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WHITTAKER CONSTANTS FOR ENTIRE FUNCTIONS
OF SEVERAL COMPLEX VARIABLES

JOHN K. SHAW

Let / be an entire function of a single complex variable.
The exponential type of / is given by

The Whittaker constant W is defined to be the supremum
of numbers c having the following property: if τ(f) < c and
each of f9f9f"9 ••• has a zero in the disc | z | ^ 1, then
/ = 0. The Whittaker constant is known to lie between
.7259 and .7378.

The present paper provides a definition and characteri-
zation of the Whittaker constant c^l for n complex variables.
The principle result of this characterization, which involves
polynomial expansions of entire functions, is

W > y/i ^ Ύ^ ^ .

To simplify notation, the presentation here is given for functions
of two variables.

An exact determination of W was obtained by M. A. Evgrafov
in 1954 [3]. The determination involves the Goncarov polynomials,
defined recursively by

G0(z) = 1 ,

~n n-L ~n—k

(1 .1 ) irn(Z9 Zo, « » . - • , Z^O - - - Σ* ( n _ k)]iτk(Z, ZQ, Zl9 - , Z^) .

Let

Hn = max I Gn(0; z0, , zn^) \ ,

where the maximum is taken over all sequences {zk}kZl whose terms
lie on | z \ = 1. Evgrafov proved that

W = ίlim sup Hi1*} ' .

An improvement of this result and further characterizations of
W were furnished by J. D. Buckholtz [1]. Using properties of the
Goncarov polynomials, Buckholtz proved that

(1.2) (Λ)ίlnH~lln <W^ H~ιjn ,

for n = 1, 2, 3, . A consequence of these bounds is
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(1.3) W = jlim Hί"1}^ = { sup Hi!*}'1 .

For an entire function / (of two complex variables) the exponential
type τ(f) is given by

τ(f) = limsup |/(m'TO)(0, 0) \llίm+n) .

We define the Whittaker constant 7/^ to be the supremum of positive
numbers c having the following property: if z(f) < c and each of
fim,n) (o ^ m < co, 0 ίg n < oo) has a zero in the poly discffo, «2):
I ̂  I ^ 1, I ̂ 21 <Ξ 1}, then / = 0. The bound 5 ^ ^ (log 2)/2 was obtained
by M. M. Dzrbasjan in 1957 [2].

The estimate furnished by Dzrbasjan depends on a system of
polynomials defined as follows. Let a = (apg) and β — (βpq) be infinite
matrices of complex numbers. The polynomials Ami%(zίy z2; a, β) are
defined by the recursion formula

- V

for r, s = 0,1, 2, . Note that Ar,s depends only on those parameters
apq and /9pg for which p + g < r + s. Let

Jϊ r, s - max I ArJ0, 0; α, β) | ,

where the maximum is taken over all matrices a and β whose
entries lie on | z \ = 1. We show that bound Hr s ^ (2/log 2) r + s holds
for all r and s. The justifies the definition

H = sup m[{:+s).

We prove the following expansion theorem.

THEOREM 1. Suppose f is entire and τ(f) < 1/H. If a and β
are infinite complex matrices whose entries lie in \z\ ^ 1, then

(1.5) f(zlf ^ 2 ) - Σ Σ f{m'n){amn, βmn)Antn(zl9 z2; a, β)
m — 0 n — 0

for all (z19 z2).

The following result shows that the expansion constant 1/H is
as large as possible.

THEOREM 2. There exists an entire function F, with τ(F) =
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I/if, such that each of F{m'n) (0 ̂  m < oo, 0 ̂  w < oo) has a zero in
the polydisc {\z1\ ^ 1, \z2\ ^ 1}.

Theorem 1 and Theorem 2 will be proved in § 3. We note,
however, that the following result is an easy consequence of Theorems 1
and 2.

COROLLARY 1. W" = 1/H.

Therefore, each of the numbers H~'i{m+n) is an upper bound for
Ύ/^. In particular, "W ̂  ljVHul = 1/τ/ 3 . In comparing this with

the bound W > .7259, one sees that ^ < W.

2. The Polynomials An,n. Let / be an entire function and
let a and β be infinite complex matrices. Writing (1.4) in the form

PQ r~* PQ

r! sl p=o 9=o (r — p)l (s — q)l

we obtain the formal expansion

, M . . . c m sv β\rvr—P/DS~~1
>r-i >̂ -i •/*(ί*jS)/A (\\J "SP "̂ Γ1 *rxP,q\*/li "21 *-*-1 P/ PQ Ppq

oo oo C oo oo sγr — pQS — q Λ

_ V V i (v <y ' SV /Q\JV V f(r>sU() f)\ α?>9 HPQ I

~ 2 j 2 J ΆP,q\Zl> %2, <%, β)< 2-1 Z Λ J l U ' V)- — — >
P=0 q=Q lr=p s=g (γ — P)l \S — Q)! J

\ Λ (ιy C ' /Ύ /Q\
\)** P><1\*'V ^2> ^ 5 P / )

p—0 q=0

which holds whenever the interchange in the order of summation
can be justified. In particular, (2.1) holds if / is a polynomial and
yields considerable information when / is taken to be one of the
polynomials Am,n.

LEMMA 1. If X is a complex number, then

(2.2) Am,n(Xzlf Xz2; Xa, Xβ) = Xm+nAm,n{z1, z2; a, β) ,

where Xa denotes matrix scalar multiplication. Furthermore,

(2.3) Am,n{am β00; a, β) = 0 (m + n > 0) .

Proof. We will prove (2.2) using mathematical induction. The
proof of (2.3) is similar. If m + n = 0, the result is clear. Suppose
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N is a positive integer and (2.2) holds for the polynomials Ap>g with
p + q < N. If r and s are nonnegative integers such that r + s = i\Γ,
then

Ar>s(λ^, λz2; λα, λ/3)

= \ r + s

= \

r l s l /+ff°<r+°. ( r - 3>)! (β - ? ) !

rl si 2>=o ̂ =o ( r — v)l (s — q)l

= λ A (^ 2̂

and this completes the proof.
Let a = (αpg)*>ff=0 be an infinite complex matrix. If j and & are

nonnegative integers, we denote by Rjk the operator which transforms
a into

LEMMA 2. If m + n > 0, j ^ m and k <L n, then

(2.4) Aίί ̂ fo, z2; a, β) = Am^ n_k(zlf

Proof. By direct computation, Aγ ^{zγi z2; a, β) = z1 — a00 and

•̂•o i\^i> ^2> ̂ > β) = Z2 poo y

so the result is clear if m + n = 1. Proceeding inductively, let JV
be a positive integer and suppose the proposition is true for the
polynomials Ap q with p + q < N. If r and s are nonnegative integers
such that r + s = N, then for j <̂  r and fc <£ s we have

^ " ^ Γ f e _ ^ ^ A£q

k)(zl9 z2; a,

(r - j)\ (s - A;)! v~o<r^ (r - p)l (s - q)\

Z[ 3Z\

(r - j)l (s - k)l ^=+

k

s (r - p)l(s -

(r - i ) ! (β - k)\ p+*=}jn\_h (r -j - p)\ (s - k - q)\

= Ar-j .-tfa, z2; RSk(a), Rjk(β)) ,

and this completes the proof.

Lemma 2 and the expansion (2.1) provide a useful expression for
the polynomials Am,n. Replacing a and β by 7 and 5, respectively,
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and applying (2.1) to the polynomial Ar:8(zlf z2; a, β), we have

(2.5) = Σ Σ AWiiw δM > <*>

p=0 q=Q

p — Q q=0If each of 7 and δ is the zero matrix, it is easy to see that

In this case (2.5) yields

(2.6) Arta(zu z2; a, /5) = Σ Σ Ar-P .-/O, 0; Rpq(a), R

Let m and n be integers such t h a t 0 <Ξ m <Z r, O ^ ^ ^ s , and

m + ^ > 0. In (2.5) choose

(0, if p ^ m and # 2s ^
vq [aPq, otherwise

and

(0, if p ^ m and g ^ w

** l/9pgf otherwise .

In view of (2.3) we have

(2 7) ArT's{Zsly ZZ] ^ ^
= Σ Σ 4 g(z» Vf 7, d)Ar_, .-,(0, 0; Jδpgία), ̂ ^(/S)) .

More generally, we define the operator Pjk as follows. If j + k > 0,
then P^(α) is the matrix (apq), where

P g

0, if p ^ j and g ^ fc

α:pg, otherwise .

Then (2.7) becomes

(2 8) ^'^s11 Z*' ^ ®
= Σ Σ A,.,^, ^2; Pm.(α), Pm%(/3))Ar_, s ^(0, 0; Rpq(a), Rvq{β)) .

Equation (2.8) may be regarded as a separation of variables formula,
in the following sense. If p ^ m and q Ξ> n, then Rpq(a) depends
on the parameters ajk, where j ^ m and k ^ m, and Pmw(^) depends
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on the parameters ajk1 where j < m or k < n. The usefulness of (2.8)
is seen in the next lemma.

LEMMA 3. If 0 <^ m ^ r and 0 <^ n ^ s, then

(2.9) Hr,s ^ Hm,nHr-m,s-n .

Proof. If in -\- n — 0, the result is trivial. Suppose m -f % > 0

and choose matrices α and /3, whose entries lie on \z\ — 1, such t h a t

fl«,n - I Aw,n(0, 0; P m w (α), P ^ ^ ) ) |

and

i? r_m > s_% = I ^4r_m;S_w(0, 0; Rmn(ά), Rmn(β)) .

For each complex number λ, define the matrices 7 — 7(λ) and o — δ(X)

by

ία p g , if p ;> m and g ^ w

(λα:^^, otherwise

and

* _ [βw if p^m a n d q ^ n

(Xβpq, otherwise .

By (2.8) and (2.2),

Ar,.(0, 0; 75 δ)
r s

= y^ y^ A (o O'P (7) P (3))A (O O* R (J) R CS))

Σ

where Q(λ) is a polynomial in λ. Since

Hr,t ^ max I A7,s(0, 0; 7, δ) | = max | Q(λ) | ^ | Q(0) |

and

I Q(β) I = I Am,n(0, 0; P w w (α) , Pw.(/S)) | ] Ar_m,s_n(0, 0; Λm i l(α),

we have

TT ^> IT TJ
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LEMMA 4. There is an infinite subsequence S = {(m^ , %): j =
1, 2, 3, •} swc/z, £Λα£

(i) IT = lim mp^

and

(\\\ TTl/lmj+nj) > ττil{p + q)

/or all p and q such that p + q <; mά + %.

Proo/. If there is a pair (r, s) such that iϊr

i;ir+s) = H, then
(2.9) implies

ΓJ > TTi-h'(r+s) > / r r j \l/i(r+β) _ ΈTlHr + s) _ ΓT
•ίi = J-Ljrjjs ~ \J"Lr,s) — -LJ r,s — •*-*•

for i = 1, 2, 3, . In this case we take S — {(jr, js): j = 1, 2, 3, •}.
Suppose, on the other hand, that H > Hι

r[l+S) for all r and s.
For each positive integer k, let

T = max
p + q = k

Then Tk< H(l^k< oo) and supliJfc<«, ΓA = £Γ. We can therefore
find a subsequence {ΪYJ^i with the properties that

and

for 7̂  < kj. For each jf, choose integers mo and tiy such that
mj + ns - fcy and Tkj - HUp-^ΐ, and let S - {(my, %): i = 1, 2, 3, •}.
This completes the proof of the lemma.

COROLLARY 2. H = Km sup HH^+n) .

LEMMA 5. For each pair of nonnegative integers (m, n) we have

(2.10) iϊm,%

Proof. The result is trivial if m + n = 0. Let iV be a positive
integer and suppose (2.10) holds whenever m -\- n < N. Let r and s
be nonnegative integers such that r + s — N. The defining relations
(1.4) imply
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•tin a,.£ ΣΣ — # ) ! (s — a)l J=O ^=O j \ fc!
f/ \ */ j + k>Q J

j,+ ((log 2)/2y+k _

<(2/iog2)^{| o | o

( ( l o g,y y + t -

= (2/log2)r+s{e(21og2)/2 - 1} = (2/log2)r+s .

COROLLARY 3. H ^ (2/log 2).

Note that this result, together with Corollary 1, implies Dzrbasjan's
estimate <W ^ (log 2)/2.

3* Main Results. Let

p=og=o Hpq plql

Note t h a t M(^, z2) is an entire function of exponential type 1 or
less. Suppose a and β have entries lying in \z\ ^ 1. By (2.6),

A^.^, z2; a,0) = ±± Ar_,,s_g(0, 0; ΛM(α), Rpq(β))^L .
j>=o g = o p! qi

Since

I Ar_P)S_?(0,' 0; Rpq(a), Rvq{β)) \ £ Hr^^q £ HrJHp,q ,

it follows that the coefficients of Ar s are bounded by the respective
coefficients of Hr>sM(zlf z2); i.e., Ar s is majorized by Hr,sM(zly z2). In
particular,

(3.1) I A r , s ( z u z2; a , β ) \ £ Hr>sM(\ *i I, 1 ^ 1 ) .

We are now ready to prove Theorem 1.
Suppose / is an entire function, with τ(f) < I/if, and suppose a

and β are matrices whose entries lie in | z | <̂  1. In order to justify
the expansion (2.1) we show that the series

(3.2) Σ Σ l / ( r > s ) ( o , 0)I Σ Σ \ A Λ z f a β ) \
o o o g o (r — p) \ (s — q)!

is convergent. Equation (3.1) implies
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I A p , q ( z 1 9 z2; a , β ) \ ^ H p qM{\ z 1 \ 9 \ z 2 \ ) ^ H r SM(\ zγ |, | z2 \)/H^p

therefore

2 ^ 1 Ap q(zl9 z2; a, β) \

P=o g=o ( r — p)\ (s — q)\

7 7 , Γ T- p)\ (s - q)\

, 1 ) .

The series (3.2) is therefore convergent provided that

(3.3) ΣΣI/ ( M ) (o, 0)\Hr

converges. Choose ε > 0 such that τ(f) + ε < 1/H and let N be a
positive integer such that r + s ^> N implies

(r+e> <τ{f) + e.

Then

Σ Σ l/(r's)(0, 0) I Hr,s £ Σ Σ [H(τ(f) +

Let p = H(τ(f) + ε) and K - ΣΣ, + S <;v l/ ( r ' s )(0, 0) | Hr,s. Then (3.3)
is less than

K + Σ Σ pr+s = i
r=0 s=0

and the convergence of (3.2) follows.

Proof of Theorem 2. Let S = {(mjf nό): j = 1, 2, 3, •} be an
infinite sequence such that

and

JET = lim.
i—oo

OΊ/(m, +Λ. ) ^> J

for all p and q such that p + q <; m^ + %. For each (r, s) e 5, let
α: — a(r, s) and /S = β(r, s) be matrices with entries on | z | — 1 such
that

I Ar,.(0, 0; α, /3) | = Hr,s .

Let
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(Z z\ - ArΛ*ι, z2; a, β)
^Z>> Ar,.(0,0;a,β)

and

„ ΈTlHr+8) ~ τTl/Lr+8)

77 ff77 > ff
±1 ri

Then Qr,β(0, 0) = Pr,,(0, 0) - 1, and

Moreover, (2.6) implies

(
-' { ZJHir+s) ' τril(r+s)

•*•-*• r , s J--Lr,s

and

r_p,s_9(0, 0; R,t(a),
Ar,.(0, 0; α,

Hr,sH
p+q ~~ Hr,sH

p+g

since (r, s) e S. Therefore Qr,s is majorized by

S) ,

φ(zu z2) is an entire function of exponential type 1/H. The sequence
{Qmά,n3) is therefore uniformly bounded on compact sets. Extract a
uniformly convergent subsequence from {Qmj,nj} and let F denote
the limit function. Then F is entire, F(0, 0) = 1, and τ(F) ^ 1/H.
Since F{j'k) is the uniform limit of a subsequence of {Qiί)ίi.}, then
(3.4) implies that .P^'^ has a zero in {| zx \ — 1, |^21 = 1}. The expan-
sion (1.5) implies that F has exponential type exactly 1/ίZ, and this
completes the proof.

4* The Whittaker Constants W and *Wl We have already
seen that W~ < W. The following result provides a precise relation-
ship between Ύ/^ and W, and a determination of W different from
[3] and [1].

THEOREM 3. lim sup Hi!,{Z+n)

UmmfHil,1?™
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Proof. The first equation is a consequence of Corollary 1 and
Corollary 2. To prove the second, we require the use of the Goncarov
polynomials Gn(z; z0, •• ,2Λ_1) and the sequence

Hn = max I GΛ(0; z0, , zn^) | .

If m is a positive integer, the defining relation (1.4) implies

(4.1) Am,0(0, 0; a, β) = - Σ A»A0; ° ; α >

p=o ( m - ί

In comparing (4.1) with (1.1), one sees that

Am,0(0, 0; a, β) = Gm(0; «„„, α1 0,

p,0

, α : w _ 1 > 0

It follows that Hm,Q = fίm and, similarly, iJ0,m = Hm. By Lemma 3
and (1.2), we have

JJΊ/(«t+Λ) >. /jy _g" \l/(m+») __ /JjT Jj[ \l/(m+n)

.16

Therefore

l i m i n f f l i ^ ^ ^ 1/PΓ.

In the other direction,

lim inf HH^+n) ^ lim inf HH^+0) = Hm £Γ^/m

TO + w—>oo m+0—»<» m->oo

and this completes the proof.
Using (2.10) and the estimate W < .7378, one easily obtains an

interesting bound on <W. For all r and s, we have

H r i . ^ ( 2 / l o g 2 r < ' ^ .7378 V - . / 2 . 1 3 x -
log2 TF / V W

and therefore

" 2.13

Some remarks should be made relative to stating the above
results in terms of k complex variables, k > 2. For j = 1, 2, , k,
let α ( i ) = (ttl%2...,nk) denote a /b-parameter sequence of complex numbers.
The recursion relation corresponding to (1.4) is

Ao,Ot...o(Zi, Z2, , Zk) = 1

and
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— Zi Zk — y . . v
Tijl nkl PI=O PΛ=O

(^1 - P i ) ! ••• (nk - pk)l

where pt + + pk < w>i + + &̂
The numbers Hnv...>nk are also defined in the obvious way and

we have

T IT

The definition of "Wl, the Whittaker constant in k complex variables,
is analogous to the definition of W~ in § 1. Apart from notational
difficulties, it is a direct extension of the above results to see that

lim sup H^χ-+nk) = 1/ 5r*

and

liminffli{:?A|;;"+ *> = 1/TΓ .

If 1 g I <; &, we also have

lim sup H^%t^,0 =

and

liminf iί^^;;o^!o =

and it follows that
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