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WHITTAKER CONSTANTS FOR ENTIRE FUNCTIONS
OF SEVERAL COMPLEX VARIABLES

JouN K. SHAW

Let f be an entire function of a single complex variable,
The exponential type of f is given by

o(f) = lim sup [ f*(0) [V/* .

The Whittaker constant W is defined to be the supremum
of numbers ¢ having the following property: if «(f) < ¢ and
each of f,f,f",--- has a zero in the disc|z| =<1, then
f =0, The Whittaker constant is known to lie between
.7259 and .7378.

The present paper provides a definition and characteri-
zation of the Whittaker constant <7, for n complex variables.
The principle result of this characterization, which involves
polynomial expansions of entire functions, is

W> iz piz--.
To simplify notation, the presentation here is given for functions
of two variables.
An exact determination of W was obtained by M. A. Evgrafov

in 1954 [3]. The determination involves the Gonéarov polynomials,
defined recursively by

G0<z) =1,

n n—1 k
(1'1) Gn(z: R0y Byy * 00y zn—l) = “z‘ - Z —"——Zk Gk(z; Roy Ry ** 0y zk—l) D
n! = (n — k)!

Let
Hn = max ] Gn(o; oy zn—-l) | ’

where the maximum is taken over all sequences {z,};Z; whose terms
lie on |z| = 1. Evgrafov proved that

W = {lim sup H}/”}—l .

n—c0

An improvement of this result and further characterizations of
W were furnished by J. D. Buckholtz [1]. Using properties of the
Gonéarov polynomials, Buckholtz proved that

(1.2) (A)"H i < W < HjY,
for n =1,2,3, ---. A consequence of these bounds is
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(1.3) W= {nm H;/”}_l = { sup H,‘/”}_l .

n—roo 1=n<oo

For an entire function f (of two complex variables) the exponential
type 7(f) is given by

7(f) = lim sup | £ (0, 0) [/ m+» |

We define the Whittaker constant 27 to be the supremum of positive
numbers ¢ having the following property: if z(f) < ¢ and each of
fmm (0<m< =, 0<n < o) hags a zero in the poly disc {(z, z):
|z,] <1, |2, <1}, then f=0. The bound 27~ = (log 2)/2 was obtained
by M. M. Dzrbasjan in 1957 [2].

The estimate furnished by Dzrbasjan depends on a system of
polynomials defined as follows. Let @ = («,,) and B = (B,,) be infinite
matrices of complex numbers. The polynomials A, .(2, 2.; &, B) are
defined by the recursion formula

Aoz, z)=1,

(1.4) Ar,s(zly Rqy Xy B) = _z_zﬁ _ < i Ap,q(zu Ry (&, B)a’;a_p/e;;q

rls! proa=o (r— ! —9q)!

for r,s=10,1,2, .... Note that A, , depends only on those parameters
a,, and B,, for which p + ¢ <r + s. Let

H,, =max|A4,,0,06a /8],

where the maximum is taken over all matrices @ and g whose
entries lie on |z| = 1. We show that bound H,, < (2/log 2)"+* holds
for all » and s. The justifies the definition

H= sup H/*.

1=7r,s<c0

We prove the following expansion theorem.

THEOREM 1. Suppose f is entire and =(f) < 1/H. If a and f3
are infinite complex matrices whose entries lie in (2| < 1, then

(1.5) fenz) = 33 5™ s B An(zas 25 @ )
for all (z, z,).

The following result shows that the expansion constant 1/H is
as large as possible.

THEOREM 2. There exists an entire fumction F, with t(F) =
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1/H, such that each of FF'™™ (0 <m < 0,0 = n < ) has a zero in
the polydisc {|z,| £ 1, |z | < 1}.

Theorem 1 and Theorem 2 will be proved in §3. We note,
however, that the following result is an easy consequence of Theorems 1
and 2.

COROLLARY 1. %% = 1/H.

Therefore, each of the numbers H, /™" is an upper bound for
. In particular, %7 < 1/v'H,, = 1/1/3. In comparing this with
the bound W > .7259, one sees that 27~ < W.

2. The Polynomials A4,,. Let f be an entire function and
let @ and B be infinite complex matrices. Writing (1.4) in the form

2z _ Xow ARz @ B TB
rlsl  s=0i=0 (r— ! (s—9q)!

we obtain the formal expansion

Sz = 53, 7700, 052
o=t 7! sl

ros) A, (20 25 @y BB,
f ©. O){pz(')qz (r—p!—a9! }

(r,8) a;;—pB:;q
A, (21, 25 @, B){TZP Sz:;f , 0)( — o) (s — q)Y}

f(p "N gy Bro)Apo(Rus 225 A, B)

Il
M
iMs

2.1)

I
Ms

=
]
o

I
Ms
M ﬁMs

k]
]
=3

which holds whenever the interchange in the order of summation
can be justified. In particular, (2.1) holds if f is a polynomial and
yields considerable information when f is taken to be one of the
polynomials A, ..

LemMA 1. If M\ is a complex number, then
(2.2) A, (A2, N2y N, AB) = A"TAL, (2, 20 @, B)
where Ao denotes matrixz scalar multiplication. Furthermore,

(2’3) Am,n(aocn /800; a) B) - O (m + n > 0) .

Proof. We will prove (2.2) using mathematical induction. The
proof of (2.3) is similar. If m + n = 0, the result is clear. Suppose
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N is a positive integer and (2.2) holds for the polynomials A4,, with
P»+q < N. If »r and s are nonnegative integers such that » + s = N,
then

A, (2, \zs; Nt, AB)
\re ZE s AnO N Nt M) (M) I (08p) "

r! sl Fmoi=, r—p!6—9!
= BB e 3y Ao 2 @ B)0G B
rl sl Jm0a=o (r—o!(s— 9!

= N4, (2, 25 a, B)

and this completes the proof.

Let a = (a,,)7,-0 be an infinite complex matrix. If j and k are
nonnegative integers, we denote by R;, the operator which transforms
« into

Rj(@) = (@i g+)pa=0 +
LEMMA 2. If m+n >0, 5 <m and k < n, then
(2.4) A2y 25 &, B) = Api aily 225 Ri(a), Ri(B)) .

Proof. By direct computation, A, ,(z, 2; &, B) = 2, — &, and

Ay 250, ) = 22— B »

80 the result is clear if m + » = 1. Proceeding inductively, let N
be a positive integer and suppose the proposition is true for the
polynomials A4, , with »p + ¢ < N. If » and s are nonnegative integers
such that » + s = N, then for 7 < » and k < s we have

AU (2, 2, a, B)

— ZI—jZE—k . A; q (zu % &, B)a;q p;q

-k e -l 9!

— Zf“jzi"k _ Zr“ zs: Ap—j q—k(zn (2 Rjk(“)? Jk(/g))ar—p
r=ls—h =t r— )l — g

= z;_jzz—-k _ TZ“——] o Ap q(zly %5 Jk(a) Rak(ﬁ))apﬂ q+k ;:I;—«H-k
(r =)t (s — k) 7=0 =0 (r—3—o!(s—k—q)!

p+He<r—j+s—k

= Ar——j,s—k(zls %25 Rjk(a)y RJk(B)) ’

and this completes the proof.

Lemma 2 and the expansion (2.1) provide a useful expression for
the polynomials A, .. Replacing @« and 8 by v and 4, respectively,
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and applying (2.1) to the polynomial A, ,(z, 2; @, 5), we have

Ar s(zl, 2 a, B)
(2.5) =3 S AZD (Vygr Opa; @ B) Ay o2y 255, 0)

17'— ‘1_

= Z Z Ap q(zu 2 7,y B)Ar—-p s—q(7pqv 5»4’ qu(a)’ nq(ﬁ)) .
p: =
If each of v and o is the zero matrix, it is easy to see that

A, Ry 2037, 0) = —5,—(7,

In this case (2.5) yields
@6) Ao 25 @ ) = 3 3 Ay a0, 05 Bon@), R ©) 25,

Let m and » be integers such that 0 <m =<7, 0<n<s, and
m -+ n > 0. In (2.5) choose

0, if p=mand ¢ =n
Vpqg = .
" la,,, otherwise

and

0,if p=mand g=n
51’4:

Bypqy Otherwise .
In view of (2.3) we have

A, (24 25 @, B)
= Z Z AP q(zl’ %5 7, E)A'r—p s—-q(O’ 0; Rm(a)’ RM(B)) .

p=m g=n

More generally, we define the operator P;, as follows. If j + k>0,
then P;(a) is the matrix (a,,), where

(2.7)

0,ifp=jand g=Fk

Apy = .
" |y, otherwise .

Then (2.7) becomes

r s(zu zzf a ,8)
= Z ZAp q(zu 295 mn(a)? mn(B))Ar-—p s—q(O 0; qu(a)y PQ(B)) .

p=m q=n

2.8)

Equation (2.8) may be regarded as a separation of variables formula,
in the following sense. If p=m and ¢ = n, then R, () depends
on the parameters «;, where 7 = m and k = m, and P,,(a) depends
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on the parameters a;;,, where 5 < m or k < n. The usefulness of (2.8)
is seen in the next lemma.

LeMMA 3. IFf0=m =<7 and 0 <n <s, then

(2.9 H,,zH,,H ;.-

Proof. If m + n = 0, the result is trivial. Suppose m + n > 0
and choose matrices « and B, whose entries lie on |2| = 1, such that

H,.,=14,.00; P,,(a), P,.(8) |
and
Hr—m,s—-n = [Ar—-m,s—n(oy 0; Rmn(a)y Rmn(ﬁ)) M

For each complex number X\, define the matrices v = v(A) and ¢ = 6(\)
by

(@ if p=m and ¢ = n
Vog = 1 :
" \a,,, otherwise

and

(/@pqv if pz m and qg n

Opg = .
" I\B,, otherwise .

By (2.8) and (2.2),
A,,:(0, 057, 9)
= Z Z Ap,q(oy O; “P’Iﬁn(7)3 P’mn,(a))Ar—-p,s-—q(O) 0; -qu(7)’ qu(a))

p=m g=n

= 30 S04, (0, 05 Pao@), Pas(B)Aryany(0, 05 Byyfet), Ron())
— Xm+nQ()\,) ,
where Q(\) is a polynomial in . Since

H,,zmax|A,.(0,0;70)] =max|{QM\) [ = [Q0)]

121=1 141

and

| QU0) | = | Asn(0, 05 Por(@)y Pra(B)) || Ars-a(0, 05 Bn(@), Boun(3)) |
= Hm,nHr—m,y—n ’

we have

H'r,s 2 Hm,’nHr—m,s—-n M
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LEMMA 4. There is an infinite subsequence S = {(m;, n;): 7 =
1, 2,8, .-} such that

(i) H = lim Hij5
and
(ll) H&/J('r:b]]-l-n]) g H;{ép-)—q)

Sor all p and q such that » + q¢ < m; + n;.

Proof. If there is a pair (r,s) such that HY{+ = H, then
(2.9) implies

Hz Hji = (H)We = By = H

for  =1,2,8, -.-. In this case we take S = {(jr,J8):7=1,2,3, ---}.
Suppose, on the other hand, that H > HY;*” for all » and s.
For each positive integer k, let

— ( )
T, = max HY{+0 |
pt+g=k

Then T, < Hl1 =<k < =) and Sup,csce T, = H. We can therefore
find a subsequence {7}, with the properties that

limT,, = H

J—rc0

and
Tkj > T’n

for n <k;. For each j, choose integers m; and m; such that
m;+n; =k; and T, = H,/i™7, and let S = {(m;, n;): j=1,2,3, «--}.
This completes the proof of the lemma.

COROLLARY 2. H = limsup H}J/@+

m+n—oo

LEMMA 5. For each pair of monnegative integers (m, n) we have

(2.10) H,. =< (2/log 2)m+ .

Proof. The result is trivial if m + n = 0. Let N be a positive
integer and suppose (2.10) holds whenever m + n < N. Let r and s
be nonnegative integers such that » + s = N. The defining relations
(1.4) imply
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o= ? % (?" = pﬁp(; —9! =g%“ TTJksv_k
= @fog 2y {3 3, (LB DBT _ 4}
< (2/log 2)7+* {i:] 5 (_(l%___/rz_)fi - 1}

= (2/log 2)"+*{e®¥ 2 — 1} = (2/log 2)™** .

COROLLARY 3. H < (2/log 2).

Note that this result, together with Corollary 1, implies Dzrbasjan’s
estimate %7~ = (log 2)/2.
3. Main Results. Let

z”zq

M 2) = 3 5

,1_
o H,,
Note that M(z, #;) is an entire function of exponential type 1 or

less. Suppose a and B have entries lying in |2| < 1. By (2.6),

Aoy s, f) =3, zA,_,, -0, 03 Ron(@), B2 “z

p=0 g=

Since
A, p:—0(0,0; Byp(@), Bpo(B) | < Hypoq = H, o/H,,g
it follows that the coefficients of A,, are bounded by the respective

coefficients of H, Mz, z,);i.e., A,, is majorized by H, M(z, z,). In
particular,

(3.1) lAr,s(zlv 22; a! ;8) | é H'rysM(| zx I! |z2 {) M

We are now ready to prove Theorem 1.
Suppose f is an entire function, with 7z(f) < 1/H, and suppose «
and B are matrices whose entries lie in |z| < 1. In order to justify

the expansion (2.1) we show that the series

(3.2) s i £, 0)| 3 S | Ap.o(21 255 @, B) |
r=0 $=0 =0 ¢=0 (7' p)’ (3 — q)]

is convergent. Equation (3.1) implies
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| A, (2, 25, B) | = Hy M(| 2,1, |2:]) = H, ,M( 2|, |2 )/ H,—p o—q ;
therefore

S 14,32 a B)
p=0 ¢=0 (1" — p)' (8 — Q)’
r s 1
S H»,- SM 11l 2
sEMnln) E S gt
< H, M(|2,|, |2 )M1,1) .

The series (3.2) is therefore convergent provided that
(3.3) 5515700, 01 H,

converges. Choose ¢ > 0 such that z(f) + ¢ < 1/H and let N be a
positive integer such that » + s = N implies

£70, 017+ < <(f) + ¢
Then
S S F700, 0| H,, < 5 SHES) + 9

Let o= H(z(f) +¢) and K= 3>, v |f""0,0)| H,,. Then (3.3)
is less than

1
1 - oy

M

K+33 0 =K+

r=0

]

and the convergence of (3.2) follows.
Proof of Theorem 2. Let S = {(m;,n;):5=12,3,..--} be an
infinite sequence such that

H = lim H}mitn)
2’7

and
H;nlj(z»ﬂ]—kn]) g H;{‘(Ip+q)
for all p and ¢ such that p + ¢ < m; + n;. For each (r,s)eS, let

a = a(r,s) and @ = B(r, s) be matrices with entries on |z]| =1 such
that

|4,.0,0,a,8|=H,, .
Let
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P (zl zz) = A?‘v-?(zly zz; a, B)
7,8 ’ A,-,s(O, 0, a" B)

and

z Hr+s) 5 FLU(r+s)
Quulay 2) = P, (2o, Bl )

H H
Then Q,.(0,0) = P, ,(0,0) = 1, and

(3.4) (gt EB ) =0 (G <nk<a),

Moreover, (2.6) implies

— 3 3 Arpi=d(0, 05 By(@), Byo(B)H L2170 2t2]
Qr5(2, 22) = ZZ‘JO q2=0 A, (0, 410; a, B)‘qH'zwq plaq!

and

A, ps—o(0, 05 Byo(@), Ryo(B))H I+
4,40, 0; a, B)H™**
< Hr_p’s_qut’pJq)l(r-r-s) < H;)rs——p+3~q>/(r+s)HT(,ps+q>/(r+s) 1

= = = 9
HT’SHM-(I Hr’pr-l-q Hr+e

since (r, s)e€ S. Therefore @, is majorized by

v 1 2Rl
GD(ZU zZ) —';)q:o Hp+q p!q! ’

@(z, 2,) is an entire function of exponential type 1/H. The sequence
{@Qn;mj} 1s therefore uniformly bounded on compact sets. Extract a
uniformly convergent subsequence from {Qmj,nj} and let F denote
the limit function. Then F' is entire, F(0,0) =1, and z(F) < 1/H.
Since F® is the uniform limit of a subsequence of {QJ:%,}, then
(8.4) implies that F'“* has a zero in {|2,| =1, |2,| = 1}. The expan-
sion (1.5) implies that F' has exponential type exactly 1/H, and this
completes the proof.

4, The Whittaker Constants W and 2. We have already
seen that 9~ < W. The following result provides a precise relation-
ship between %7~ and W, and a determination of W different from
[3] and [1].

THEOREM 3. lim sup HY™™ = 1/%" ,

m+n—oco

lim inf H}/(7 = 1/ W .

m+n—oo
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Proof. The first equation is a consequence of Corollary 1 and
Corollary 2. To prove the second, we require the use of the Gonéarov
polynomials G,(z; 2, ++-, 2,—,) and the sequence

H, = max|G,(0; 2y +++, 2,1 | -

If m is a positive integer, the defining relation (1.4) implies

(4.1) A,,0,0; ¢, 8) = — S A0, 0 @, Bags”
o= (m — p)!

In comparing (4.1) with (1.1), one sees that
A0, 05 @ B) = G(0; Aoy Qigy * = +y Xpoyyo)

It follows that H,,= H, and, similarly, H,, = H,. By Lemma 3
and (1.2), we have
H#Snm_!—”) g (Hm,o-llrt),n)l/(m+n) = (HmHn)ll(m+")

6 \UmEm o ((16)Umm
><Wm+"> - w :

Therefore

lim inf Ho+ = 1/W .

m-+n—oo
In the other direction,

liminf HY < lim inf H/§+ = lim HY™ = 1/W
m—+n—co m+0—o0 m—oo
and this completes the proof.
Using (2.10) and the estimate W < .7378, one easily obtains an
interesting bound on 977 For all » and s, we have

H,. = @Mlog 2+ < (

and therefore

w>w =W _ |

2.13

Some remarks should be made relative to stating the above
results in terms of & complex variables, ¥ >2. For 7 =1,2, .-+, Fk,
let a¥ = (a?,,....,,) denote a k-parameter sequence of complex numbers.
The recursion relation corresponding to (1.4) is

Ao,o,mo(zu Roy *0 %y zk) =1

and
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Anlmz."-.nk(zls Zyy vy zk)
RM .. grk i g
nl eeeml =0 pp=0

Am,--‘,pk(zu Tty zk)[a;oll)w-mk]nl_pl e [a;ﬁi---,pk]nk—pk

X
(ny — P!+ o (np — Di)!

where p, 4 <+« + D < By F +o0 + Ny
The numbers H,,,...,,, are also defined in the obvious way and
we have

Hyoooni = Hyooomi Hopoomm,
H'nl ,,,,, nLs0,00e, 0= Bysceem]

The definition of %%, the Whittaker constant in %k complex variables,
is analogous to the definition of %77 in § 1. Apart from notational
difficulties, it is a direct extension of the above results to see that

lim sup H,/"h % = 1/ 97,
and

lim inf H,/mf4m = 1/W .
If 1 <1<k we also have

lim sup H,/‘mt 0l o = 1/ 977
and

lim inf H,/f 00, = 1/W,
and it follows that %7 = ¥, =2 %= #.= ---.
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