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A STUDY OF CERTAIN SEQUENCE SPACES OF MADDOX
AND A GENERALIZATION OF A THEOREM OF IYER

CONSTANTINE G. LASCARIDES

In this paper we examine the Kdthe-Toeplitz reflexivity
of certain sequence spaces and we characterize some classes
of matrix transformations defined on them. The results are
used to prove a generalization of a theorem by V, G, Iyer,
concerning the equivalence of the notions of strong and weak
convergence on the space of all integral functions, and also
to generalize some theorems by Ch, Rao.

Let X, Y be two nonempty subsets of the space s of all complex
sequences and A = (a,,) an infinite matrix of complex numbers
aun, k=1,2,...). For every z = (x,) € X and every integer n we
write

An(x) = ; WX 5

where the sum without limits is always taken from £k =1 to k = .
The sequence Ax = (A4,(x)), if it exists, is called the transformation
of x by the matrix A. We say that Ae (X, Y) if and only if Aze Y
whenever z ¢ X.

Throughout the paper, unless otherwise indicated, p = (»,) will
denote a sequence of strictly positive numbers (not necessarily bounded
in general). The following classes of sequences were defined by
Maddox [4] (see also Simons [10], Nakano [8]):

Up) = {a: S Pr < o}
Lo(p) = {a: sup, | o+ < oo

c(p) = {x: |2, — [|P» —— 0 for some l} ,
c(p) = {x: |2, [Pe — O} .

When all the terms of (p,) are constant and all equal to p > 0
we have I(p) = I,, l(p) = l, ¢(p) = ¢, and ¢(p) = ¢, Where [,, l.., ¢, ¢,
are respectively the spaces of p-summable, bounded, convergent and
null sequences. It is easy to see that l.(p) = l. if and only if 0 <
inf p, <supp, < ~ and similarly for ¢(p) = ¢, ¢(v) = ¢ (see [4]).
It was shown in [4], [5], [6], that the sets I(p), l.(p), ¢(p) and ¢,(p) are
linear spaces under coordinatewise addition and scalar multiplication
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488 CONSTANTINE G. LASCARIDES

if and only if pel.. The special linear space c¢,(1/k) was studied
by Iyer [1], who identified it with the space of all integral functions.

Whenever pel. we shall write H = sup p, and M = max(1, H).
Now let E be a nonempty subset of s. Then we shall denote
by E' the generalized Kothe-Toeplitz dual of E, i.e.,

Et = {a: > ax, converges for every xe E } .
k

The following lemma collects some simple and well-known proper-
ties of dual spaces:

LEMMA 1. The Kothe-Toeplitz duality has the following properties:
(i) E' is a linear subspace of s for every E Cs.

(ii) ECF implies E'D F" for every E, FCs.

(iiiy E" = (E"YW DE for every ECs.

iv) (U E)" = N E! for every family {E;} with E;Cs.

A nonempty subset E of s is said to be perfect or Kothe-Toeplitz
reflexive if and only if E' = E. It is well-known that E' is perfect
for every E. It is also obvious that if E is perfect then it is a
linear space. The converse is not always true, e.g., ¢ is a linear
space with Kothe-Toeplitz dual I, and therefore not perfect.

Let E(p) be any one of the sets I(p), l.(p), ¢(p), ¢,(p). Then to
contract notation we shall put E(p;1) = E'(p), E(p:2) = E"(p) ete.
It is obvious that E(p;1) = E(p;2n + 1) for every n = 0. We now
give the Kothe-Toeplitz duals of the above classes of sequences.

LEMMA 2. (i) If 0<p. =<1 for every k, then U(p;1) = l.(p)
(see Theorem 7 in [10]).

(i) If p. > 1 for every k, then l(p;1) = M(p), (see Theorem 1
in [6]), where

M) = U {a: 3 la,nN - < oo
with pyt + ¢t = 1. For convenience we shall, in the future, write
e = Dy S = Q-

(ili) For every p = (py), we have l.(p; 1) = M.(p), (see Theorem
2 in [3]), where

Mow) = N {a: S o No < oo

N>1

(iv) Also for every p = (p), ¢(p; 1) = My(p), (see Theorem 6 in
[6]), where
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M) = Y {o S la Nk < =}

N>1

We determine the Kothe-Toeplitz dual of ¢(p) in

THEOREM 1. For every p=(p,) we have c¢(p; 1)=c,(p; 1) N"Y where
Y is th space of all convergent series.

Proof. Let acelp;1) N~ and |z, — 1| — 0. Then I3}, a, and
S ax(x,—1) are well defined and therefore >}, a,x, converges. Whence
e@; 1) NYCe(p;1). On the other hand, let acec(p;1). Then e =
(1,1, ---) ec(p) implies ae”, and ¢(p) Cc(p) implies ¢(p; 1) D ey(p; 1)
by Lemma 1 (ii).

We continue by characterizing the Kothe-Toeplitz second duals
and discussing the reflexivity of the sets ¢ (p), l(p) and l.(p).
We have the following theorems:

THEOREM 2. For every p = (p,) we have c,(p; 2) = \,, where

A = n{y: sup |y, | N™ < oo} .
N>1 k
Proof. Let Ey = {a: >, |a,| N < }. Then cy(p;1) = My(p) =
Ux>: By and therefore by Lemma 1 (iv), we have c¢,(p; 2)=M(p; 1) =
Ny>: Ef. It is easy to check now that E} = {y:sup, |y,| N™ < =}
for every N = 1, whence ¢,(p; 2) = \,.

THEOREM 3. For every p = (p,) we have l.(p; 2) = \,, where

Ay = U{a: sup [a, | N < oo} .

N>t

Proof. It is easy to see that N, Cl.(p;2). On the other hand
if aecl.(p;2) — N\, then there exists a strictly increasing sequence
(k(N)) positive integers such that for k¥ = k(N), |a,| N~ > N* and
if we define a sequence = = (z,) by =, =0 (k = k(N)), z, = N-&#
sgna, (k =k(N)), (N=2,3,+-.) then for any integer R >1 we
have, for every N = R, |x,|R* < N% when k = k(N). Hence
zel.(p;1). However, for k = k(N), a,x, > 1, contrary to a ¢ l.(p; 2).

THEOREM 4. (i) Let p, > 1 for every k. Then l(p) is perfect
if and only if pel..

(ii) Let 0 <, =1 for every k. Then l(p) is perfect if and
only if l(p) = 1.
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Proof. (i) Let 1 < p,< H. Then we have
G=01—-r) " ZHH-1)">1

for every k. It is obvious now that, by Lemma 2 (ii), I(q) < I(p; 1)
and therefore that l(qg; 1) Dl(p;2), by Lemma 1 (ii). On the other
hand inf ¢, > 1 implies l{(q; 1) = l(p) (see [6] p. 432) and therefore

lp)clp;2)cliqg; 1) = Up) -

Whence I(p; 2) = l(p), i.e., l(p) is perfect. Conversely if I(p) is perfect
then it is a linear space and therefore p ¢ l..

(ii) The sufficiency is trivial. For the necessity we observe
that I(p;2) = l(p) implies m = inf p, > 0. For suppose not. Then
there exists a strictly increasing sequence (k;) of positive integers
such that p,, <i7. We put a, =0 (k # k), a, =17 (k=k;). Then
for every integer N > 1 we have, for ¢ = 2N, |a,| N™* < 277 and |a, |Pt=
17!, where k& = k;,. Whence acl(p;2) — l(p), contrary to the assump-
tion that I(p) is perfect. Now from 0 < m < p, =<1 we have [, C
I(p) Cl, i.e., l{p) = U(p;2) =1, (since Il, = l.. by Theorem 7 in [8]).

THEOREM 5. l.(p) is perfect if and only if pel..

Proof. Sufficiency. Let pel. and a ¢ l.(p;2). Then there exists
N > 1 such that sup, |a,| N~ = K < . Hence |a,| N7 K <1 for
every k and therefore |a, |?* < N max (1, K¥) for every k, i.e., a € l.(p).
Whence I.(p) is perfect.

Necessity. Let l.(p;2) = l.(p) and suppose that there exists a
strictly increasing sequence (k;) of positive integers such that p, > 1.
Then the sequence a defined by a, =0, k #k;, a,, =2, 1=1,2,3---,
belongs to l.(p;2) — l.(p) and this contradicts the assumption that
l.(p) is perfect.

THEOREM 6. The following statements are equivalent:
(i) infp,>0;

(i) l(m1) =1,;

(i) lo(p;2) =l «

Proof. The proof is trivial.

THEOREM 7. The following statements are equivalent:
(i) e 2 =l ;

(ii) infp,> 0;

(iii) ¢ C co(p) -
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Proof. (1) implies (ii). For we have [, = ¢(»;3) = ¢(p; 1) =
My (p) and therefore infp, > 0 (see [6] p. 434). (ii) implies (iii) by
Lemma 1 in [4]). Finally from (iii) and Theorem 2 we have [.. = ¢,/'C
c(p; 2) C l., i.e., ¢(p;2) = l.. Whence (iii) implies (i).

THEOREM 8. ¢(p) s perfect if and only if p € c,.

Proof. For the sufficiency let pec, and take xzecy(p;2). Then
by Theorem 2 we have C, = sup, |x,| N™ < o for every integer N >
1. Suppose that x¢c(p). Then there exists a strictly increasing
sequence (k(s)) os positive integers and a positive number I such that
{w, =1 for k =Fk(s), s=1,2,+.--. Therefore, for every integer
N> 1, we have

(ND™ = N" |2, | < sup, N |2, | = Cy < o, (k = k(s))

Let now N, be an arbitrary integer bigger than 1 and choose N such
that NI > N,. Then we have N+ < (N)™* < Cy, (k = k(s)), i.e., lim
sup, Nk < o (k = k(s)) contrary to the fact that r., = il —
(s — «). Whence zecc,(p) and this proves the sufficiency. For the
necessity let us suppose that c¢,(p;2) = c¢(p) and that p¢c¢,. Then
there exists a strictly increasing sequence of positive integers k; and
a positive number ! such that p,, =1 (j =1,2,---). We define a
sequence x as follows: o, =0 (k= k), 2, =1 (k=Fk), G =1,2, --+).
Then it is easy to see that x e c¢)(p; 2) — c)(p) contrary to the assump-
tion that ¢,(p) is perfect. Whence p € ¢, and this completes the proof
of the theorem.

In the second part of this paper we characterize certain classes
of matrix transformations and we show that certain theorems proved
by K. Ch. Rao (see [9]) are particular cases of our theorems.

We start by characterizing the class (e(p), ¢) of matrix trans-
formations. We have the following theorem.

THEOREM 9. Let pel.. Then Ac (c(p), c) if and only if
(i) There exists an absolute constant B > 1 such that

C= sup;la’nkIB—rk < oo,

(ii) lima,, = @, (n— o) exists for every fized k.
(iii) lim, >, a., = « exists.

Proof. Sufficiency. Let |z, — l|P*— 0. It is easy to check that
(&) € ¢o(p; 1). Given € > 0 there exists k, = ky(c, ) such that
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|2, — U™ < min (1, e)B'@CC + 1) < 1
for every k > k,. Therefore, we have
Bz, — 1] < BY |x, — 1] < (min (1, ¢)(2C + 1)™)"" < ¢(2C + 1)

for every k > k,. Putting b,, = a,, — a, we have b,,— 0 (n— o, k
fixed) and >, |b,.| B~ < 2C. Whence

3 @ = )~ )| | S bule— D] +e
and therefore
liqfn kZ Ty = lat + ;ak(xk -1,
i.e., Ae(c(p), c).

Necessity. Then necessity of (ii) and (iii) is obvious. For the
necessity of (i) we observe that A e (¢(p),c) whenever A e (¢c(p),c)
(since (¢(p), ¢) C (co(p), €)). Therefore each A,, defined by A,(x) =
> ax, for every x € ¢i(p), is a continuous linear functional on ¢ (p) (see
Theorem 6 in [6]) which is a complete linear topological space since
pele.. The proof of the necessity of (i) is now a simple application
of the uniform boundedness principle.

COROLLARY 1. Let pel. and denote by (c(p), c; P) the class of
matric transformations which transform every sequence in ¢(p) to a
sequence in ¢ with the same limit. Then A< (¢(p), ¢; P) if and only if

(i) Condition (i) Theorem 9 holds.

(ii)’ lim, a,, = 0 for every fixed k.

(iii)’ lim, >, a.. = 1.

COROLLARY 2. Let pel.. Then Aec (c(p), ¢) of and only if con-
ditions (i) and (ii) of Theorem 9 hold.

COROLLARY 3. (See C. Rao’s Theorem (III) in [9]). A€ (c,(1/k), ¢)
if and only if

(1)* @' < D for every m, k.

(ii)* lim, a,, = a, ewxists for every fixed k.

Proof. It is enough to prove that in the case p, = 1/k for every
k, condition (i)* and condition (i) of Theorem 9 are equivalent. If
condition (i) of Theorem 9 holds then 3>, |a,,| B~ < C for an absolute
constant B > 1 and therefore |a,,|B~* < C for every m, k. Whence,
for every mn, k we have
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| "* < C"*B<Bmax(l,C) =D < o,

i.e., condition (i)*. On the other hand if condition (i)* holds, then
for an integer T = max (1, 2D) we have

@ | < D < TF27%, for every m, k.
Whence
;]ankl T+ <3,27% < oo for all n,
k

i.e., condition (i) of Theorem 9 holds.

THEOREM 10. Let pel.. Then Ac (c(p), la(p)) if and only if
there ewxists an absolute constant B > 1 such that

(1) T:mm4;mmgw§”<w,

Proof. Sufficiency. Let xec(p). Then there exists %, such that
x| < B~ for every k > k,. Therefore for every n we have

| S aue|” = K5+ 50,

where,

Py

K =max (1,277, S, = |k}; A
=kg

Pn
y S, = ‘ DI
£>E

We observe now that (1) implies

|@,,| T-™» < B"* <max B* = R < oo

k<kg

for every n and for every kell, k)]. Whence

S < ( S RT™ |a, ;)"” - T(R b)) |x,,|>”" < Tmax (1, Q) < o

K<k

where Q = (R Xz, |#:))¥. For the term S, we have

S;» = ‘ > Uiy,
K>k

ie.,, S, < T. Whence A e (c,(p), l-(p)).

é Z ]a/nk!B—Tk é TT" ’
k>

Necessity. Let A e (¢(p), l-(p)). Then we have
N(&) = sup, | 4,@) > <=

for every xec(p). Put f.(x) = |4A.(p)|”». Then for every =, f, is a
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continuous function on c¢,(p) (see Theorem 6 in [6]). Since c,(p) is a
complete metric space (see Theorem 1 in [5] and p. 318 in [7]) and
fu(@) £ N(x) for every m, we have, by the uniform boundedness
principle, that there exists a sphere S[4, ] Cc(p) with § < 1,6 =
(0,0, -++) and an absolute constant K such that

P
néK

(2) | S aue

for every n and for every xze S[f, d]. For every integer m > 0 we
define a sequence (™) of elements of ¢,(p) as follows:

™ = o¥*sgna,, 1=k=m),z™ =0 (k> m).

Then 2™ ¢ S[4, 6] for every m and by (2)
{Slanl B " <K,
ksm
for every m, n, where B = 6. Whence T < co.

REMARK. It is easy to check that if pel., p’ cl., then we have
A e (¢(p), l-(p')) if and only if there exists an absolute constant B> 1
such that

S = sup {Sk_‘, | Qe | B"k}p;‘ < .

Let now Q be the set of all p = (p,) for which there exists
N > 1 such that 3>, N <. Then we have the following

THEOREM 11. Let pe Q. Then Aec (c)(p), lo(p)) if and only it

D = SUp |Gy [+ <oo
7,k

Proof. Let condition (i) of Theorem 10 holds. Then we have

|@,, | B~ < T'm=

for all n, k. Hence |a,,| B*T™ and if we put C = max (7, B) we

have D < C < . Obviously in this part of the proof we do not

require that pe Q. If now pe @, then there exists N > 1 such that

> N~ and therefore if D < - we have for an integer B> ND that
S @ | BT < (B/N)™ >, N7 .

Whence condition (1) of Theorem 10 holds and therefore A e (¢(p),

l=(D))-

CoROLLARY 1. (See C. Rao’s Theorem (v) in [9]). Ae (c,(1/k),
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l.(1/k)) if and only if sup,; |@u|™H ™ < co.

THEOREM 12. For every p = (p,) we have Ae (My(p),c) if and
only if

(i) Cy=sup,;|a..| N™* < = for every N > 1.

(ii) lim,a,, = 0 for every fixed k.

Proof. The sufficiency is trivial and so is the necessity of (ii).
The necessity of (i) is proved by an argument similar to the one that
was used to prove Theorem 3 in [3].

Before we proceed to discuss weak convergence in ¢,(p) we prove
a theorem concerning the relation between the classes c,(p) and I,.

THEOREM 13. The following statements are true:
(1) lLcCelp) if and only if inf p, > 0.

(2) el of and only of pe@.

(3) cp) # 1, for every p = (py)-

Proof. (1) If infp, > 0 then c(p)=¢,D1,. On the other hand
if I, C ¢(p) but we suppose that inf p,=0 then we can find a strictly
increasing sequence (k;) of positive integers such that p,, <i™ (i =
1,2, ---). It is easy to see now that the sequence x, =0 (k= k),
2, =2""%k=%k), t=1,2,---) belong to I, — ¢,(p) contrary to the
assumption that I, C ¢, (p). Hence (1) is true.

(2) Let pe@, xeci(p). Then there exist N > 1 and &, = k(N, x)
such that 3, N~ < c and [xz,| < N~ for every k > k,. Whence
zel. On the other hand if e(p)cl, but >, N~ = « for every
N > 1 then there exists strictly increasing sequence (ky) of positive
integers such that

(N+1)" >N
ky_i<ksky
and if we put x, =N+ 1) for ky,<k=<ky then we have
X € ¢(p) — I, contrary to the assumption that c¢,(p) <l,. Hence (2) is
true.

(38) If pe@ then there exists N> 1 such that >, N7 < o
and (N~ el, — ¢,(p), i.e., ¢(p) is in this case a proper subset of ..
On the other hand if p¢ Q@ then by (2) ¢(p) contains an element
which is not in [/, and hence (3) is true.

In the proof of our next theorem we will make use of the
following

LemMA 3. l.(1/k) = M,(1/k).
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Proof. Let xel.(l/k). Then by choosing an integer N > 2(D+1),
where D = sup, |, |'* < o, we have

ifa | NP <327 < ooy e, we M(L/E) -

Conversely for xe M,(1/k) we have
|2, ["* < NCY < Nmax (1, C) < oo

for some N > 1 such that C = >}, |%,| < . Whence ze¢l.(l/k) and
therefore the lemma is true.
We now prove the following.

THEOREM 14. The following statements are equivalent:
(1) Ae(l(l/k), c);
(2) Swlan| N¥—0 (n— o) for every N> 1;
(3) sup @[ —0 (n— co);
(4) (1) sup,;l|@u| N® < o for every N> 1,
(ii) lim,a,, = 0 for every fixed k.

Proof. By Theorem 3 in [3], (1) implies (2). Now given ¢ > 0
we choose N > 1 such that N™' <e. By (2) there exists n, such
that >, |a..| N* <1, n > n,, which implies |a,,| N* <1 for all k=1,
n > n,. Therefore

Sup |a,, | < N7 <e,
k

for every n > n,. Hence (2) implies (3). It is easy to see that (3)
implies (4) and finally that (4) implies (1) by Theorem 12 and Lemma 3.

This completes the proof of Theorem 14.

We conclude this paper with the study of weak convergence in
co(p)-

In 1948, V. G. Iyer [1] proved an interesting theorem concerning
the equivalence of the notions of strong and weak convergence in
¢,(1/k). Namely

THEOREM 1. The mnotions of strong and weak convergence in
e(1/k) are equivalent.

In the present paper we show that Iyer’s theorem is true for a
more general class of ¢,(p) spaces, namely for the spaces c¢,(p) for
which p € ¢,.

Before proceeding any further we make some remarks concerning
the ¢,(p) spaces and give some definitions.

It has been shown by Maddox (see Theorem 6 in [6]) that for
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pel. the space ¢ (p) of all continuous linear functionals on c,(p) is
isomorphic to the space M,(p) in the sense that every continuous linear
functional on ¢(p) can be expressed in the form f(x) = 3, a,x, with
a € My(p) and vice versa. Therefore in what follows we can talk of
expressions >, @&, @€ My(p), xec(p) instead of continuous linear
functionals on ¢ (p).

The following definitions are well-known.

DEFINITION 1. Let X be a linear topological space. Then we say
that a sequence (x'™) of elements of X converges weakly to an element
2 of X if and only if lim, f(®™) = f(x) for every fe X* (i.e., for
every continuous linear functional on X).

DEFINITION 2. A linear metric space is said to have the Schur
property if and only if every weakly convergent sequence of its ele-
ments is necessarily convergent in the metric of the space. If the
above space is a B-space then the definition coincides with the one
given in [2].

Note that convergence in metric (strong convergence) implies
weak convergence to the same limit.

We now examine the conditions under which the space ¢,(p) has
the Schur property. It has been remarked that p e l.. is necessary and
sufficient for the linearity of c¢,(p). Furthermore if pel. then c¢,(p)
is a complete linear topological space under the topology induced by
the paranorm ¢ defined by g(x) = sup, |x,|?*” for every = = ¢,(p) (see
Theorem 1 in [5]).

The following result gives the exact condition for c¢,(p) to have
the Schur property and consequently includes Iyer’s theorem as a
special case.

THEOREM 15. The linear topological space c,(p) has the Schur
property if and only if pec,.

Proof. Sufficiency: Let pec, and (™) Ce¢(p) be convergent
weakly to 0, i.e., lim, f(z™) = 0 for every feci(p). Then

lim > ae™ =0
n k

for every a e M,(p). Whence X=(,,) € (My(p), ¢,) (Where for convenience
we put ,, instead of x{™) and therefore by Theorem 12 we have
(i) Cy = sup,,; | % | N < o for every N> 1,
(ii) lim, x,, = 0 for every fixed k.
We shall prove now that g¢g”(z™)—0 (n— o). Suppose, on the
contrary, that
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lim sup g”(x™) > 0.

Then there exists a subsequence (y¥') of (x™) and a positive number [
such that

(1) g (y"®) = 21 s=1,2,---.
We write s(1) =1 and let k(1) = 1 be such that
[ Yewrw P20 > 1,

where ¥ = (y,,) for every s. Obviously such an integ_er k(1) exists
because of (1). Now pec, implies that there exists k(1) such that
p, < 27 for every k > k(1). By (ii) there exists s(2) > s(1) such that

max _ Iysmki” <l.
1=ksk() +E(D)

Whence there exists %(2) > k(1) + k(1) such that
Pra < 27 | Vs [P2@ > 1.
Continuing this way let k(¢ — 1), s(+ — 1) be defined such that,

Dri—n < (0 — 17, | Ys(imnpiiy [P0 > 1.

Then there exists k(i —1) > k(i — 1) such that p, < i for every
k> k(i — 1) and s(i) > s(t — 1) such that

max [ Yoan P2 < T
15k <k (i—1) £F (i—1)

Whence there exists k(i) > k(i — 1) + k(i — 1) such that
Vs |76 > L.

With this method we construct two strictly increasing sequences
(k(7)), (s(3)) of positive integers such that

Dy < 17 [ Ysorwn PFO > 1,0 =1,2, «++ .
Now we choose an integer N > 1 such that NI > 2. Then we have
Cy = sup | %2 | N Z SUD [ Ysiinca) | N4
= sup (N1)m@

= sup 276 = sup 2¢ = oo
) i

contrary to condition (i). Whence we must have
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lim sup g (™) =0,
i.e., that ™ — 6 strongly.

Necessity. Suppose now that the space c¢(p) has the Schur
property. If p¢ec, then there exists a positive number I and a
strictly increasing sequence (k(i)) of positive integers such that
Py =1 for ¢ =1,2, -+-. Consider the sequence

(@) = (ern) C (D)

where ¢, denotes the sequence with 1 in the k(?)th place and 0
everywhere else. Then for every integer N > 1 we have

(i) supii|®y| N™ = sup; N™e& < NV < oo,

(ii) lim;z; = 0 for every fixed k,
i.e., 9 — 0 weakly in ¢,(p). On the other hand for every pair of
integers m, n (m # m) we have

g™ — o'™) = glepm — €rm) =1,

i.e., the sequence (x”) is not a Cauchy sequence in ¢,(p) and there-
fore not convergent. Whence we have a contradiction to the fact
that ¢,(p) has the Schur property.

COROLLARY. (Theorem I). The space ¢, (1/k) has the Schur
property.

Note that by Theorems 8 and 15 ¢,(p) has the Schur property
if and only if it is perfect.

Finally, I am grateful to my supervisor Dr. I. J. Maddox for
drawing my attention to the problems examined in this paper, for
his constructive criticism of this work and for his help and guidance
in general. I also wish to thank the referee for several valuable
comments and suggestions.
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