A DUALITY BETWEEN TRANSPOTENCE ELEMENTS AND MASSEY PRODUCTS

BYRON DRACHMAN AND DAVID KRAINES

The purpose of this note is to show that if v is an element whose suspension is nonzero, and if u is dual to v, then the transpotence $\varphi_k(v)$ is defined and nonzero if and only if the k-Massey product $\langle u \rangle^k$ is defined and nonzero.

We wish to thank Dr. Samuel Gitler for a helpful conversation on this material.

1. Preliminaries.

1.1. The Cobar Construction: (Adams [1]). Let C be a simply connected DGA coalgebra over K with co-associative diagonal map where K is a commutative ring with unit. The Cobar Construction $\overline{F}(C)$ is the direct sum of the n-fold tensor products of the desuspension of $\overline{C} = \operatorname{Ker}(\varepsilon)$ where $\varepsilon \colon C \to K$ is the augmentation. Suppose C has a differential $\{d_n \colon C_n \to C_{n-1}\}$. A typical element is a linear combination of elements of the form

$$x = s^{-1}(c_1) \otimes \cdots \otimes s^{-1}(c_n) = [c_1 \mid \cdots \mid c_n]$$

where x has bidegree (-n, m) and $m = \sum_{i=1}^{n} \text{degree } (c_i)$. The differential in $\overline{F}(C)$ is defined on elements of bidegree (-1, *) by

$$d[c] = [-dc] + \sum\limits_{\cdot} (-1)^{\deg c_i \prime} [c_i \prime \mid c_i \prime \prime]$$

where

$$arDelta(c) = c igotimes 1 + 1 igotimes c + \sum_i c_i' igotimes c_i''$$

 $\Delta\colon C\to C\otimes C$ being the diagonal mapping of C. The differential is extended to all of $\bar F(C)$ by the requirement that $\bar F(C)$ be a DGA-algebra.

If C has a differential of degree +1 instead of -1, we no longer ask that C be a simply connected but only connected, and the element $[c_1 \mid \cdots \mid c_n]$ is assigned bidegree (n, m).

1.2. The Bar Construction. Let A be a connected associative DGA algebra over K. Let $\varepsilon \colon A \to K$ be the augmentation. Let $\overline{A} = \ker \varepsilon$. Then the Bar Construction $\overline{B}(A)$ is the direct sum of the n-fold tensor products of the suspension of \overline{A} . Let

$$\{d_n: A_n \to A_{n-1}\}$$

be the differential in A. $\bar{B}(A)$ is bigraded by assigning the element $[a_1 | \cdots | a_n]$ degree (n, m) where $m = \sum_{i=1}^n \deg a_i$. $\bar{B}(A)$ has a differential $d = d_E + d_I$ where

$$d_{E}([a_{1} | \cdots | a_{n}]) = \sum_{i=1}^{n-1} (-1)^{u(i)} [a_{1} | \cdots | a_{i} a_{i+1} | \cdots | a_{n}]$$

$$d_{I}([a_{1} | \cdots | a_{n}]) = \sum_{i=1}^{n} (-1)^{u(i-1)} [a_{1} | \cdots | \partial a_{i} | \cdots | a_{n}]$$

where

$$u(i) = i + \sum_{k=1}^{i} \deg a_k$$
.

We also mention that $[a \mid \cdots \mid k] \mapsto \gamma_k[a]$, the kth divided power of [a].

If instead of the above the differential of A has degree +1, we put the bidegree of $[a_1 | \cdots | a_n]$ to be (-n, m). In this case we will always assume A is simply connected.

1.3. The Suspension Map. In the case of the Bar Construction the suspension map $\sigma \colon H_*(A) \to H_*(\bar{B}(A))$ is represented by $a \to [a]$. In the case of the Cobar Construction, $\sigma \colon H_*(PA) \to H_*(\bar{F}(A))$ is represented by $a \to [a]$ where PA is the subcomplex of primitive chains.

DEFINITION 1. The Massey Product $\langle u \rangle^k$. (Kraines [6]).

Let A be a DGA algebra over K. Suppose a_1, \dots, a_{k-1} are given in A such that a_1 is a cycle (or cocycle) and that

$$\partial a_n = \sum_{r=1}^{n-1} (-1)^{\deg a_r} \ a_r a_{n-r} \ ext{for} \ n=2, \cdots, k-1$$
 .

Suppose u is represented by a_1 . Then the Massey Product $\langle u \rangle^k$ is represented by the cycle

$$\sum_{r=1}^{k-1} (-1)^{\deg a_r} a_r \cdot a_{k-r}$$

THEOREM 1. (Kraines, [6]). The operation $\langle u \rangle^k$ depends only on the class $\{a_i\} \in H(A)$.

DEFINITION 2. (Gitler, [5]). Suppose that A is an associative DGA algebra. Suppose $x \in H(A)$ is such that $v^k = 0$. The transpotence $\varphi_k(v) \in H(\bar{B}(A))_{/Im\sigma}$ is defined as follows: If $b \in A$ represents v then there exists $M \in A$ such that $\partial M = -b^k$. $\varphi_k(v)$ is represented by

$$(-1)^w[b^{k-1} \mid b] + [M]$$
 where $w = (1)^{\deg b^{k-1}} + 1$.

2. Main Theorem.

THEOREM 2. Let C be a co-associative DGA coalgebra over K and let A be the dual associative DGA algebra over K. Suppose H(A; K) and $H(\bar{B}(A); K)$ are free and of finite type over K. Let v in H(A) and v in $H(\bar{F}(C); K)$ be such that the Kronecker index $\langle \sigma(v), u \rangle$ is 1. Then $\varphi_k(v)$ is defined and is not zero in $H(\bar{B}(A); K)$ if and only if $\langle u \rangle^k$ is defined and not zero in $H(\bar{F}(C); K)$. In this case

$$\langle \varphi_k(v), \langle u \rangle^k \rangle = 1$$
.

In order to prove this theorem we shall consider the Eilenberg-Moore Spectral Sequences with

 $E^{\scriptscriptstyle 2}=\operatorname{Cotor}^{\scriptscriptstyle H(\overline{B}(A)\,;\,K)}(K,\,K)$

 $E^r \Rightarrow E^{\circ} H(\bar{F}(\bar{B}(A)); K) \approx H(A; K)$ as algebras, and dually,

 $(E')^2 = \operatorname{Tor}^{H(\overline{F}(C);K)}(K,K)$

 $(E')^r \Rightarrow E^\circ H(B(\bar{F}(\bar{C}); K) \approx H(C; K)$ as coalgebras.

We also note that the Kronecker Index $\langle , \rangle : C \otimes A \to K$ induces a pairing

$$\langle , \rangle : \bar{F}(C) \otimes \bar{B}(A) \to K$$

LEMMA 1. Let $b \in A$ represent $v \in H(A)$. Suppose $v^k = 0$. Then

$$d_k[\varphi_k(v)] = [\sigma b]^k \ in \ E^k$$
.

Proof. Let

$$V = \sum\limits_{i=1}^{k-1} P(i) \; [[b^i \, | \, b]] \; ([[b]])^{k-i-1} \; ext{where} \; P(i) = (-1)^{\deg \, b^i + 1}$$

and the outside bars refer to the Cobar Construction and the inside bars refer to the Bar Construction.

Taking ∂V gives a telescoping series and so

$$\partial V = [\sigma b]^k + (-1)^w [\sigma(b^k)].$$
 Here $(-1)^w = P(k-1)$.

In $E^{\scriptscriptstyle 1}$, V represents the class $(-1)^w[[b^{\scriptscriptstyle k-1}\,|\,b]] + [[M]] = [\varphi_{\scriptscriptstyle k}(v)]$.

The Lemma follows from the definition of a spectral sequence of a bi complex.

Lemma 2. Let $a \in \overline{F}(C)$ represent u. Then, by definition,

$$\gamma_k[a] = [a \mid \cdots \mid k) \cdots \mid a] \in \bar{B}(\bar{F}(C))$$
 .

If $\gamma_k[a]$ lives to E^{k-1} then $\langle u \rangle^k$ is defined and

$$d_k(\gamma_k[a]) = \langle u \rangle^k \ in \ (E')^k$$
.

Proof. We first make an observation: Suppose $\langle u \rangle^t$ is defined. Let (a_i) be a defining system for $\langle u \rangle^t$. Let

$$W = \sum_{r=2}^{t} \sum_{i_1 + \dots + i_r = t} [a_{i_1} | \dots | a_{i_r}] \in \bar{B}(\bar{F}(C))$$
 .

Then

$$\partial W = \sum_{i=1}^{t-1} (-1)^{\deg a_i + 1} [a_i a_{t-i}]$$
 .

Now to prove Lemma 2, we use induction on k. Suppose the lemma is true for k-1. Suppose $\gamma_k[a]$ lives to E_{k-1} . Since E is a spectral sequence of DGA coalgebras, and $d_{k-1}(\gamma_k[a]) = 0$, we have

$$egin{aligned} arDelta\,d_{k-1}\gamma_k[a] &= d_{k-1}^{\otimes}\,arDelta\,\gamma_k[a] &= d_{k-1}^{\otimes}\sum_{i=0}^k\gamma_i[a] \otimes \gamma_{k-i}[a] &= 0 \end{aligned}$$

where d^{\otimes} is the differential in $E' \otimes E'$. That is, in particular when i = k - 1 in the above, we see

$$d_{k-1}\gamma_{k-1}[a] \otimes [a] = 0$$
 so $d_{k-1} \gamma_{k-1}[a] = 0$.

Now by inductive hypothesis, $\langle u \rangle^{k-1}$ is defined so there is a defining system (a_1, \dots, a_{k-1}) for $\langle u \rangle^{k-1}$ and a cochain a_k such that

$$\delta a_k = \sum_{i=2}^{k-2} (-1)^{\deg a_{i-1}} a_{i-1} a_{k-i}$$

since $\langle u \rangle^{k-1} = d_{k-1} \gamma_{k-1}[a] = 0$.

The observation at the beginning of this lemma shows that

$$d_{\nu}\gamma_{\nu}[a] = \langle u \rangle^{k}$$
.

We now give the proof of Theorem 2:

Assume $\varphi_k(v)$ is defined and nonzero. We are assuming $= 1 = \langle \sigma v, u \rangle$. Hence

$$1 = \langle \sigma v, u \rangle = \langle \sigma b, a \rangle = \langle [\sigma b]^k, \gamma_k[a] \rangle = \langle d_k \varphi_k(v), \gamma_k[a] \rangle$$
$$= \langle \varphi_k(v), d_k \gamma_k[a] \rangle = \langle \varphi_k(v), \langle u \rangle^k \rangle$$

by the duality of the two spectral sequences and Lemma 2.

It remains to be shown that if $\langle u \rangle^k$ is defined and nonzero, then so is $\varphi_k(v)$. Consider the map

$$A \rightarrow \bar{F}(\bar{B}(A))$$
 defined by

 $b \rightarrow [[b]]$.

This map is homotopy multiplicative (in fact is a SHM map) and is an equivalence. Hence $[b^k]$ differs from $[\sigma b]^k$ by a boundary. But $[\sigma b]^k = [\sigma b \mid \cdots \mid (k) \mid \cdots \mid \sigma b]$ is dual to $\gamma_k[a] = [a \mid \cdots \mid (k) \mid \cdots \mid a]$ in $\bar{B}\bar{F}(C)$, and so $d_k \gamma_k[a] = \langle u \rangle^k$ is not zero in E^k (Lemma 2) and so does not survive to E^{∞} , i.e., represents 0 in E^{∞} . The dual element $[\sigma b]^k$ represents 0 in E^{∞} , i.e., $[[b^k]] \sim [\sigma b]^k \sim 0$. Therefore $b^k \sim 0$ and so $\varphi_k(v)$ is defined.

We wish to mention two applications:

Al: Let $K=Z_p$ and let X be a $K(\pi,n)$ space (p an odd prime). Let $C=C^*(X;Z_p)$ and $A=C_*(X;Z_p)$ be cochain and chain complexes for X of finite type. In the notation of Cartain, $A=A_*(\pi,n;Z_p)$ ([2]). Cartan proved that $\langle \varphi_p(v), \beta P^m(u) \rangle = \langle \sigma v, u \rangle$. Now by Theorem 2, if

$$\langle \sigma v, u \rangle = 1$$

then $\langle \varphi_p(v), \langle u \rangle^p \rangle = 1$. Hence $\langle \varphi_p(v), \beta P^m u + \langle u \rangle^p \rangle = 0$. By Lemma 18 ([5]), $\langle u \rangle^p = c\beta P^m u$. This gives an easy proof of the fact that c = -1. (Compare Theorem 19 [5]).

A2: Now let $x=CP^{k-1}$. Then in $H^*(CP^{k-1};Z)=P(v)_{/(v^k)}$ we have $v^k=0$. Then $\varphi_k(v)$ is defined in $H^*(\Omega CP^{k-1};Z)$ and by the Theorem 2, so is $\langle u \rangle^k$ in $H_{3k-2}(\Omega CP^{k-1};Z)$ where $u \in H_2(\Omega CP^{k-1},Z)$ and $\langle \varphi(v), \langle u \rangle^k \rangle = 1$. This gives another proof of the results of Stasheff ([7]).

REFERENCES

- J. F. Adams, On the Cobar Construction, Colloquie de Topologie Algébraique, Louvain 1955.
- 2. H. Cartan et al, Alqébres d'Eilenberg-MacLane et homotopie, Séminaire Henri Cartan, 1954-55. Secrétariat mathématique, Paris, 1956.
- 3. A. Clark, Homotopy commutativity and the Moore spectral Sequence, Pacific J. Math., 15 (1965), 65-74.
- 4. B. Drachman, A Diagonal Map for the Cobar Construction Boletín de la Sociedad Matemática Mexicana, 1967.
- 5. S. Gitler, Espacios Fibrados por H-Espacios. Boletin de la Sociedad Matemática Mexicana, 1963.
- D. Kraines, Massey higher products. Trans. Amer. Math. Soc., 124 no. 3, (1966). 431-449.
- 7. J. Stasheff, Homotopy associativity of H-spaces II. Trans. Amer. Math. Soc., 108 no. 2. (1963). 293-312.

Received September 28, 1970.

MICHIGAN STATE UNIVERSITY AND

AARHUS UNIVERSITY