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WHICH LINEAR MAPS OF THE DISK ALGEBRA
ARE MULTIPLICATIVE?

RICHARD ROCHBERG

Let T be a linear map of the disk algebra into itself
which is of norm one and fixes the constants, This paper
considers the question of what additional restrictions suffice
to insure that 7 is multiplicative, It is shown that if T is
an isometry and the range of T is a ring then 7 is multi-
plicative and that if the image under T of the coordinate
function of the disk is an extreme point of the unit ball of
the disk algebra then 7 is multiplicative.

Let D be the closed unit disk of the complex plane and A the
disk algebra, the supremum normed Banach algebra of functions
continuous on D and analytic in the interior of D. Let Z be the identity
function on D, Z(x) = 2 for all  in D. Let L be the set of extreme
points of the closed unit ball of A. Let K be the set of linear maps
of A into itself which are of norm less than or equal one and which
fix the constants. Let K’ be the set of elements of K which are
multiplicative; K’ = {T; T in K, T(fg) = T(f)T(g9) for all f and ¢ in
A}. We note in passing that any continuous non-zero multiplicative
linear map of A into itself is of norm one and hence in K’ and that
any such map is given by composition with an element of A; that
is if T is K’ then Tf = foT(Z) for all fin A. The first of these facts
is a general function algebra result and the second follows from the
fact that the polynomials are dense in A.

We will investigate the question of what additional restrictions
are needed to insure that 7, an element of K, is actually an element
of K’. We will prove

THEOREM A. If T in K is an isometry (i.e., ||Tf]|| = ||f]|| for
all A in f) and T(A) is a ring, then T is in K'. and

THEOREM B. If T is @n K and T(Z) is in L, then T is in K'.

Theorem A extends the known result that any surjective isometry
in K is multiplicative and provides a partial answer to the question
raised by Phelps ([1], pg. 354) of describing the non-surjective
isometries of the disk algebra.

Phelps ([3]) has shown that if 7 is in K’ and T(Z) is in L,
then T is an extreme point of K. This result combined with Theorem
B gives.
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COROLLARY. If T 4s in K and T(Z) is in L, then T 1is an
extreme point of K.

Examples will be given to show that the hypotheses of these
two theorems cannot be eliminated and that conjectures with similar
hypotheses are not true.

The reader is referred to ([2]) as a reference for the properties
of the algebra A.

2. Isometries, If T in K is a surjective automorphism of A
then T is given by composition with a conformal automorphism of D.
A proof of this fact can be found in ([2]). The following is essentially
what remains of that proof when the hypothesis of surjectivity is
dropped, some of the details which are identical with that proof are
omitted.

Let C be the unit circle of the complex plane.

THEOREM. If T im K 1is an isometry then there 1is a closed set
S in C and a function H defined on S to that

a. H is a continuous map of S onto C,

b. for all z in S and all f in A, (Tf)(2) = f(H(z)), and

c. for all fin A, Tf = sup{|(Tf)()|; x in S}.

Proof. Let B= T(A) = {f;f = Tg for some g in A}.

B is a closed subspace of the Banach space of continuous complex
valued functions on the unit circle and T is an isometry of A onto
B. Hence T*, the adjoint of T, is an isometry of B* onto A*. Thus
each extreme point of the unit ball of A* is the image under T* of
an extreme point of the unit ball of B*.

For « a point of C and @ a complex number we denote by ae,
the element of A* such that (ae,)(f) = af(x). The extreme points
of the unit ball of A* are exactly all those functionals of the form
we, for o of modulus one. Furthermore, the extreme points of the
unit ball of B* are all of the form we, for « of modulus one; although
not all such functionals are extreme points. Let R be the set of
points, «, in C such that e, is an extreme point of the unit ball of
B*. Let S be the closure of R and let H be the function 7(Z)
restricted to the set S. We know that for any z in R, T*(e,) =
a(x) e, where a(x) is a scalar of modules one and #(x) is a point of
C. Hence, for an fin A and any z in R

(1) (TF) (@) = a@)f(¢@)) -

By evaluating (1) with f equal to the constant function, 1, we see
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that a(x) = 1. Evaluating (1) with f=Z we see that ¢(x) = H(v).
Hence for all f in A and all 2 in R, (Tf)«) = f(H(x)). Since all of
the functions in A are continuous on C and H can be extended to
be continuous on S, this last equation holds at all points of S.

It remains to verify the third part of the conclusion of the
theorem. For any fin A, [|Tf || = || f|] and || f]|]| = | f(y) | for some
y in C. e, is an extreme point of the unit ball of A*, hence there
is a point x in R such that T*%(e,)=e,. Hence y=H(x) and ||Tf || =
[f)| = | f(H)| = [Tf(w)| =< sup{|Tf(w)[; w in S}. The reverse in-
equality is immediate and the theorem is proved.

We note in passing that from the proof it is clear that this
theorem is merely an instance of a general function algebra result.

COROLLARY. In the situation of the previous theorem, if the
Lebesgue measure of the set S is positive then T is in K'.

Proof. By the theorem, for any f in A, the functions Tf and
foT(Z) agree on the set S. If two functions in A agree on a subset
of C of positive measure they are equal. Hence 7Tf = foT(Z) and
thus 7T is in K'.

COROLLARY. Theorem A 1is true.

Proof. Pick fand g in A. Consider the function h = T(fg) —
T(f)T(g). Since T(A) is a ring, h is in T(4) and thus A = T(k) for
some k in A. By the previous theorem ||h|| = ||Tk|| = sup {| Tk(x) |;
¢ in S}, where S is the set obtained in the previous theorem. But
the previous theorem also shows that for £ in S,

Tk(x) = T(fo)(x) — Tf() Tg(x) = (fo)(T(Z) (@) — f(T(Z)(x))9(T(Z) () =0 .

Hence ||2|| = 0. So h =0 and thus T(fg) = T(f)T(9).
An example in the last section shows that the hypothesis that
T(A) be a ring cannot be omitted.

3. Linear maps which take functions of norm one to extreme
points. In this section we will show that if Tf(z) is large (compared
to || f]]) then for any g in A, (Tfg — TfTg)(2) is small. The estimates
developed will allow us to conclude, in some cases, that T(fg) —
T(f)T(g) is identically zero. Given T in K we define U mapping 4 x

A to A by U(f, 9) = T(fg) — T(f)T(9)-

THEOREM. Given T in K, fand g in A, ||f]I<1 and ||g|| =1,
and z im C then |U(f, 9)(z)| < 41 — | Tf(z) ).
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Proof. Without loss of generality we can assume that Tf(z) =
d, a nonnegative real number. The linear funectional, L, on A defined
by L(h) = Th(z) for all h in A is of norm one and L(1) = 1. Hence
there is a probability measure, #, on C, the boundary of D, such that

for all b in A, Th(z) = L(h) = ghd;e. Set S = {w;  in C and Re(f(z)) <
d — V1 —d}. Since d and g are real we have d = S Re(f)dy. Hence
d = SSRe(f)d/,e + SH Re(f)dp. Sod < p(S)(d — vI=d) + p(C—S)=

2(S)(d—1—-1/1—d)+1. Hence p#(S) < 1—-d)/1—-d+V1—-d) <1V1—d.
Thus

VU, 9@ | = [ T(f9)(2) — Tf(2) To(z) |

= |tz = ({ 7 ] )

= ngdﬂ—dggdﬂl

[ (7= dyap|

Il

IA

[, (7= agde| + || (7~ dodp]

= m(8) [[f=dilllgll+Ilg|lsup{| fx) —d|;  in C-S}.
ButonC — S, |fx) —dP= (V1 —-dy+ 1 —(d—11-d?. Hence,
on C— 8, |fx) —d| <41 — d)**. Thus

LU, 9@ | =40 — d)'* + 2(1 — &)
<61 — a)
and the theorem is proved.

In order to use this result we recall two facts about the algebra
A. Let df be normalized Lebesgue measure on C. An element f of

A is the zero function if and only if S log | f(€") | df = — = and f in
c

A is an element of L if and only if g log (1 — | f(e’)]) df = —oo.
c

CorOLLARY. If T is in K and f in A with ||f]|| =1 and of Tf
is in L, then for all g in A, T(f9) = T(f)T(g).

Proof. It suffices to show that for any g of norm one, U(f, g) is
the zero function. By the previous theorem

[, log |U(7, 9)e”) |40 = | log (6) + - log (1 — | Ty s -
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By hypothesis Tf is extreme, hence the integral on the right hand
side of the inequality is —co. Thus, by the previous comments
U(f, g) is the zero function. The proof is complete.

For any elements 2 in A, we denote by [1, %] the smallest closed
subalgebra of A which contains the elements 1 and k. Thus [1, A]
is the closure in A of the space of polynomials in A.

COROLLARY. If T is in K and f in A with ||f|| =1 and if Tf
s i L, then T 1is multiplicative when restricted to the algebra
generated by f and the constants. That is, for all g and ¢ in [1, f],
T(99) = T(9) T(9)-

Proof. By the continuity of T, it suffices to show that T(f") =
T(f) for all positive integers, m. If n = 1 there is nothing to prove.
Hence a proof by induction is immediate using the previous corollary
for the induction step.

COROLLARY. If T is in K and f wn A with ||f]|] =1 and if Tf
is i L and if f is univalent on D, then T is in K'.

Proof. By the previous corollary it suffices to show that if f is
univalent on D then [1,f] = A. Let F be the function on f(D)
which is the inverse function of f, Fof = Z. Mergelyan’s theorem
applies to f(D), hence there are polynomials, P,, which, on f(D),
converge uniformly to F. Hence the functions P,of are elements of
[1, f] which, on D, converge uniformly to Z. Thus Z is in [1, f]
and hence [1, f] = A.

COROLLARY. Theorem B.

4. Notes and a conjecture. In this section we offer a number
of examples to indicate that the above results are, in various senses,
the best possible. In all cases the verification that the examples
have the properties attributed to them is straightforward and is
omitted.

Let S be a closed subset of C of Lebesgue measure zero and
homeomorphic to a Cantor set. Let H be a continuous mapping of
S onto C. Rudin’s theorem guarantees that we can find a function
h, in A and of norm one such that for any « in S, A,(x) = H(x). By
adjoining a point to S and applying Rudin’s theorem again we can
find 2, in A and of norm one so that for all  in S, h.(x) = H(x)
and h, # h,. We will consider the following elements of K:
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Tif(z) = % (f(h(@) + f(he(2), T2S(2) = % (f(&) + f(—2)) ,

and T,f(z) = (f(2) + f(az))/2 with a nonzero constant of modulus less
than one.

T, is in K. T, is an isometry, and T, is not in K’. Hence the
hypothesis in Theorem A that T(A) be a ring cannot be dropped.
Not all isometries in K are multiplicative.!

T, is in K and Ty(Z* = Z* but T, is not in K’. Thus Theorem
B is no longer true if the restriction that 7(Z) be in L is replaced
by the restriction that T(Z™) be in L for some or even for infinitely
many 7n.

T, is in K and T, is surjective and invertible but 7, is not in
K’. Thus the hypothesis in Theorem A that T be an isometry
cannot be weakened to the hypothesis that the ratio ||f||/||Tf|| be
bounded.

It is not clear that the exponent 1/4 in the theorem of the
previous section is the best possible. If 7 in K is an average of
two elements of K’ (for example T = T,) then a direct estimate
shows that the exponent can be replaced by 1/2. On the other hand,
it is not clear that even such a stronger result with exponent of 1/2
would lead to a simple proof of the following.

Conjecture. The extreme points of K all lie in K’.2

It follows from the corollary in the introduction that this con-
jecture is equivalent to the conjecture that if T is an extreme point
of K then T(Z) is in L.
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1 This example is known to a number of people and was communicated to the
author by J. Ryff and by F. Forelli.

2 It has since been pointed out to the author that this conjecture is false. (“Ex-
treme Nonmultiplicative Operators”, by J. Lindenstrauss, R. R. Phelps, and J. V. Ryff,
unpublised.)





