COUNTEREXAMPLES TO A CONJECTURE OF G. N. DE OLIVEIRA

D. J. HARTFIEL

G. N. de Oliveira gives the following conjecture. CONJECTURE. Let A be an $n \times n$ doubly stochastic irreducible matrix. If n is even, then f(z) = perm (Iz - A) has no real roots; if n is odd, then f(z) = perm (Iz - A) has one and only one real root.

In this paper we give counter examples to this conjecture.

Results:

EXAMPLE 1. Let

$$A = egin{bmatrix} rac{1}{2} & rac{1}{2} & 0 \ rac{1}{2} & rac{1}{4} & rac{1}{4} \ 0 & rac{1}{4} & rac{3}{4} \end{bmatrix}.$$

f(z)= perm (Iz-A) is such that f(0)<0 and f(1)>0. Consider $f(z)\cdot(z-1)=g(z)$. Note that g(0)>0 and since there is a $\xi(0<\xi<1)$ for which $f(\xi)>0$ we see that $g(\xi)<0$. Now consider

$$B(arepsilon) = egin{bmatrix} rac{1}{2} & rac{1}{2} & 0 & 0 \ rac{1}{2} & rac{1}{4} & rac{1}{4} & 0 \ 0 & rac{1}{4} & rac{3}{4} & -arepsilon & arepsilon \ 0 & 0 & arepsilon & 1 - arepsilon \end{bmatrix}$$
 .

If $0 \le \varepsilon \le \frac{3}{4}$, $B(\varepsilon)$ is doubly stochastic. Further if $g_{\varepsilon}(z) = \operatorname{perm}\left[Iz - B(\varepsilon)\right]$ then for each z, $g(z) = \lim_{\varepsilon \to 0} g_{\varepsilon}(z)$. Since $g_{\varepsilon}(0) > 0$ for each ε and $g(\xi) = \lim_{\varepsilon \to 0} g_{\varepsilon}(\xi) < 0$ we see that for sufficiently small ε , say ε_0 , $g_{\varepsilon_0}(z)$ has a real root and $B(\varepsilon_0)$ is irreducible. This yields the counter-example. Note also that $g_{\varepsilon_0}(z) > 0$ for z > 1 [see 1], hence $g_{\varepsilon_0}(z)$ has at least two real roots.

Example 2. For simplification let $B(\varepsilon_0)=B$ and $g_{\varepsilon_0}(z)=g(z)$. Recall

- (a) g(0) > 0 and
- (b) $g(\xi) < 0$. By direct calculation we see that
- (c) g(1) > 0 and hence for some $\eta, \xi < \eta < 1$
- (d) $g(\eta) > 0$.

Now consider $f(z) = g(z) \cdot (z-1)$. Note that

- (a) f(0) < 0
- (b) $f(\xi) > 0$

(c)
$$f(1) = 0$$

(d)
$$f(\eta) < 0$$
.

Consider

$$A(arepsilon) = egin{bmatrix} rac{1}{2} & rac{1}{2} & 0 & 0 & 0 \ rac{1}{2} & rac{1}{4} & rac{1}{4} & 0 & 0 \ 0 & rac{1}{4} & rac{3}{4} & -arepsilon_0 & arepsilon_0 & 0 \ 0 & 0 & arepsilon_0 & 1 & -arepsilon_0 & -arepsilon & arepsilon \ 0 & 0 & 0 & arepsilon & 1 & -arepsilon \end{bmatrix}$$

where $0 < \varepsilon < 1 - \varepsilon_0$.

Let $f_{\varepsilon}(z) = \text{perm } [Iz - A(\varepsilon)]$. Note that for each z, $\lim_{\varepsilon \to 0} f_{\varepsilon}(z) = f(z)$. Therefore for ε sufficiently small, say ε_1

- (a) $f_{\varepsilon_1}(0) < 0$
- $f_{arepsilon_1}(\xi)>0 \ (c) \quad f_{arepsilon_1}(\eta)<0$
- (d) $f_{\epsilon_1}(z) > 0$ for z > 1. Further $A(\epsilon_1)$ is doubly stochastic and irreducible. Hence $f_{\epsilon_1}(z)$ has at least three real roots. This yields a counter-example to the conjecture in the case n is odd.

REFERENCES

- 1. R. A. Brualdi, and M. Newman, Proof of a Permanental Inequality, Quarterly Journal of Mathematics, Oxford (2), 17 (1966), 234-238.
- 2. G. N. De Oliveira, A Conjecture and Some Problems on Permanents, Pacific J. Math., 32, No 2, (1970), 495-499.

Received July 10, 1970.

TEXAS A AND M UNIVERSITY