GLOBALIZATION THEOREMS FOR LOCALLY FINITELY GENERATED MODULES

ROGER WIEGAND

Each commutative ring has a coreflection \hat{R} in the category of commutative regular rings. We use the basic properties of \hat{R} to obtain globalization theorems for finite generation and for projectivity of R-modules.

1. Preliminaries. A detailed description of the ring \hat{R} may be found in [8]. Here we list without proofs the facts that will be needed. We assume that everything is unitary, but not necessarily commutative. However, R will always denote an arbitrary commutative ring. All unspecified tensor products are taken over R. For each $a \in R$ and each $P \in \operatorname{Spec}(R)$, let a(P) be the image of a under the obvious map $R \to R_P/PR_P$. Then \hat{R} is the subring $\coprod_P R_P/PR_P$ consisting of finite sums of elements [a, b], where [a, b] is the element whose P^{th} coordinate is 0 if $b \in P$ and a(P)/b(P) if $b \notin P$. There is a natural homomorphism $\varphi \colon R \to \hat{R}$ taking a to [a, 1]. The ring \hat{R} is regular (in the sense of von Neumann). The statement that \hat{R} is a coreflection means simply that each homomorphism from R into a commutative regular ring factors uniquely through φ .

The map Spec (φ) : Spec $(\hat{R}) \to \text{Spec }(R)$ is one-to-one and onto; for each $P \in \text{Spec }(R)$ we let \hat{P} be the corresponding prime (= maximal) ideal of \hat{R} .

If A is an R-module and $P \in \operatorname{Spec}(R)$, then A_P/PA_P and $(A \otimes \widehat{R})_{\hat{P}}$ are vector spaces over R_P/PR_P and $\widehat{R}_{\hat{P}}$ respectively. The map $\varphi \colon R \to \widehat{R}$ induces an isomorphism $R_P/PR_P \cong \widehat{R}_{\hat{P}}$, and, under the identification, A_P/PA_P and $(A \otimes \widehat{R})_{\hat{P}}$ are isomorphic vector spaces.

2. Globalization theorems.

LEMMA. If $A \otimes \widehat{R} = 0$ and $A_{\scriptscriptstyle R}$ is locally finitely generated then A = 0.

Proof. For each prime P, $A_P/PA_P=0$, by the last paragraph of § 1. Since A_P is finitely generated over R_P , Nakayama's lemma implies that $A_P=0$ for each $P \in \operatorname{Spec}(R)$. Therefore A=0.

THEOREM 1. Assume $(A \otimes \hat{R})$ is finitely generated over \hat{R} , and that A_R is either locally free or locally finitely generated. Then A_R is finitely generated.

Proof. Assume A_R is locally free. Then, for each prime P, A_P is a direct sum of, say, κ copies of R_P . Then A_P/PA_P is a direct sum of κ copies of R_P/PR_P . But since $(A \otimes \hat{R})$ is finitely generated over \hat{R} , A_P/PA_P is finite dimensional over R_P/PR_P . Thus κ is finite, and we conclude that A_R is locally finitely generated.

Now, if A_R is not finitely generated, we can express A as a well-ordered union of submodules A_{α} , each of which requires fewer generators than A. We will get a contradiction by showing that some $A_{\alpha} = A$. Let $B_{\alpha} = \operatorname{Im}(A_{\alpha} \otimes \hat{R} \to A \otimes \hat{R})$. Since

$$A \otimes \widehat{R} = \lim_{\stackrel{
ightarrow}{a}} (A_{lpha} \otimes \widehat{R}) \; , \qquad A \otimes \widehat{R} = igcup_a B_{lpha} \; .$$

Since the B_{α} are nested and $(A \otimes \hat{R})$ is finitely generated over \hat{R} , some $B_{\alpha_0} = A \otimes \hat{R}$, that is, $A_{\alpha_0} \otimes \hat{R} \to A \otimes \hat{R}$. Let $C = A/A_{\alpha_0}$. Then $C \otimes \hat{R} = \operatorname{Coker} (A_{\alpha_0} \otimes \hat{R} \to A \otimes \hat{R}) = 0$, and C_R is certainly locally finitely generated. By the lemma, C = 0, and $A_{\alpha_0} = A$.

THEOREM 2. Let A_R be finitely generated and flat, and assume $(A \otimes \hat{R})$ is \hat{R} -projective. Then A_R is projective.

Proof. By Chase's theorem [3, Theorem 4.1] it is sufficient to show that A_R is finitely related. Let $0 \to K \to F \to A \to 0$ be an exact sequence, with F_R free of finite rank. This sequence splits locally, so K is locally finitely generated. Since A_R is flat, the long exact sequence of Tor shows that $0 \to K \otimes \hat{R} \to F \otimes \hat{R} \to A \otimes \hat{R} \to 0$ is exact. This sequence splits, so $(K \otimes \hat{R})$ is finitely generated over \hat{R} . By Theorem 1, K_R is finitely generated.

3. Applications. The following result generalizes the well-known fact that over a noetherian ring every finitely generated flat module is projective.

PROPOSITION 1. If R has a.c.c. on intersections of prime ideals then every finitely generated flat R-module is projective.

Proof. In [8] these rings are characterized as those for which $(A \otimes \hat{R})$ is \hat{R} -projective for *every* finitely generated A_R . The conclusion follows from Theorem 2.

Suppose A_R is locally finitely generated. For each prime ideal P let $r_A(P)$ denote the number of generators required for A_P over R_P . By Nakayama's lemma, $r_A(P) = d_A(\hat{P})$, the dimension of $(A \otimes \hat{R})_{\hat{P}}$ as a vector space over $\hat{R}_{\hat{P}}$. Since the map $\hat{P} \to P$ is continuous, it follows that if r_A is continuous on Spec (\hat{R}) . Using these observations we can give easy proofs of the

following two theorems:

THEOREM 3 (Bourbaki [1, Th. 1]): Assume A_R is finitely generated and flat, and that r_A is continuous. Then A_R is projective.

THEOREM 4 (Vasconcelos [7, Prop. 1.4]): Assume A_R is projective and locally finitely generated, and that r_A is continuous. Then A_R is finitely generated.

Proof of Theorem 3. By Theorem 3 we may assume R is regular. A proof of Theorem 3 in this case may be found in [5], but we include one here for completeness. For each $k \ge 0$ let

$$U_k = \{P \in \operatorname{Spec}(R) | r_A(P) = k\}$$
.

By hypothesis the sets U_k are clopen, and we let e_k be the idempotent with support U_k . Then $A=A\,e_0\oplus\cdots\oplus A\,e_n$, and $r_{A\,e_k}$ is constant on Spec (Re_k) . Therefore we may assume r_A is constant on Spec (R), say $r_A(P)=n$ for all P. Given a prime P, choose $a_1,\cdots,a_n\in R$ such that $a_1(P),\cdots,a_n(P)$ span A_P . Then $a_1(Q),\cdots,a_n(Q)$ span R_Q for all Q in some neighborhood of P. (Here we need A_R finitely generated.) In this way we get a partition of Spec (R) into disjoint clopen sets V_1,\cdots,V_m together with elements $a_{ij}\in R$ such that $a_{ij}(P),\cdots,a_{nj}(P)$ span A_P for each $P\in V_j$. Let e_j be the idempotent with support V_j , and set $b_i=\Sigma_je_ja_{ij}$. Then, if P_R is free on u_1,\cdots,u_n , the map $P{\longrightarrow}A$ taking u_i to b_i is an isomorphism locally, and therefore globally.

Proof of Theorem 4. By Theorem 1 and the proof of Theorem 3 we can assume R is regular and $r_A(P) = n$ for all P. Write $A = \bigoplus \sum_{i \in I} Re_i, e_i^2 = e_i \neq 0$, by [4]. Given $P \in \operatorname{Spec}(R)$, since $(Re_i)_P$ is 0 if $e_i \in P$ and R_P if $e_i \notin P$, we see that there are precisely n indices i for which $e_i \notin P$. For each n-element subset $J \subseteq I$ let

$$U(J) = \{ P \in \operatorname{Spec}(R) | e_j \notin P \text{ for each } j \in J \}$$
.

These open sets cover Spec (R), so Spec $(R) = U(J_1) \cup \cdots \cup U(J_m)$. If $j \notin J_1 \cup \cdots \cup J_m$ then e_j is in every prime ideal, contradicting $e_j \neq 0$. Therefore $|I| \leq mn$, and A_R is finitely generated.

As a final application we give the following:

PROPOSITION 2. Let $0 \to A \to B \to C \to 0$ be an exact sequence of flat R-modules Assume A_R is finitely generated and $(B \otimes \hat{R})_{\hat{R}}$ is projective. Then A_R is projective.

Proof. Since C_R is flat, $0 \to A \otimes \hat{R} \to B \otimes \hat{R} \to C \otimes \hat{R} \to 0$ is

exact. Since \hat{R} is semihereditary $(A \otimes \hat{R})$ is R-projective. By Theorem 2, A_R is projective.

If B_R is projective this proposition contains no new information. (In fact, a trivial extension of Chase's Theorem shows that the sequence splits.) On the other hand, if we let M_R be projective, take $f \in R$, and let $B = M_f = \{[m/f^n]\}$, then B_R is not in general projective; but by the second corollary to Theorem 5 (next section), $B \otimes \hat{R}$ is \hat{R} -projective.

4. Epimorphisms. Suppose M is a multiplicative subset of R, and let $S = M^{-1}R$. Since $S \otimes \hat{R}_{\hat{P}} = S_P/PS_P$ for each prime P, we see that $S \otimes \hat{R}_{\hat{P}}$ is $\hat{R}_{\hat{P}}$ if $P \cap M = \emptyset$, and 0 if $P \cap M \neq \emptyset$. If we could show that $(S \otimes \hat{R})_{\hat{R}}$ is finitely generated, it would follow easily that $S \otimes \hat{R} = \hat{R}/K$, where K is the intersection of those primes \hat{P} for which $P \cap M = \emptyset$. We give an indirect proof of this fact in a more general setting.

Suppose R and S are commutative rings and that $\alpha\colon R\to S$ is an epimorphism in the category of rings. By a theorem of Silver [6] this is equivalent to the natural map $S\otimes S\to S$ being an isomorphism. It is known [8] that $R\to \hat{R}$ is an epimorphism, and it follows readily that the natural maps $f\colon S\to S\otimes \hat{R}$ and $g\colon R\to S\otimes \hat{R}$ are epimorphisms.

THEOREM 5. Let R and S be commutative rings and let $\alpha \colon R \to S$ be an epimorphism in the category of rings. Then there is a unique ring homomorphism $\beta \colon \hat{S} \to S \otimes \hat{R}$ making the following diagram commute:

Moreover, β is an isomorphism, and $\hat{\alpha}$ and g are surjections with kernel $K = \bigcap \{\hat{P} \mid S_P \neq PS_P\}$.

Proof. We first show that $S \otimes \hat{R}$ is regular. Suppose A and B are $(S \otimes \hat{R})$ -modules. Then by Silver's Theorem $B = S \otimes_{\mathbb{R}} B$, and by [2, p. 165] we have

$$A\otimes_{s\otimes \hat{\mathbb{R}}}B=A\otimes_{s\otimes \hat{\mathbb{R}}}(S\otimes_{\mathbb{R}}B)=(A\otimes_{s}S)\otimes_{\hat{\mathbb{R}}\otimes \mathbb{R}}B=A\otimes_{\hat{\mathbb{R}}}B$$
 .

It follows that tensor products over $S \otimes \widehat{R}$ are exact, and therefore

 $S \otimes \hat{R}$ is regular. Hence there is a unique map $\beta: \hat{S} \to S \otimes \hat{R}$ such that $\beta \varphi_S = f$, where $\varphi_S: S \to \hat{S}$ is the natural map. Consider the diagram:

Here γ is defined by the equations $\gamma f = \varphi_s$, $\gamma g = \hat{\alpha}$. Now $\gamma \beta \varphi_s = \gamma f = \varphi_s$ and $\beta \gamma f = \beta \varphi_s = f$. Since φ_s and f are both epimorphisms, we see that $\gamma = \beta^{-1}$. Also, $B\hat{\alpha} = B\gamma g = g$, as required. Uniqueness of β follows from the fact that $\hat{\alpha}$ is an epimorphism (since both α and φ_s are).

Next, we show $\widehat{\alpha}$ is onto. To simplify notation, we assume R is regular and $\alpha \colon R \to S$ is an epimorphism. Then $S \otimes S \overset{\mu}{\to} S$ is an isomorphism. But then $S_P \otimes_{R_P} S_P \to S_P$ is an isomorphism for each $P \in \operatorname{Spec}(R)$. If $s \in S_P$ then $1 \otimes s - s \otimes 1 \in \ker$ $\mu_P = 0$. It follows that the dimension of S_P as a vector space over R_P is either 0 or 1. Therefore α_P is surjective for each P, $(\alpha(1) = 1)$, and we conclude that α is surjective.

Finally, we compute ker g = K. If $P \in \text{Spec}(\hat{R})$, then

$$K \subseteq \hat{P} \longleftrightarrow K_{\hat{P}} = 0 \longleftrightarrow \hat{S}_{\hat{P}}
eq 0 \longleftrightarrow S \otimes \hat{R}_{\hat{P}}
eq 0 \longleftrightarrow S_{\scriptscriptstyle P}/PS_{\scriptscriptstyle P}
eq 0$$
 .

COROLLARY 1. Let M be a multiplicative subset of R and let $S = M^{-1}R$. Then $S \otimes \hat{R}$ is a cyclic \hat{R} -module, and $S \otimes \hat{R}$ is \hat{R} -projective if and only if $\{\hat{P} \mid M \cap P \neq \emptyset\}$ is closed in Spec (\hat{R}) .

Proof. Let K be as in Theorem 5. Then $S \otimes \widehat{R} = \widehat{R}/K$ is \widehat{R} -projective if and only if K is a principal ideal, that is, if and only if the set of primes containing K is open in Spec (\widehat{R}) . But

$$\hat{P} \supseteq K \longleftrightarrow PS_P
eq S_P \longleftrightarrow M \cap P = \varnothing$$
 .

The next corollary shows that Theorem 2 is false if A_R is not assumed to be finitely generated.

COROLLARY 2. For each $f \in R$, $R_f \otimes \hat{R}$ is \hat{R} -projective.

Proof. Set $M = \{f^n : n \ge 0\}$. Then $P \cap M \ne \emptyset$ if and only if $\mathcal{P}(f) \in \hat{P}$. Thus K is the principal ideal of \hat{R} generated by $\mathcal{P}(f)$, and \hat{R}/K is \hat{R} -projective.

REFERENCES

- 1. N. Bourbaki, Eléments de mathématique. Algèbre commutative, Chapter II, Hermann, Paris, 1961.
- 2. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, 1956.
- 3. S. U. Chase, "Direct products of modules", Trans. Amer. Math. Soc., 97 (1960), 457-473.
- 4. I. Kaplansky, Projective modules, Ann. of Math., 68 (1958), 372-377.
- 5. R. S. Pierce, Modules over commutative regular rings, Memoirs Amer. Math. Soc., 70 (1967).
- L. Silver, Non-commutative localizations and applications, J. Algebra, 7 (1967), 44-76.
- 7. W. Vasconcelos, On projective modules of finite rank, Proc. Amer. Math. Soc., 22, No. 2 (1969), 430-433.
- 8. R. Wiegand, Modules over universal regular rings, (to appear in the Pacific J. Math.).

Received March 19, 1971. This research was partially supported by NSF Grant GP-19102.

University of Wisconsin