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A FORM OF THE MOMENT PROBLEM
FOR LIE GROUPS

REESE T. PROSSER

A form of the Hamburger moment problem for the real
line is generalized and solved for an arbitrary Lie group.
The solution relates the unitary representations of the Lie
group to certain symmetric representations of the associated
universal enveloping algebra.

The celebrated Hamburger moment problem for the real line asks:
Which linear functionals on the algebra of polynomials can be realized
by integrating these polynomials against a fixed positive measure ?
Hamburger’s classic solution shows that a linear functional has this
property if and only if it assigns positive values to positive polyno-
mials [6, 10].

By taking Fourier transforms, we may rephrase the problem as
follows: Which linear functionals on the algebra of distributions
supported at the origin can be realized by evaluating these distribu-
tions at a fixed function of positive type? The solution shows that
a linear functional has this property if and only if it assigns positive
values to distributions of positive type.

In this latter form we may extend the problem to an arbitrary
Lie group, and search for a solution in the same form. Here we
confirm that this extended problem does indeed admit such a solution
(Theorem 3). We then reformulate the result in terms of the space
of unitary representations of the group to give a less satisfactory
extension of the problem in its original form (Theorem 4). In the
process we find that we can characterize the symmetric representa-
tions of the associated Lie algebra which can be “lifted” to unitary
representations of the group (Theorem 5). As in the classical case
[1], the heart of the matter lies in showing that positive linear funec-
tionals on the moment algebra are necessarily continuous in an ap-
propriate sense (Corollary 2).

The algebra of distributions of compact support. In order to
formulate the problem on a given Lie group, we shall need an
algebraic structure containing both the Lie group and its Lie algebra.
For this purpose we choose the algebra of all distributions with
compact support defined on the group. The properties of this algebra
which we shall use are all obtained by direct extensions of arguments
developed by Laurent Schwartz in his investigations of distribution
defined on R* [9, also 2, 3, 4] and are only summarized here.
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Let G be a Lie group and g its Lie algebra. Denote by E“ the
space of all k-times continuously-differentiable complex-valued functions
defined on G, topologized by uniform convergence of all derivatives
on all compacta; and by E the projective limit of all infinitely differ-
entiable functions, with the projective limit topology. Denote by
E®’ the dual space of all complex-valued distributions of order of
most & with compact support on G, topologized with the strong dual
topology; and by E’ the inductive limit of all distributions with
compact support on G, topologized with the dual inductive limit
topology. Then E and E’ are both Montel spaces, and each is the
strong dual of the other. In particular, every linear functional on
E’' which is bounded on the bounded subsets of E’ is necessarily
continuous on E’ and so must lie in E. The bounded subsets of E’
are relatively compact; moreover, every bounded subset of E’ is
contained and bounded in E*’ for some k [ef. 11, Theorem 34.4].

Denote further by E., where K is a compact subset of G, the
quotient space of E module the subspace of functions vanishing,
together with all of their derivatives, on K; and by E)% the dual
subspace of E’ consisting of distributions whose supports be in K.
Then as K runs through the family of all compact subsets of G,
directed by inclusion, E is obtained as the strict projective limit, and
E' as the strict inductive limit, of E. and E/, respectively. In
particular, it follows that every bounded set in E’ is contained in
Ky for some K[cf. 11, Theorem 34.4].

The space E’ admits an associative multiplication, defined by
convolution over G and denoted here simply by juxtaposition, such
that the mapping {s, t} — st is continuous jointly in s and ¢. TUnder
the multiplication, E’ becomes a Montel algebra with unit e (the
point measure at the origin of G) which contains:

(a) an isomorphic image of the Lie group G as the group of

point measures under convolution,

(b) an isomorphic image of the Lie algebra g as the algebra of

tangent vectors at the origin of G under the Lie product.

Moreover, both of these isomorphisms are topological. We denote
by A the associative subalgebra of E’ generated algebraically by G,
and by U the associative subalgebra generated algebraically by g
and e. Then A may be identified with the algebraic group algebra
of G and U with the universal enveloping algebra of g. A is dense
in E®', and hence in E’, while U coincides with E,’ .

In terms of the multiplication in E’ we can describe the distribu-
tions of order k as k-fold derivatives of distributions of order 0, or
Radon measures, on G. More precisely for every bounded set B in
E*®’ and hence in E’, there is a bounded set C in E®’ and a finite
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set D (consisting in fact of monomials in the generators of g) in
U®» = U n E", respectively, such that every ¢e B can be expressed
in the form ¢ = >, d;m; with m;e C and d;e D [11, Theorem 34.5].
Thus E™’ is spanned by U®E®’,

Order properties. The space E admits an involution *: ¢ — @*
defined by the formula ®*(g9) = (g™, g€ G. This involution is con-
jugate-linear and bicontinuous in the topology of E. We denote by
H the set of symmetric functions @, for which @* = @, and by P the
set of functions @ of positive type, for which 3.; N\ N; #(g:9,7") = 0,
N eC, g;€G. Then H is a closed real-linear subspace of E, and P is
a closed convex cone in H. Moreover, we know that PN (— P) =
{0} (since if @ € P then |®(9)| < ®(¢), g€ @) and that P+ (— P) is
dense in H [ef. 7, p. 142].

The space E also admits an involution *: ¢ — ¢*, induced by the
involution in E according to the formula ¢*(p) = é(®*). This involu-
tion is a conjugate-linear anti-automorphism, bicontinuous in the
topology of E’. Under this involution, E’ becomes a Montel *-algebra
which contains both A and U as *-subalgebras.

We denote by H' the set of symmetric elements ¢ e E’ for which
t* =t, and by P’ the set of elements ¢t of positive type, for which
t(@) = 0 for all pe P. All elements of the form ¢t* lie in P’ and
convex combinations of such elements are dense in P’. Every element
t of P’ has the form ¢ = ¢, + it;, where ¢, = £ (¢t + t*) and ¢, = ¢
(t — t*) lie in H’, and every element ¢ of H' has the form ¢t = ¢, — ¢,
where ¢, = }(t + ¢)*and ¢, = } (t — ¢)* liein P’. Hence, P’ + (—P') =
H’, and H' + iH’ = E. Since P + (—P) is dense in H, it follows
that P’ N (—P’) = {0}. Finally, since multiplication is jointly continuous
in E’, it follows that P’ is invariant under all mappings of the form
t — sts*, where se E'.

The cones P and P’ are dual cones, in the sense that e P if
and only if ¢(®) = 0 for all ¢te P/, and te P’ if and only if #(®) =0
for all pe P. In terms of these cones we can define dual partial
orderings in H and H’ by putting 6 < @ if and only if ¢ — 6e P,
and s < ¢ if and only if ¢ — se P’. Then these orderings are com-
patible with the algebra and topology of H and H’ and exhibit all
the usual ordering properties [9]. In particular, if s, te E’, then
E+t)E+D*< (s+108) (s+O)*+ (s—1t (s— t)* = 2(ss* + tt*). By
iterating this argument, we find that if ¢,.-.,t,€ E’, then (Jt)
t)* < 2°(3t ).

In terms of the ordering in H, we can now identify the bounded
sets of E’ as follows:

LEMMA 1. A subset Bof E' is bounded if and only if there exist
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(a) a compact subset K of G, and (b), a single element d in U N P,
such that B C Ey', and for all te B we have

+d
+d

—d<t,
—d<t

A TIA

Proof. Suppose first that B is bounded. Then we already know
that B C E' N E*®' for some compact subset K of G and integer k.
Now for any t€ E’ we have 2t, = t + t* < ¢t* + ¢, and similarly for
— 2t, and =+ 2f,. Hence it suffices to show that if ¢e B, then there
exists a single element de U such that #* < d.

Suppose first that B < E’. Then every m € B is a finite measure

supported in K. If¢ep,ﬂmnwwﬁ@)zgymmrammwdmm)g
q‘)(O)(SGd [m| (g) )2 = ||m|* e(®), where ||m]|| denotes the total variation

of m, and e(p) = #(0). Since @ is arbitrary in P, it follows that
mm* < ||m|? e. Since B is bounded is E’, there exists a constant
| B| such that me B implies ||m|| < |B|. Hence mm* < |Be.

Suppose now that B < E®’ where &k > 0. Then we know that
there are a bounded subset C of E’ and a finite subset D of U™,
respectively, such that ¢e B implies ¢ = 3 d;m,;, with m;eC, d;e D.
Hence tt* = (2 d;m;) (2 dm)* < 2" Y(d;m;) (d;m;)*. But we also know
that mm;* < ||m;|fe, and hence that (d;m,) (dm,)* = dm;m;*d;* <
lm]|? d.df. It follows that tt* < 2"Y ||m;|]* d.d;*. Since C is bounded
in E, there is a constant |C| such that me C implies ||m] < |C]|,
and since D is finite, we have ¢t* < N 2% |C|* 3.0 dd*, where N is the
number of elements in D. Hence if ¢e B, then ¢* is bounded above
by an element in U%*" N P’ which is independent of ¢, as required.

The converse, which we shall not need here, can be obtained by
observing that every subset B with the properties of the theorem is
necessarily bounded on bounded subsets of P, and hence on E.

It follows from this result that every positive linear functional
on E’ is bounded on the bounded subsets of E’. Hence we have.

COROLLARY 2. Ewvery positive linear functional defined on K’ is
necessarily contimuous, ti.e., is defined by an element of E.

The moment problem. We are now in a position to take up the
moment problem. First we recall that if @ is a C~ function of positive
type on G, then @ defines a positive linear functional on E’. In parti-
cular, @ defines a linear functional on U which is positive on U N P’.

Suppose now that we have a linear functional on U. TUnder
what conditions is it defined by a C>= function of positive type on G?
A necessary condition is that the functional be positive on U N P’.
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Our solution to the moment problem shows that this necessary con-
dition is also sufficient. The proof is patter ned after refernce [1].

THEOREM 3. FEvery linear functional on the algebra U which is
positive on U N P’ admits an extension to a linear functional on the
algebra E' which is positive on P’, and hence is defined by a C= func-
tion of positive type on G.

Proof. Let 6 be any linear functional on U which is positive on
U N P'. Define the sublinear functional » on H’ according to the
formula p(t) = inf. {§(d): de U N H' and ¢t < d}. Then from Lemma
1 we see that p(f) is defined for all ¢ in H’, and p is obviously
sublinear. Since 0(d) = p(d) for all d in U N H’, we know from the
Hahn-Banach theorem that # admits an extension to a linear func-
tional 6~, defined on all of H’, such that 6-(t) < p(¢). If —te P/,
then p(t) <0, so 6~(t) £0, and 6~ is positive on P’. By complex
linearity 6~ now admits a unique extension to all of E’. According
to Corollary 2, 6~ is automatically continuous on E’, and hence is
defined by an element @ of P: 6(t) = t(p).

Unitary representations. To obtain a solution of the Hamburger
moment problem in its original form when G is in the real line, we
have only to pass to the dual group via the (inverse) Fourier trans-
form. In fact, we can carry out this procedure whenever G is
Abelian. In the general case, however, the dual group must be
replaced with the dual space of all irreducible unitary representations
of G.

Every continuous representation p of G as a group of unitary
operators on a Hilbert space H defines a continuous *-representation
o of E' as a *-algebra of unbounded operators on a certain invariant
dense subspace D of H [8]. If an element ¢ of E’ is of positive type,
then (o(t)v,v) = 0 for all ve D, so that po(f) is a positive operator on
D. Hence if v is any vector in D, then the linear functional @ de-
termined by v according to the formula 6(¢) = (o(¢)v,v) is positive on
E’, and so is defined by a function @ of positive type in E. Con-
versely, if @ is such a function, then we know that there exists a
unitary representation o of G on a Hilbert space H, and a vector »
in H such that the positive functional ¢ defined by @ on E’ is de-
termined by v [7]. This leads us to the following restatement of
Theorem 3:

THEOREM 4. Ewvery linear functional on the algebra U which is
positive on all elements whose representatives are positive in each
wrreducible unitary representation of G is determined by a vector in
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some unitary representation of G.

Not all *-representations of U are determined by unitary repre-
sentations of G in the manner described above [8]. Those which are
must evidently be completely reducible, and must represent elements
of positive type by positive operators. Theorem 3 enables us to
conclude that these necessary conditions are also sufficient:

THEOREM 5. FEwery completely reducible *-representation of U in
which elements of positive type are represented by positive operators
is defined by a unitary represesentation of G in the manner described
above.

REMARKS. It is remarkable that the hypothesis of Theorem 3
apparently involves only the local structure of the group G, while
the conclusion evidently involves the global structure. In fact,
however, the global structure of G is reflected in the order structure
of the associated enveloping algebra U. Thus, distinct locally iso-
morphic Lie groups, having the same Lie algebra, will define different
positive cones in the enveloping algebra. Hence the notion of positive
type depends upon the group G as well as upon the enveloping algebra
U. This curious fact can be verified directly for the locally isomor-
phic Abelian groups R and T = R/Z.

It would be desirable for applications to obtain an intrinsie
characterization of the elements of positive type in the enveloping
algebra. We know that every element of the form ¢t* liesin U N P’.
If G = R, elements of this form exhaust U N P’. If G = R?, however,
convex combinations of elements of this form are not even dense in
Un P [5,p. 232], and no reasonable characterization of U N P’ is
known.

In general, the function of positive type obtained in Theorem 3
is not unique, even when G = R. In order to ensure uniqueness, we
must require in addition that the linear functional on U be not too
badly unbounded. The following ecriterion, familiar in the classical
problem, can be derived from the work of Nelson [8, section 9].

Let d;---, d, denote here a complete set of generators for the
Lie algebra g, and put 4 = ¥d?. Then 4 lies in U N P’, and if 4 is
any positive linear functional on U then the moments 0(4,) of 4 are
all = 0. If in addition these moments are all such that the series
I\ 0 (4%)/n! converges for some real A, then we say the functional
6 is amnalytic on U. Every analytic positive functional on U admits
a unique extension to an analytic positive functional on E’ which is
defined by an analytic function of positive type in K. [8].
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