~ λo)
fc(λ - X0)-k

(7.8) * = 0

}+ (z - Xϋ)
n(X - X,)~n{X - 2)

Integrate (7.8) over C with respect to the matrix measure

mat {εCjd(E0(X)Pφiy φd)}

(see Remark (1) above). On the right, we obtain

eQn(z) + 6(z - X0)
nDn(z)

and on the left

(7.9) matjecyί (λ - z)~1d(E0(X)Pφi, φΛ .

For Im z > 0, the integrand of (7.9) is analytic between C and the
real axis, and we may therefore deform the contour C in (7.9) to the
real axis. When this is done, we find that (7.9) is equal to Wa(z, ε) — /,
which yields the result.

LEMMA 7.2. (a) For sufficiently small ε, there exists in N a
unique solution z = ζo(ε) of the equation

(7.10) z = λ0 + e([I + ε

ζo(ε) is analytic in e at e — 0, and ζo(O) = λ0.
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Moreover, (b) ζo(ε) is real for real ε and
(c) coincides with the formal perturbation series up to and in-

cluding terms of order εvp+ι.

Proof of parts (a) and (6). The equation (7.10) is sufficiently like
(2.1) that part (a) can be proved just as Theorem 1. For part (b),
observe that since mat {d{EQ{X)Pφi, <Pj)/dX] vanishes at λ0 of order v,
the contour of integration in (7.5) can be deformed back to the real
axis to obtain

- mat {C lS^φ

where S is the reduced resolvent (cf. [1] and [8]), defined by

S = (T0P - λoP)"1 on

- 0 on o

Now S is self-ad joint, and hence the matrix polynomial

S(Z) = JΣm3.t{(Sk+1φi9φj)}zk

is Hermitian for real z. It follows by a simple calculation that the
matrix

[/ + eQy(z)]~lV - [/ + εVS{z)\-ιV

is Hermitian, and hence that the right side of (7.10) is real for real
z in N. However, it now follows by the Schwartz reflection principle
that the complex conjugate of any solution of (7.10) is also a solution.
Since ζo(ε) is unique, it is therefore real.

For the proof of (c), we shall require the following.

PROPOSITION. Let F(z, ε) and F0(z, ε) be analytic in z on the unit
disc, for each fixed ε, 0 ίg ε ^ ε2. Let dF/dz be bounded on the unit
disc uniformly in ε, and suppose that for some m >̂ 0

F(z, ε) - F0(z, ε) = 0{εzm)

uniformly in ε. Then if there exist unique solutions z{ε) and zo(ε)
of the equations z = εF(z, ε) and zo = (zo, ε) in the unit disc, we have

(7.11) z(ε) - zo(ε) = O(ε2^)

as ε—>0+.

Proof. We have, uniformly in ε,
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z - z0 = εF(z, ε) - εF0(z0, s)

= εF(z, ε) - εF(z0, ε) + O(ε2z0

m)

= εθ(z - 2o) + O(ε2z0

m)

where the final equality uses uniform boundedness of dF/dz. Hence

(z - zo)(l + 0(ε)) = O(εX)

which implies (7.11) as ε—>0 + .

Proof of part (c). Consider first the case where λ0 is an isolated
eigenvalue of To, (see [8, Chap. VII]) so that dE0(X)P/dX = 0 on a
neighborhood of G. In this case, there is a perturbed eigenvalue ζ(e)
which satisfies the equation

(7.12) z = λ0 + e([I + eK(z)]-ιVψ0, ψ0)

where K{z) is the matrix mat {cj(RQ(z)Pφi1 φά)}. Now as an operator
on έ%f, R0{z)P is analytic on a neighborhood of N, so that

VR0(z)P =

for « in N, from which it is immediate that

K(z) - Qn{z) + O((β - λo) )

for every n ^ 0. By the above proposition, taking λ0 as the origin,
we may compare the solutions of (7.10) and (7.12) for n — v to obtain
that

(7.13) ζ(ε) - ζo(ε) = O(s"+2)

where Co corresponds to Qv, and p is given by (7.2).
Now the formal perturbation series may be defined as the series

whose terms are formally the same as those of ζ(ε) in the isolated
case, leaving aside all questions of convergence and existence of terms.
Moreover, the coefficients of ζo(ε) obtained from (7.10) are formally
the same in all cases, provided only that the terms of Qp(z) exist.
Hence, even in the present case, the equation (7.13) must hold in the
formal sense, which is all that is required. This rather devious proof
avoids a direct calculation of the formal series, a task which sceptics
are invited to perform.

Proof of Theorem 6. Applying the formula

(I+a + b)-1 = (I+ a)-1 - (I + a)-%I + a)~ι + O(δ2)

to (7.4) with n = v, we obtain
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( 7 Λ 4 ) - [I + e
+ O(ε2(z - λ 0Γ)

1 - ε(z - XoγDu(z) + O(ε2(z -

Define ζ1(e) = ζ(ε)-ζ0(e). Since ζ(ε) satisfies (2.1), we obtain from (7.14)

(COO - λ0) + ζ,(ε) = ε([I + e

- ε2(ζ(ε) - XoY(DMε))Vφo, ψ0) + O(ε3(ζ(ε) -

Now ζ(ε) can be replaced by ζo(ε) in the first term on the right side
of (7.15), to within a term which is O(εζ1(ε)). By definition of ζo(ε),
the resulting term will exactly cancel ζo(ε) — λ0 on the left side, yielding

ζ:(ε) + O(εζx(ε)) = ~ε2(ζ(ε) - Xoy(Dv(ζ(ε))Vψo, to)

+ O(ε3(ζ(ε) - Xoy) .

The second term on the left side may clearly be dropped as ε—>0 + .
Observe now that if v > 0, then

(ζ(ε) - xoy - (ζo(ε) - λ0)^ + (ζo(ε) - ^" "ΌίWε)) .

If this expression is inserted into the two terms on the right side of
(7.16), it is seen in a similar way that of the four resulting terms,
the two involving ζL(ε) may both be dropped. We therefore obtain

(7.17) ζx(ε) = -ε2(ζ0(ε) - \QY(Du(ζ(ε))Vψ0, Ψo) + O(ε3(ζ0(ε) - λ0)*)

for v > 0; however, it is trivial from (7.16) that (7.17) also holds for
i> = 0 .

Now, since ζo(ε) is real for real ε,

Γε= - I m ζ ( ε ) = - I m ζ ^ ε ) .

Taking the imaginary part of (7.17) and using (7.2), we have that

(7.18) Γε = ε^ 2 λ* Im (Dv(ζ(ε))Vψ0, Ψo)
Since Dv(z) is analytic, ζ(ε) may be replaced by λ0 on the right side of
(7.18), with the remainder being absorbed in the second term. However,
by (7.6), we have

\[lm (X-z)-1](X-XQ)~ud(Eo(X)PVfOf

which is just a Poisson integral, convergent to 7(λ0). (7.3) now follows
from (7.18), and the remainder of part (a) follows from (7.3). For
part (b), observe that by (7.17)
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ζ(e) - ζo(ε) - O(

and that, by Lemma 7.2, ζo(ε) differs from the formal series by terms
which are O(εup+2).

8* Examples* We shall first consider the classical example of
Friedrichs [4, §'s 6-8 and 10]. Let J^ be a closed interval and 3ίf =
L2(^) Θ C where C is the one-dimensional space of complex numbers.
Let

), ξ] = [Xu(X), Xoξ]

where λ0 is in the interior of <J^ To is self-adjoint with spectrum
^ and has absolutely continuous spectral measure, except for an
eigenvalue λ0 of simple multiplicity with eigenvector ψ0 = [0,1]. Let

where / = [/(λ), 0]. We shall assume that (a) f(X) is Holder continu-
ous on (— oo, +oo) and has its support in ^ (b) f(X) does not vanish
on the interior of J^ and (c)

V is self-adjoint of rank two, and &(V) has the orthonormal basis
{f>ψo} We shall compute matrices on &(V) with respect to this
basis; the fact that V is not diagonal is of no importance.

Let

For the matrix of / + εVR0(z) on
{/> to} we obtain

with respect to the basis

eF(z)

where

F(z) =

The inverse matrix is

(8.2) = [XQ-z-
- ε ( λ 0 - z)F(z) (λo~ z)

Since f(X) is Holder continuous, F(z) is continuous up to the real
axis and

(8.3) Im F(X + ίO) = π | f(X) | 2 .
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By assumption (b), this quantity does not vanish on the interior of
^\ Hence, Tε is absolutely continuous on the interior of ^ and the
eigenvalue λ0 disappears under the perturbation εV.

Now if | /(λ) | 2 is analytic near λ0, then by Theorem 2 and (8.3),
F(z) will have a continuation F+(z). It is clear from (8.2) that the
virtual poles are solutions of

(8.4) Xo- z - e2F+{z) = 0 .

In the following three examples, J^ = ( — oo, + oo) and λ0 = 0.

EXAMPLE 8.1. Let

(8.5) | /(λ) | 8 = (l/τr)(l + λ 8 )- 1 .

Then for Im z > 0

F(z)= -(z + i)-1

so that by continuation

F+(z) = -(z + i)-1

for all z. (8.4) therefore becomes

-z + e\z + i)-1 = 0

which, by the quadratic formula, has one solution — i + O(ε2) and
another

(8.6) z(s) = -is2 + O(ε4) .

In order to apply (7.3), note that v = 0 and hence by (8.3) that

(8.7) τ(λ) - πd(Eo(\)PVψo, Vψo)/dX = π\f(X) |2 .

By (8.5), this gives

Γ(ε) = ε2 + O(ε3)

which agrees with the actual value

Γ(e) = ε2 + O(ε4)

obtained from (8.6).

EXAMPLE 8.2. If, instead of (8.5), we choose

(8.8)

Then
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F+{z) =-z(z + i)-2

and (8.4) becomes

-z + ε2z(z + i)~2 = 0

which has the exact solutions

z = 0 a n d z — —i±ε2.

Therefore, this perturbation does not remove the eigenvalue λ0 = 0.
Theorem 6 does not apply; for although the condition involving v is
satisfied, a computation shows that, in the basis {/, ψ0},

= Q*(z) =

from which it follows that ζo(ε) = 0.

z 0

0 0

EXAMPLE 8.3. In order to illustrate (7.3) when v Φ 0, we consider
a slightly different perturbation. Let

W λ ) , ξ] = [o, λ,f]

where X1 is real and nonzero, and define

Tε = TQ + εV+ eV, .

V,) = ^ ( F ) , and (8.1) acquires an additional term toThen
become

(8.9) W(z, ε) =
ε(λ0 -

εF(z) 1 +

The inverse is

W~\z, ε) - [λ0 \ - z -
(λ0 + εX1 — z) —ε

-ε(λ 0 - z)F(z) (λ0 - z)

and the equation for virtual poles becomes

λ0 + εXι — z + ε2F(z) = 0 .

If | /(λ) | 2 is again given by (8.8), this equation becomes

(-z + εXL)(z + if + ε2z = 0 .

By successive approximations, the relevant root is

z(ε) = εX, - ε3λL - 2ε4λ2ί + O(ε5)

so that
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(8.10) Γ(e) = 2λ?ε4 + O(ε5)

by actual computation. To apply (7.3), note that v = 2 and ζo(ε) =
ελ,. + O(ε2) so that p = 1. Hence,

(8.11) Γ(ε) - ε4λ*γ(0) + O(ε5)

where, by (8.7)

Thus 7(0) = 2, and (8.11) agrees with (8.10).
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