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ON SATURATED REDUCED PRODUCTS

MlROSLAV BENDA

The first part of this paper characterizes the filters whose
reduced products are saturated with respect to quantifier free
formulas. It is shown that filters with this property are
exactly good filters whose Boolean algebra is compact. In
the second part we investigate their set-theoretical properties
and prove that such filters exist.

This paper contains a proof of the result announced in [1] as well
as a number of results directly connected with this theorem.

The problem is to characterize those filters which have the pro-
perty that products reduced by these filters are /^-saturated. The
special case of the problem in which we talk about ultrafilters only
was completely solved by Keisler in [6]. The above problem was first
attacked by F. Galvin and also by Ph. Olin and B. Jόnsson (see [5]).
They showed that the filter of cofinite subsets over ω is αvsatura-
tive. Galvin's results were a little more general. In [11], L. Pacholski
and C. Ryll-Nardzewski described those atomless filters which were ωr

saturative The author of this article then obtained a characterization
of (Φo, £)-saturative filters for any tc. S. Shelah after reading a sketch
of this article, obtained, using a different method (see [3]), a charac-
terization of /c-saturative filters, thus solving the problem. (For tc =
α>, it was independently solved also by L. Pacholski.)

The first part of this paper deals with (Φo, /r)-saturatedness of
reduced products. It is believed that theorems proved here have some
applications to algebra. In possible applications the notion (Φo, >c)-satu-
ratedness seems, better suited than the full saturatedness ([10]) because
e.g., a solution of a system of equations is expressible by quantifier-
free formulas. In the second part we deal with products of different
kind of filters and we apply these results to get an existence theorem
for excellent filters. The third part is devoted to discussion and open
problems.

Our notation is standard, λ, tc stand always for cardinals. 0 is
the empty set as well as the least element in Boolean algebras. Sω(X)
is the set of finite subsets of X. If / is a function from X into Y
we write it sometimes as / : X-> Y. If Z £ X then f*(Z) = {f(z) \ z e
Z) and / 1 Z is the function / restricted to Z. A subset X of a Boolean
algebra is said to have the finite intersection property if for any
Xi, , #» e X Xί Π (Ί xn Φ 0. We write it often as FIP(X). D usu-
ally stands for a filter over the set I = (J D. The ideal {x £ I\ I — x e D)
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is denoted by J. D is called σ-incomplete if there is a sequence
{Xn\n < ω) s D such that f\n>ωX% = 0. D is /r-good if it is <7-in-
complete and if for every / : Sω(X) —> D, f decreasing (i.e., if s S sf then
f(s') £ /(s)) there is a #: Sω(λ) —> D, g multiplicative (i.e., g(s [j s') =
Q(s) Γig(s')) and #(s) S f(s) for each se>Sω(λ). If D is a filter over I
we can form the Boolean algebra S(I)/D. Its elements are the sets
[x]D = {y\x — yeJ}. [x]D is often written as [x]. L is a fixed language.
If c is a set of constants then L(c) is the language L expanded by c.
Structures are denoted by Gothic letters and their universes by cor-
respoding Latin capitals. Thus the universe of 2t2 is A2. If Ψ is a
formula of L then an instance of ψ is any formula obtained from φ
by replacing some of its free variables by constants from L If Φ £ L
and c is a set of constants then Φ(c) is the set of all instances of the
formulas from Φ in the language L(c). If Φ £Ξ L we say that a struc-
ture 21 is (Φ, /c)-saturated if for any c and any set of formulas Σ £ Φ(c)
such that \Σ\ < ιc9 if φeΣ then <£> has only v as a free variable and
Σ is finitely satisfiable in (2C, ca) we can find an aeA which satisfies
all the formulas in Σ. Of course (L, £+)-saturatedness coincide with
the usual Λ:+-saturatedness. The reduced product of the sequence
<%\iel> of structures of the same similarity type (only such
products we consider) is denoted by Π%/D. Φo is the set of quantifier-
free formulas of L.

I* In this section we define some notions and prove a couple of
lemmas which will be useful later.

DEFINITION. A Boolean algebra & is said to be /r-compact if for
any X S B such that FIP(x) and | X\ < K there is a b e B, b Φ 0 and
6 5g x f or any α? e X.

LEMMA 1. Let & be a /c-compact Boolean algebra, let λ < tc and
let {xa I a < λ} S JB — {0} 6β α seί o/ atomless elements. Then there is
{Va I <* < M S 5 — {0} sucfe ί te ί τ/α ^ #α αncϊ #β Π ̂  = 0 for any a, β <

Proo/. Using Zorn's lemma we find sets Zζ for ξ < δ such that:
( i ) ^ f S f e | α < λ }
(ii) ^ is a maximal family Z such that FIP(Z) and Z £ {xa\a <

(in) Uf<^f =

By /ύ-compactness, for each ξ < 5 there is a cf ^ 0 such that ĉ  ̂  x
for each a eZf. Clearly, (by (ii)) cξ Π c5, = 0 if ξ Φ £'• Moreover cjs
are atomless. So it suffices to show that if x e B is an atomless ele-
ment, x Φ 0 and λ < K then there is {za \ a < λ} £ J5 — {0} such that



ON SATURATED REDUCED PRODUCTS 559

za <S x and za Π zβ = 0 for each a, β < λ, a Φ β. To show this we de-
fine, by induction, the sequence zr:

Let ZQ = a?. Let us assume that z' has been defined for ξ < β. If
/S = βf + 1 let Zβ be a nonzero element which is strictly smaller than
z'β,. If β is limit then by /^-compactness of & and by atomlessness
of x we can find z'β so that z'β Φ 0 and s£ < s£ for ξ < β. Having the
sequence z we define za to be JS£ — z'a+ι for α < λ. Evidently, the
sequence {za \ a < λ} has the desired properties.

LEMMA 2. Lei r : X —>Sω(X) and let R be a function on Sω{X)
with the properties that R(s) Φ 0 and R(s) S Πxesr(x) for every s e Sω(X).
If, in addition, R satisfies the condition (*),

(*) whenever s £ s ' and f e R(s') then f\s e R(s)

then there is an f e ΠxeXr(x) such that f\seR(s) for each seSω(X).

Proof. We consider Πxexr(x) as a usual topogical product of dis-
creet spaces r(x). It is a compact space by Tychonov's theorem. Let
Fs = {fe Πxez r(x)\ f\se R(s)}. Fs is closed for each s e Sω(X). The

set {Fs I s G Sω{X)} has the finite intersection property as follows from (*),
so Πsesω(χ) Fs Φ 0. Any / e f\s F* will satisfy the lemma.

DEFINITION. A structure ^ = < T, ^ > is called an upper
lattice if ^ is a partial ordering of T and the lowest upper bound of
{x, y} exists for any x, yeT; we denote it by x V y

A filter D is ^"-good if it is σ-incomplete and for any f:T-+D
which is ^-decreasing (i.e. if x ^ y then f(y) g f(x)) there is a g: T—> D
such that g(x V y) = g{%) Π g{y) and flr(α?) S f(x) for every x, y e T.

A filter Z) is said to be /r-separable if for any λ < tc and for any
{xa I α < λ} £ S(J) — / such that α?α Π ίfy e J whenever a Φ β there is
{l/β I« < M S S(/) — J such that ^α £ xa and i/α Π ̂  = 0 for any a, β <
λ, α ^ /3.

REMARKS. (1) A filter is /ε-good in the usual meaning if it is
< Sω(X), £ >-good for any λ</r.

(2) Every filter is αvseparable.

The following lemma can be proved analogously to Theorem 3.2
in [7]. Just replace £ by ^ in that proof.

LEMMA 3. // D is ic-good and \ T\ ^ it then D is < T, ^ >-good.

LEMMA 4. If D is κ-good filter then D is tc-separable.

Proof. Let {xa | a < λ} £ S(I) — J has the property xa Π Xβ e J if
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CίΦ β.

Let

f(s) = I - u {xa Π xβ I α, β e s and α: =£ /S}

for s G Sω(λ). Then / : Sω(λ) —> D so, by ^-goodness, there is a #: Sω(λ) —>
D which is multiplicative and g(s) S f(s) for seS ω (λ). Let #α =
*α Π #({<*}) for a < λ. It is clear that ya&J for a < λ. Now, if
then

ik n ifo = α?α n a?, n # ( M ) n £({£}) - χa n ^ n

Since sr({α:, /?}) £ ({a, β}) = I — χaf] χβ we see t h a t yaΓiVβ = 0.

DEFINITION. A set K £ S(X) is called /r-compact if for any Z £
JΓ, |Z| < A: and F/P(Z) we have n ^ ^ O . If if £ S(X) then Cl(K)
will be the smallest set L £ S(X) such that KS L and whenever
x, yeL then a? Π 2/ and a? Π 2/ belong to L (i.e , L is closed under U
and Π). The following lemma is well known so the proof of it is
omitted.

LEMMA 5. Let K £ S(X). K is fc-compact iffCl(K) is it-compact.

As it was said in the introduction we will be concerned with
(Φ, /s;)-saturatedness of reduced products. It is easily seen from defi-
nitions that a structure 21 is (Φo, £)-saturated iff the set SPφ) of
all subsets of A which are definable (using parameters) by quantifier-
free formulas is yc-compact. The set ^(§1) is the closure under U and
Π of the set ^Ό(2t)> where ^Ό(SI) are subsets of A definable by atomic
formulas or their negations. Thus, in view of Lemma 5, to show that
a structure SI is (Φo, /c)-saturated it is enough to show that Sί^S) is
/r-compact.

If we analyze the definition of reduced products we see that every
member of &0(Π%/D) can be expressed in one of the following two
forms:

(1) {f/D I {i I f(i) e B,} ί J) where B, £ A, for i e I
(2) {f/D I {i I f(i) e CJ G J} where C{ £ A, for i e I.
(Sets of the form (1) are defined by formulas R(vQ, •••), sets of

t h e second kind by formulas —r R(v0, •••))• Since sets of the form (1)
((2)) are determined completely by t h e sequence B = {Bi \ i e I}(C =
{Ci\iel}) we will refer to them as QB(RC), i.e., QB = {f/D\{i\f(i)e

2. DEFINITION. A filter D over / is called /c-excellent if it is
/c-good and if the Boolean algebra S(I)/D is /r-compact.
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The question of existence of such filters will be discussed in a
latter section. We are now ready to prove the main theorem.

THEOREM 1. A filter D is it-excellent iff for every sequence
< 2tΐ I ί e I > of structures (of the same type) the reduced product
Π%/D is (Φo, fή-saturated.

Proof. Let us assume that D is a Λ>excellent filter over I and
<2ti I i e I > is a sequence of structures. Let X < K and let JSf ,Cf £ Ai
for every iel and a < λ. Moreover we assume that the set K =
{QB« I oί < λ} U {#C7« I α < λ} has finite intersection property. It follows
from the discussion of the last section that to prove /c-saturatedness
of Π$tJD it is enough to show that Π K Φ 0 (K has been chosen
arbitrarily). Let us define

for s e Sω(X) and a < λ. Because FIP(K) we get that Fa(s) $ J for
every seSω(X) and α < λ . Note that F α is an increasing function for
every a < λ. Let ^ = S(I)/D and let F α be the set of all atoms of
& which are contained in [Fa(s)] for every seSω(X) (if I g ί then
[X] denoted the corresponding element in the Boolean algebra S(I)/D).
We now define Xo, Xlf X2 £ λ as follows:
aeXQ iff I Γ β | < ω and [Fα(s)] = U Γα for some seS ω (λ)
a e X x iff \Ya\ ^ Λ:
α e l 2 iff there is an atomless b Φ 0 such that 6 ^ [i^ίs)] for every
s e Sω(X) and α $ Xo U -XΊ

We want to show that Xo U Xi U X2 = λ. Let α 6 λ — (Xo lj -2Q and
let {a,ς\ξ <v] be an enumeration of Ya. If v < ω then {[Fα(s)] —
Ue<>α*Is £&»(*.)} has the finite intersection property hence we can find
a b Φ 0, b ^ [i^(s)J — U?<^ί for every se£ ω (λ) . Since δ must be
atomless we get that a e X2* Since a$ Xx we must have ω <Lv < ic.
But then {[Fa(s)] — aξ\ζ < v, s e Sω(λ)} has the finite intersection proper-
ty and similarly as above we get a e X2

If aeX0 let ta e Sω(X) be an element for which [FΆ{Q] ^ [Fa(s)]
holds for every seSω(X), and let [of], •••, [α2β-J be the list of atoms
included in [Fa(ta)]. We can choose α?(£ 7) in such a way that

(1) [α?J = [a1-] implies a? = a] .

Because | Xγ \ ̂  X < /c and | F α | ^ A: we can find a sequence < ba \ a e Xx >
of subsets of 7, satisfying:

(2) [ba]eYa

(3) [ba] Φ [bβ] i f a Φ β
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(4) [ba] is distinct from [aξ]

for every β e Xo and i < nβ .

If a G X2 we let ca £ I be such that [cα] is non-zero and atomless
and for which [ca] ^ [Fa(s)] holds for every s e Sω(X). Using Lemma
1 we can assume that {[ca] \ae X2} is a set of mutually disjoint (in &)
elements. This assumption and (1)—(4) enable us to use Lemma 4,
which tells us that we could have chosen a", ba, ca in such a way that
the set X — {a"\ae Xo and i < na}\J {ba\ae XJ U {ca\oce X2} is a set of
mutually disjoint subsets of I. Let {aξ\ξ < μ] be an enumeration (with-
out repetitions) of X. Let Zk = {ξ\aξe Xk} for k < 3. Clearly ϋΓ*Π^ =
0 if i Φ j and Z0[J Z.U Z2 = μ.

For any α: e Xo we can find an r e Sω(Z0) so that {Fa(ta)] = \Jξer [αj
We denote such an r by τ(a). Use Sω(X0) and t e Sω(λ) we let P(s, ί)
to be the set of all / e ΠAi such that:

(i) {i\f(i) e B?} £ J for aes
(ii) {iI/(i) e Cf} e J for a e t u U ^ s tβ .

Because FIP(K) holds we have P(s, ί) ^ 0 for seSω(X0), teSω(X). If
/ e P ( s , ί) and α e s let /(α) = /3 iff β is the first ξ for which {i| f(i) e
Bi}Γιaζ£j. It follows from the way we defined ta's that feΠaesr(ά).
Let i2(s, ί) = {f\fe P(s, t)}. If t S ί' then P(s, ίf) £ P(β, ί) so #(s, ίf) £
i2(s, t). Thus R(s) = Πίe^ω(;)i?(s, ί) is nonempty since Πaesr(a) is a
finite set. The function R satisfies the condition (*) of Lemma 2 (with
X, Y replaced by Xo, ^ 0 resp.). Namely, if s £ s' and f eR(s') then
for any ί e Sω(λ) there is a 5f e P(s', t) such that g — f) but such a #
is a member of P(s, £) as well as f\s~ g\seR(s, t). Lemma 2 gives
us a function ge Πa&Xς)τ(a) with the property that g\seR(s) for s e
Sω(X0). Let ί7α = ^Ή^) a n d let ^ b e a mapping from λ onto Ua. We
may assume without loss of generality that Ua Φ 0 for ae Zo. For
s, ί G Sω(λ) and α G ^ 0 we define:

(5) Ha(s, t) = aaΠ{i\ Cite* Bl^ - U^* Cξ Φ 0}

We want to show that Ha(s, t) $ J. Firstly, if u = {ha(ξ) \ξeUa} then
g*(u) = {a}. Since g\ue R(u) £ iί(w, ί U U«e« *«) there is an / G P(U, tU
U « e % t a ) s u c h t h a t / = g | w . H e n c e { i | f ( i ) e Bhi<*{ξ)} f ) a a $ J f o r ξ e s a n d
{i\f(ϊ) G Ĉ } G J for each /S G t U U«eW ί«. The fact that [aa] is an atom
in & implies that {i\f(ί) e f\ξes Bhi°{ξ)} f)aa$J. It is now obvious that
Ha(8, t) $ J.

lί aeZx\J Z2 (we let Ua be {α} and ha be the mapping from λ onto
{α:}. fζr(s, ί) for aeZ1\j Z2i& defined then also by formula (5). Because
ha(ξ) — a f o r a e Zλ u Z2 w e g e t Ha(s, t)$J i m m e d i a t e l y .

Let a = I— \Ja<μaa and let {Xn\n< ω j g ΰ b e such that ΓL<α>X* =
0. Let
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H(r, 8, t) = (α U U / ^ - , ap U U ^ r Hβ(s, t)) Π X|ru*u*ι

for < r, s, ί > eT = Sω(v) x Sω(λ) x Sω(X). Then < T, ̂  >, where ^
is the direct product of the three inclusions, is an upper lattice, so,
by Lemma 3, D is < T, ̂  >-good. Because H maps T into D and
iJ is ^-decreasing there is a G: T-* D such that G(r, s, t) S £Γ(r, s, ί)
and G(r U r', s U sf, ί U V) = G(r, s, t) Π G(rf, s', ί') L e *

da = aaΠ G({a}, {a}, {a}).

Then

G({α}, s, ί) n da = aa Π G({α}, s u {α}, ί U {a})

S αβ Π £Γ({α}f s U {̂ }, ί U {̂ })

- aa ΓΊ (α U U^β^ { α } aβ U ί/«(s U {^}, ί U {^})

- Gα(s U {α}, ί U {α}) s iία(s, ί) .

Thus

(6) G({α}, β, t) Π da £ Ha(s, t) .

We have that daf)dβ = 0 it a Φ β so if i e \Ja<μ da we let α4 to be
that α for which i 6 da. Let Γ(i) = {<α, / 3 > G λ x λ | ΐ e G({a<}, {«}, {/9}}
for i € U«<k I Γ ^ I < ω because G(r, s, ί) S X l r u s U ί, and ΐ e G({α<}, Vi, W4)
where Vi = Dom Γ(i) and TF̂  = RgT(i) (this is due to multiplicativity
of <?). The last statement is true for every i e \Ja da. It follows from
(6) that ieHa.(Vi9 W{). A function / ' then can be defined on \Jada

satisfying

/ ' is a piece of a function / which will belong to Π« Qβ« Π Π« -β<7«
We check that this piece has the right properties. Let 7 < λ. Hence
there are a and β such that r = λ«(/8). Then

(7) {i I (3ί)[i G G({α}, {/9}, ί)]} Π dβ S {< I

and

(8) {i I /'(ί) € Cί) Γ\\Jada^I-Vs Ua<μ G({a}, 8, {β}) .

Because the left hand side of (7) does not belong to J it is clear
that no matter how we extend / ' to a function from ΠAi the
result will belong to Π« Q^ The right side of (8) belongs to /.
Hence if we extend / ' to / in such a way that {ie I — \Jada\ f(i) e
C!}eJ for β < λ we are done (/ is closed under U). To do this we
define

F(S) = (I- [i\\Jaes C? - A<}) Π Xlsl
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for s e Sω(X). Because FIP(K) we have that F: Sω(X) -+ D. By /r-good-
ness of D there is a multiplicative function G: Sω(X) —• D such that
G(s) £ F(s) for each β e Sω(X). Let ί(£) = {<* | i e ({α})}. Then i e G(t(i)) £
F(ί(i)) hence we can define / " on I - [Ja da such that /"(i) e Λ -
U«β«(« Cf. Consequently, {i $ U« d« I /"(Ό € C?} £ I - G({α}) e J for every
α < λ. As we have explained before / = / ' U / " is a function be-
loging to f|α QB« Π Π« •#<?«•

For the other direction we assume that every direct product reduced
by D is (Φo, /c)-saturated. In particular 2*/D (2 being the 2-element
Boolean algebra) is (Φo, ^-saturated. Realizing that 2Σ/D = S(I)JD
and that (Φo, Λ:)-saturatedness of a Boolean algebra is a stronger pro-
perty than /e-eompactness we get that S(I)/D is /c-compact.

To prove that D must be /c-good we take a λ < Λ: and a function
/:Sω(λ)->D, f decreasing. Let Ai = {s\ie f(s)}and let Ui=<AiJS>.
If 8 e Sω(X) then f(s) e D so there is a function s 6 ΠAi such that
{i I s(i) = s}eD. Let 21 = {cs £ 0̂1 s e Sω(λ)}. This is a set of quantifier
free formulas of the language L(c). Interpreting the constant c8 in
Π%ID by s/D we get that Σ is finitely satisfiable in IHBLJD; using
our assumption we can find an he ΠAi which satisfies Σ, i.e., {i\s(ϊ) £
h(ί)}eD for each seSω(X). Let flr(s) = {i|s £ h(i)}. It is easily seen
that g: Sω(X) —• J5 r̂(s) £ /(s) for s e Sω(X) and ̂  is multiplicative.

To prove ^-incompleteness oΐ D we let Pn = {m < ω\m ̂  n) for,
n < o) and 3t* = < ω, Pn >n<ω. Then 21 = {Pn(v0) \ n < ω} £ Φo is finitely
satisfiable in 2tz/A hence there is an / : I—> ω such that {ΐ | f(i) e Pn} e D
for every n < ω. If Xn = {i|/(i) e Pw} we have ( I J % < ω } S i ) and
Π»<« -X» — 0. The proof of the theorem is thus completed.

3* DEFINITION. A structure St is called rich if for any formula
φ of L(Sί) there is a relational symbol R of L(2t) such that §1 IN <£> <-> i?.
A theory T in a language L is called open if for any formula φ of L
there is a quantifier-free formula ψ such that T \- φ <-* ψ.

The proof of the following result can be found in [11].

THEOREM 2. If {%\iel} is a set of rich structures, D is a filter
over I and S(I)/D is atomless then the theory of /7Stt /J5 is open.

Using this result we get the following corollary to Theorem 1.

COROLLARY 1. If D is tc-excellent and & — S(I)/D is atomless
then Π%/D is it-saturated for any sequence < SI* | i e I >.

Proof. We expand % to a rich structure 2ί{. By Theorem 2 the
theory of ΠW /D is open. By Theorem 1 /7SC/JD is (Φo, ̂ -saturated
hence /7Sίί/£) is /c-saturated and so is its reduction
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We can get a better result than Corollary 1 but to that we need
a few more facts.

LEMMA 6 ( i ) . // a £ I, a$J and D is a tc-good filter over I then
D(a)—the filter generated by D and {a}—is tc-good.

(ii) If a ̂  I is such that [a] is an atom in S(I)/D then D(a) is
an ultrafilter.

(iii) If ae S(I) — J and S(I)/D is tc-compact then S(I)/D(a) is tc-
compact.

(iv) If ae S(I) — J and [a] is an atomless element in S(I)/D
then S(I)/D(a) is atomless.

Proof. ( i ) is almost obvious, (ii), (iii) and (iv) follows from the
fact that S(I)/D(a) ~ {[x]\ [x] ̂  [α]}, where the last set is viewed as
a subalgebra of S(I)/D. The isomorphism is given by [b]D{a) —> [bf]a]D.

The proof of the next theorem involves different method than those
discussed here. For a reference, see e.g., [3].

THEOREM 3. If n < ω and for every j < n the structure SÎ  is K-

saturated then Πi<^2ϊi is tc-saturated.

COROLLARY 2. If D is tc-excellent and S(I)/D has finitely many
atoms then Π^JD is tc-saturated.

Proof. Let α0, , an^ S / be mutually disjoint and such that
K < n] is the set of all atoms of S(I)/D. Let an — I — \Ji<nai

and let A = D(d%) for i ^ n. If follows from Lemma 6( i) and (ii)
that for i < n D{ is a Λ>good ultrafilter. Lemma 6( i), (iii) and (iv)
imply that Dn is /c-excellent and that the algebra S(I)/Dn is atomless.
By Theorem 2.1 of [6] we get that Π%/Dj is Λ>saturated for j < n.
That Π%JDn is ^-saturated we get using Corollary 1. Note that D =
f]^n D3. Using Theorem 1.2 in [4] we get

Theorem 3 yields that the right hand side of (•) is /c-saturated and so
is ΠnjD.

Our next corollary deals with Boolean algebras:

COROLLARY 3. If a Boolean algebra & has at most finitely many
atoms and it is of the form S(I)/D where D is a κ-good filter then &
is tc-saturated iff & is tc-compact.

Proof. It follows from Corollary 2.
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4* Let us pass now to a brief investigation of /c-excellent filters.
We will be primarily interested with products of filters but we will also
touch upon questions which will naturally arise

Throughout this section Dk will be a filter over Ik, where k ̂  1.
As before we define Jk = {x £ Ik \ Ik — x e Dk}. If x £ Zo x Zx and ie Z,
then α?* = {j e Zo \ < j , i >} e x. The product A x A of A and A is
the following filter over Zo x ii:

{a? g Zo x ΛI {i I OJ* e A} e A} .

The following proposition is obvious.

PROPOSITION 1. Do x A is σ-ίncomplete iff A or A is o-incom-
plete.

The next result is known as well and is proved in [8].

PROPOSITION 2. A x A is fc-good iff A is

DEFINITION. A filter D is called /̂ -compact if the algebra S(I)/D
is Λ -compact.

PROPOSITION 3. If A x A is tc-compact then A is /c-compact.

Proof. Let {#α|α: < λ} s Ŝ Zi) — ̂  be such that {[xa] \a < λ} has
the finite interesection property. Let ya — Io x xa. Then ya$J0 x J t

and {[?/α]|̂  < λ} has f.i.p. in S(I0 x ZJ/A x A Let y Q Io x Iχ
be a set satisfying y^J^xJx and [i/] ^ [i/α] for every a < λ. Then a? =
{i e Zo I y

i $ Jo} $ «Λ hence [x] Φ 0 and it is clear that [x] ̂  [xa] for every
α < λ.

The other implication is false. Take e.g., Zo = ω, Do = {α>}, Zi = 2
and A = {1} Then S(2)/Dι is finite hence saturated, but S(I0 x ZJ/A x
A = S(Z0 x ZJ is not ίDi-compact. Nevertheless we have a partial re-
verse.

PROPOSITION 4. Z/ A is an intersection of finitely many ultra-
filters over Zo and A is /c-compact then A x A is fc-compact.

Proof. Let A be an intersect on of n distinct ultrafilters. By
Theorem 1.2 in [4] we get

2'oχ'i/A x A = (2T/A

(2% is the direct product of n copies of the algebra 2).
The referee has suggested the following continuation of the proof
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which is simpler than our original one. Because (2n)Il/D1 ~ (2Γl/Dι)
n it

suffices to show that if &0, •••^_1 are Λ>compact Boolean algebras
then έ% — &s x x &n-x is also /c-compact. Indeed, if {ba \ a < λ}
(λ < fc) has f.i.p. in & and ba = <&α0, , ^W-i> then for some m <n
{Km I oc < M has f.i.p. in &m. Let cm be such that 0 < cm ^ 6αm for
a < λ and let cfc be 0 for k Φ m. Then 0 < ζc0, , cn_^} ^ &α for
every a < λ.

In order to avoid rigid expressions we adopt the following
convention:

CONVENTION. We say that a set {za\ α •} s S(-3Γ) has f.i.p. in
S(X)/Γ if [2β]r ^ 0 and {[s j r | •••«•••} has f.i.p. in £PΓ)/Γ where Γ
is a filter over X.

We may now ask: What happens if Do is not an intersection of
finitely many ultrafilters and Do x Dx is Λ -compaet? We naturally
expect that Dx has some additional property. This property, called
fineness is captured in the following definition.

DEFINITION. A filter D over I is called /r-fine if it is σ-incomplete
and for every λ < K and every function / : Sω(\) —> S(I) — J which is
<Ξ-decreasing there is a #: Sω(X) —> /S(/) — /which is multiplicative and
g(s) S /(s) for every s e Sω(X).

REMARK. It follows from the proof of existence of good ultrafilters
(see e.g., [7] or [9]) that any filter generated by at most /c sets is
Λ;+-fine (and it is not £+-good). For ultrafilters these notions (good
and fine) coincide.

PROPOSITION 5. If Do is not intersection of finitely many ultra-
filters, D1 is X-regular for every λ < /c and Do x Dx is tc-compact then
Dγ is fc-fine.

Proof* Since Do is not an intersection of finitely many ultrafilters
we can find {a{ \ i < ω) £ S(I0) — Jo such that αέ Π as = 0 if i Φ j . Let
λ < K and let f:Sω(X)-^S(I1) — Jι be a decreasing function. Because Dt

is λ-regular we can assume without loss of generality that Γiaex /({#}) =
0 for any infinite I g λ . Let T(i) = {seSω(X)\ief(s)}, where ieI,.
Then for every ielly\ T(i) | < ω, so let T(i) be {si \ k < n(ί)}. For a < λ
we define xa £ 70 x Λ by

#« = U {αfc I a e si}, i e ii .

Now Xa^JtXJi because {i|3se Γ(ί))[αes]}$ JΊ for any α < λ. We
want to show that
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(1) {iel.lΠaesXΐ^Jo} = / ( * ) .

That the right hand side of (1) is included in the left hand side
is obvious. For the other inclusion, if Παes^αΦ^o there must be a
k < ω such that ak^ C\aesxU Then α e s j for every aesy hence
s £ si 6 T(i), so ief(s) as follows from monotonicity of / .

Consequently the set {xa \ a < λ} has f .i.p. in S(I0 x IJ/A x A
(see the convention in the previous proof) and by /^-compactness of
A x A there is an x e £(J0 x IJ — Jo x Ji such that [#] ^ [#J for each
α < λ. Let d = {i e ii I a?* $ Jo} and let g{{a}) be {i e <2 | xi — x*a e Jo}. We
extend g to a function on Sω(λ) #(s) — Π«e *#({#})• The # is a multi-
plicative function from into S(ii) — Jx. We have to show now that
g(s) £ /(s) for seSα,(λ). Let ieg(s). Then $* — a£e Jo for each α e s ,
so a?*' — Π«€ S 4e Jo Since ied, x{^J0 hence there must be & k < ω
such that αA £ Γiaes a& That means α e si for every α e s hence s g ^
which gives ief(s).

The result has the following interesting corollary.

COROLLARY. If Do is not an intersection of finitely many ultra-
filters, D1 is X-regular ultrafilter for every λ < K and Do x A is Λ>
compact then A ^ it-good.

As we have seen before compactness of A is not enough to assure
compactness of A x A Proposition 5 suggests that an additional
property should be assumed about A ; "this suggestion is shown to be
true in the next result.

PROPOSITION 6. If A is /c-compact and K-fine then Do x A t
compact and tc-fine.

* &-

Proof. Let {xa\a < λ} £ S(J0 x ii) — Jo x Jx has f.i.p. in S(I0 x
x A Let

/(s) = { i e l J Γ U β . s U J y

for se£ω(λ). / is a £ -decreasing function into Sil^ — Jλ so by our
assumption there is a g: Sω(\) —> S^) — Ji which is multiplicative and
#(s) £ f(s) for every s e iSω(λ). By /r-compactness of A there is a
1/ G S(IJ - Jx such that y - g(s) e J, (i.e., [y] ^ [̂ (s)]) for each s e Sω(λ).
Put t(i) equal to {^|iG^({α})}. Because A is cr-incomplete we can
assume that t(i) is finite. Let x be that subset of Io x ^ for which
the following holds: if iey then xi = Παβ*{ ) a& and if ielx — y then
a?* = 0. It is easy to check that x^JQxJt and [x] ^ [#α] for each
a < λ. The fact that A x A is £-fine follows just from the assump-
tion that A is Λ>fine. The proof is similar to the proof of Proposition
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2 so we leave it to the reader.

PROPOSITION 7. // D is fc-compaet and /c-good then D is tc-fine.

Proof. Let f:Sω(X)-*S{I)-J be g-decreasing. Thus {f{s) | s e Sω{X)}
has f.i p. in S(I)/D, therefore there is a Y £ I such that Y — f(s) e J
for every s e Sω(X) and Γ$ J. Let F(s) = I - (Y - /($)). i*7 is a func-
tion from Sω(X) into D, so a function G: Sω(X) —• JD exists which is
multiplicative and G(s) S .F(s). Let #(s) = G(s) ΠYίorse Sω(X). Ob-
viously g: £ω(λ) —> S(J) — / and g is multiplicative. Moreover, for every
8eSω(X)g(s) = G(s) C) YS F(s) C) Y = (I- (Y- f(s))) f]YS f(s). So
D is /c-fine.

Using the last result and Propositions 2, 3 and 6 we immediately
get

PROPOSITION 8. DQ x A is tc-good and /c-compact iff Dt is. If Dt

is σ-incomplete then we also have that Do x Dx is /c-excellent iff Dλ is
it-excellent.

The last result yields a simple proof of existence of ^-excellent
filters. In fact, for any Boolean algebra έ% and any tc there is a
filter D which is /c+-excellent and & == S(I)/D. The argument, which
is due to Keisler, runs as follows: using Ershov's theorem (see [2])
we find a filter F over ω such that & = S(ω)/F. Then we get a
/u+-good ^-incomplete ultrafilter over /' (see [11]) G and we form the
filter D = F x G. Now G being an ultrafilter is λ-compact for any
λ. Hence by Proposition 8 D is £+-excellent. Because S(I)D ~ tfjD =
{2«IF)rIG = 2ωIF we get 8(1) jD = &f.

5* This section contains a number of remarks relevant to the topics
discussed before as well as some open problems.

(a) We have been investigating various properties of filters. It
may be interesting to note that these properties can be put into one
of the following three groups: ( i ) properties which have something
to do only with elements of the filter: (ii) properties which have
something to do with elements of S(I) — J; (iii) properties of the Boolean
algebra S(I)/D. E.g., goodness, regularity and incompleteness are
properties of the first kind. To be fine or to be separable are properties
of the second kind while compactness is a property of type (iii). Here-
with a set of natural questions is connected. Given a class of filters
(e.g., those which make reduced products saturated) we can ask whether
the class can be characterized by properties listed under, say, (iii). Or
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we can ask whether "to ba /^-excellent" cannot be reduced to a property
of type ( i ) (we believe it can't).

(b) Let Φ be the set of formulas which has the property: if φ e Φ
and D is a filter then /72I/D |= <p(fQ/D, , fJD) iff {i 13t< h φ(fo(ί) •••)}$
J. If 22 is a relational symbol then —r ReΦ, Φ is closed under v and
iί φeΦ then ( p ) ^ e Φ . Similarly as in [1] we can prove that if D
is a £-fine filter then Π%JD is (Φ, vc)-saturated. What other model-
theoretic properties products reduced by fine filters have? The same
question can be asked for separable filters.

(c) Are there any natural examples of /r-compact filters? It is
proved in [11] that on ω every countably generated ^-incomplete filter
is Λ>compact. Is the situation similar on larger cardinals? Specifically,
if Fκ is the filter over Sω(X) generated by the set {{s \ a e s} \ a < ιc} is
Fκ £+-compact?

(d) While ^-complete ultrafilters are rather exceptions there are
natural and "small" ω-complete filters. Even though they play an
important role in set theory their model-theoretical properties have
not been studied in detail. It is conceivable that many results about
first order properties of reduced products can be extended to Lωi<0l-
properties of products reduced by ^-complete filters.

(e) Another notion which could be of interest is (/c, λ)-saturated-
ness. A structure is (/c, λ)-saturated if every set of formulas of power
fc is satisfiable in it provided the set has the property that every
subset of power < λ is satisfiable. Almost every result about saturated
structures can be reformulated so a question about (/c, λ)-saturated
structures. In connection with this one could ask whether there is a
good filter D such that S(I)/D is (fc, ωj-compact but not (ic, ω)-compact
(i.e., not /c-compact). The referee has pointed out that no (^-complete
filter makes all structures (ωly ωj-saturated.
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