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ON SATURATED REDUCED PRODUCTS

MIirosSLAV BENDA

The first part of this paper characterizes the filters whose
reduced products are saturated with respect to quantifier free
formulas. It is shown that filters with this property are
exactly good filters whose Boolean algebra is compact. In
the second part we investigate their set-theoretical properties
and prove that such filters exist.

This paper contains a proof of the result announced in [1] as well
as a number of results directly connected with this theorem.

The problem is to characterize those filters which have the pro-
perty that products reduced by these filters are k-saturated. The
special case of the problem in which we talk about ultrafilters only
was completely solved by Keisler in [6]. The above problem was first
attacked by F. Galvin and also by Ph. Olin and B. Jonsson (see [5]).
They showed that the filter of cofinite subsets over w is w,-satura-
tive. Galvin’s results were a little more general. In [11], L. Pacholski
and C. Ryll-Nardzewski described those atomless filters which were w,-
saturative. The author of this article then obtained a characterization
of (@, k)-saturative filters for any £. S. Shelah after reading a sketch
of this article, obtained, using a different method (see [3]), a charac-
terization of k-saturative filters, thus solving the problem. (For £ =
, it was independently solved also by L. Pacholski.)

The first part of this paper deals with (@, k)-saturatedness of
reduced products. It is believed that theorems proved here have some
applications to algebra. In possible applications the notion (®,, £)-satu-
ratedness seems, better suited than the full saturatedness ([10]) because
e.g., a solution of a system of equations is expressible by quantifier-
free formulas. In the second part we deal with produets of different
kind of filters and we apply these results to get an existence theorem
for excellent filters. The third part is devoted to discussion and open
problems.

Our notation is standard. X, £ stand always for cardinals. 0 is
the empty set as well as the least element in Boolean algebras. S,(X)
is the set of finite subsets of X. If f is a function from X into ¥
we write it sometimes as f: X — Y. If Z< X then f*(2) = {f(2)|z¢
Z} and f|Z is the function f restricted to Z. A subset X of a Boolean
algebra is said to have the finite intersection property if for any
Xy e, e X2 NN, 0. We write it often as FIP(X). D usu-
ally stands for a filter over the set I = U D. Theideal {x & I|I — z¢ D}
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558 MIROSLAV BENDA

is denoted by J. D is called o-incomplete if there is a sequence
{X,|n < 0} € D such that N,-. X, =0. D is k-good if it is o-in-
complete and if for every f: S,(\) — D, f decreasing (i.e., if s & s’ then
f(s") & f(s)) there is a g: S,(\) — D, g multiplicative (i.e., g(s Us’) =
g(s) N g(s’)) and g(s) & f(s) for each seS,(\). If D is a filter over I
we can form the Boolean algebra S(I)/D. Its elements are the sets
[2], = {y|x = yeJ}. [z],is often written as [x]. L is a fixed language.
If ¢ is a set of constants then L(c) is the language L expanded by ec.
Structures are denoted by Gothic letters and their universes by cor-
respoding Latin capitals. Thus the universe of ¥, is 4,. If @ is a
formula of L then an instance of @ is any formula obtained from ¢
by replacing some of its free variables by constants from L. If 0 & L
and ¢ is a set of constants then @(c) is the set of all instances of the
formulas from @ in the language L(c). If @ & L we say that a struc-
ture A is (@, k)-saturated if for any ¢ and any set of formulas 3 & @(c)
such that | 3| < &, if e Y then @ has only v as a free variable and
Y is finitely satisfiable in (%, ¢*) we can find an a € A which satisfies
all the formulas in Y. Of course (L, £*)-saturatedness coincide with
the usual k*-saturatedness. The reduced product of the sequence
< WY;lteI> of structures of the same similarity type (only such
products we consider) is denoted by I%;/D. @, is the set of quantifier-
free formulas of L.

1. In this section we define some notions and prove a couple of
lemmas which will be useful later.

DEFINITION. A Boolean algebra <7 is said to be k-compact if for
any X & B such that FIP(x) and | X| < £ there is a be B, b # 0 and
b <« for any ze X.

LEMMA 1. Let <& be a k-compact Boolean algebra, let v < £ and
let {x,|]a <A} S B — {0} be a set of atomless elements. Then there is
{Y.la <N} S B — {0} such that y. =< @, and y. N ys = 0 for any &, B <
N, @ B

Proof. Using Zorn’s lemma we find sets Z. for & < ¢ such that:

(1) Z: & {mala <}

(ii) Z, is a maximal family Z such that FIP(Z) and Z < {z.|a <
A= Uese Z;

(i) Uews Ze = {2 |a<N}

By k-compactness, for each & < 6 there is a ¢, 0 such that ¢, <«
for each z¢ Z,. Clearly, (by (ii))ec:Ne¢e = 0 if & &. Moreover c;s
are atomless. So it suffices to show that if ze B is an atomless ele-
ment, ¢ = 0 and \ < k£ then there is {z.|]a < A} & B — {0} such that
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2. =2 and z2,N 2 =0 foreach a, 8 < N, @« # B. To show this we de-
fine, by induction, the sequence z2':

Let z; = 2. Let us assume that 2’ has been defined for £ < B. If
B =B+ 1 let z; be a nonzero element which is strictly smaller than
zp. If B is limit then by x-compactness of <& and by atomlessness
of v we can find 2; so that z; -+ 0 and 2z; < z: for £ < 8. Having the
sequence z we define z, to be z, — z,,, for a<\. Evidently, the
sequence {z,|a < A} has the desired properties.

LEMMA 2. Let r: X — S (X) and let R be a function on S,(X)
with the properties that R(s) = 0 and R(s) & 11 ,.,r(x) for every s e S, (X).
If, in addition, R satisfies the condition (*),

(*) whenever s & s’ and f e R(s') then fl|se R(s)
then there is an fell,. .y r(x) such that f|se R(s) for each se S, (X).

Proof. We consider /71,., r(x) as a usual topogical product of dis-
creet spaces 7(x). It is a compact space by Tychonov’s theorem. Let
F,={fell,.xr®)| f|se R(s)}. F, is closed for each se S,(X). The
set {F,|s e S,{X)} has the finite intersection property as follows from (*),
80 Nses,m Fs # 0. Any fe), F, will satisfy the lemma.

DEFINITION. A structure .97 = < T, £ > is called an upper
lattice if < is a partial ordering of T and the lowest upper bound of
{z, y} exists for any x, ye T; we denote it by = V y.

A filter D is .7 -good if it is o-incomplete and for any f: T — D
which is <-decreasing (i.e. if < y then f(y) & f(x)) thereisa g: T— D
such that g(xz \V %) = g(*) N g(y) and g(x) & f () for every x, ye T.

A filter D is said to be k-separable if for any A < £ and for any
{z.|la < N} & S(I) — J such that x, Nx;€J whenever a # 8 there is
{y.]la <N} & S(I) — J such that y, S z, and y, Ny = 0 forany o, B8 <
N, @ # B

REMARKS. (1) A filter is k-good in the usual meaning if it is
< S,(\), & >-good for any A<k.

(2) Every filter is w,-separable.

The following lemma can be proved analogously to Theorem 3.2
in [7]. Just replace & by < in that proof.

LEMMA 3. If D isk-good and |T| = k then D s < T, < >-good.
LEMMA 4. If D is k-good filter them D is k-separable.

Proof. Let {z,|]a <N} & S(I) — J has the property =z, Nx;ed if
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a+# B.
Let

f(s) =I— Uf{x,Nasla, Bes and a #+ B}

for se S,(\). Then f:S,(\) — D so, by £-goodness, there is a g: S,(\) —
D which is multiplicative and g(s) & f(s) for seS,(A). Let y, =
z, N g({a}) for & < n. It is clear that y,¢ J for &« < \. Now, if a#pg

then
Yo NYs = 2. N2 N g({a}) N g({B) = 2. N2 N 9({ex, BY) -

Since g({e, B)) < ({, B) = I — x, N x; we see that y, Nys; = 0.

DEFINITION. A set KZ S(X) is called k-compact if for any Z &
K, |Z| < £ and FIP(Z) we have N Z =+ 0. If K< S(X) then CI(K)
will be the smallest set L & S(X) such that K< L and whenever
2,ye L then 2Ny and x Ny belong to L (i.e., L is closed under U
and N). The following lemma is well known so the proof of it is

omitted.
LEMMA 5. Let K< S(X). K is k-compact off Cl(K) is k-compact.

As it was said in the introduction we will be concerned with
(D, k)-saturatedness of reduced products. It is easily seen from defi-
nitions that a structure U is (@, k)-saturated iff the set =) of
all subsets of A which are definable (using parameters) by quantifier-
free formulas is k-compact. The set =) is the closure under U and
N of the set (W), where () are subsets of A definable by atomic
formulas or their negations. Thus, in view of Lemma 5, to show that
a structure 2 is (@,, £)-saturated it is enough to show that <,() is
k-ecompact.

If we analyze the definition of reduced products we see that every
member of Z,(l12;/D) can be expressed in one of the following two
forms:

1) {f/D|{¢]|f(z)e B;}¢J} where B; = A; for t1el

(2) {f/D|{7|f()eC;}eJ} where C; = A, for ie L.

(Sets of the form (1) are defined by formulas R(v,, ---), sets of
the second kind by formulas — R(v, ---)). Since sets of the form (1)
((2)) are determined completely by the sequence B = {B;|ie I}(C =
{C;|ieI}) we will refer to them as Q(R,), i.e., @ = {f/D|{i]| f(i) e
B;}eJ}.

2. DEFINITION. A filter D over I is called k-excellent if it is
k-good and if the Boolean algebra S(I)/D is k-compact.
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The question of existence of such filters will be discussed in a
latter section. We are now ready to prove the main theorem.

THEOREM 1. A filter D 1is k-excellent iff for every sequence
< A;lieI > of structures (of the same type) the reduced product
nv,;/D is (D, k)-saturated.

Proof. Let us assume that D is a k-excellent filter over I and
<A;|te I > is a sequence of structures. Let M < £ and let B;,C: S A;
for every teI and o < A. Moreover we assume that the set K =
{Qzz|a < M} U {Rpe]@ < A} has finite intersection property. It follows
from the discussion of the last section that to prove k-saturatedness
of IY;/D it is enough to show that NK==0 (K has been chosen
arbitrarily). Let us define

FQ(S) = {ieIle - LJﬂesC'i'g * O}

for se S,(\) and a@ <. Because FIP(K) we get that F,(s)¢J for
every seS,(\) and a<\. Note that F, is an increasing function for
every & < An. Let && = S(I)/D and let Y, be the set of all atoms of
& which are contained in [F,(s)] for every seS,(\) (if XS I then
[X] denoted the corresponding element in the Boolean algebra S(I)/D).
We now define X, X,, X; & )\ as follows:
ae X, iff |Y,| <  and [F,(s)] = UY, for some seS,(\)
acX iff |Y,| =«
ae X, iff there is an atomless b = 0 such that b < [F,(s)] for every
seS,(\) and a¢ X, U X.. '
We want to show that X, U X, UX,=x. Let aex — (X, UX,) and
let {a:|& < v} be an enumeration of Y,. If v < ® then {[F,(s)] —
U:.@:]s € S,(\)} has the finite intersection property hence we can find
a b#0,b=<[F.(s)] — Uecwa: for every seS,(\). Since b must be
atomless we get that e X,. Since a¢ X, we must have w < v < &.
But then {[F,(s)] — @:|& < v, se S,(\)} has the finite intersection proper-
ty and similarly as above we get a e X..

If ae X, let ¢,€S,(\) be an element for which [F,(t.)] < [Fa(s)]
holds for every seS,(\), and let [ag], -+, [a7 _,] be the list of atoms
included in [F,(¢t,)]. We can choose af(S I) in such a way that

@ [af] = [a?] implies af = af .

Because | X, | <X <k and |Y,| < £ we can find a sequence < b,|a e X, >
of subsets of I, satisfying:

@) [b] € Y.

3) [b.] # [bs] if @ = B
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4) [b.] is distinct from [af]
for every ge X, and i < n; .

If ae X, we let ¢, & I be such that [¢,] is non-zero and atomless
and for which [¢,] < [F,(s)] holds for every seS,(n). Using Lemma
1 we can assume that {[c.]|a € X,} is a set of mutually disjoint (in &)
elements. This assumption and (1)—(4) enable us to use Lemma 4,
which tells us that we could have chosen af, b,, ¢, in such a way that
the set X = {af|aec X, and 7 < n,} U {b. | e X} U {c.|]@e X3} is a set of
mutually disjoint subsets of I. Let {a;|& < #¢} be an enumeration (with-
out repetitions) of X. Let Z, = {¢|a. e X,} for k < 3. Clearly Z;NZ; =
0if¢%jand Z,U Z, U Z, = p.

For any ae X, we can find an r € S,(Z,) so that {F,.(t.)] = U:e. [a]-
We denote such an » by r(a). If seS,(X,) and te S,(\) we let P(s, t)
to be the set of all fe /I A; such that:

(i) {{|f@)eB}ed for aes

(i) {{|f(@)eCed for et U Uses ts -
Because FIP(K) holds we have P(s, t) # 0 for se S, (X)), te S,(»). If
feP(s,t) and acs let f(a) = g iff g is the first & for which {i]| f(z) €
B3 na:¢J. It follows from the way we defined t,’s that fe I,.,7(a).
Let R(s, t) = {f | fe P(s, t)}. Ift< ¢ then P(s, t') S P(s, t) so R(s, ') &
R(s,t). Thus R(s) = Nies,wB(s, t) is nonempty since II,.,r(a) is a
finite set. The function R satisfies the condition (*) of Lemma 2 (with
X, Y replaced by X,, Z, resp.). Namely, if s & s’ and f e R(s’) then
for any te S,(\) there is a ge P(s, t) such that g = f; but such a ¢
is a member of P(s, t) as well as f|s = g|se R(s, t). Lemma 2 gives
us a function ge I1,.x,7(«) with the property that g|se R(s) for se
S.(Xy). Let U, = g7(«) and let &, be a mapping from A onto U,. We
may assume without loss of generality that U, # 0 for a e Z,. For
s,te S,(\) and a e Z, we define:

() Hu(s, 9) = aaN{t [ Nees Bi«® — Use. CF = 0} .

We want to show that H,(s, t) & J. Firstly, if w = {h.(8)|&é€ U,} then
9*(w) = {a}. Since glue R(u) & R(%, tUUue t.) there is an f e P(u, tU
Usc. o) such that f = g|u. Hence {i]| f(3) € Bi«®}Na, & J for £es and
{i|fG@)eCi}ed for each Bet U Uucu toe The fact that [a,] is an atom
in & implies that {¢|f(%) € Nee. Bi*“} N a, & J. It is now obvious that
Hys, 0) ¢ J.

IfaeZ U Z, (welet U, be {a} and %, be the mapping from A onto
{a}. H,(s, t) for a e Z, U Z, is defined then also by formula (5). Because
h(8) = «a for ae Z, U Z, we get H,(s, t) ¢ J immediately.

Let a =I— Uucna. and let {X,|n < ®w} S D be such that N, .. X, =
0. Let
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H(Ir’ S, t) = (CL U Uﬂeﬂ-—r as U Uﬁer H,a(S, t)) N X!rUsuti

for <7r,s,t> €T =8, x S,(\) X Su(\). Then < T, < >, where <
is the direct product of the three inclusions, is an upper lattice, so,
by Lemma 3, D is < T, £ >-good. Because H maps 7T into D and
H is Z-decreasing there is a G: T — D such that G(r, s, t) & H(r, s, t)
and GrUr,sUs,tUt) =G(r,s t) NGO, s, t). Let

d. = a, N G({a}, {a}, {a}).
Then

G({a}, s, t) N d, = a. N G{a}, s U {a}, t U {a})
Sa.NH(a}, sU{a}, tU{a})
=@ N (@ U Usepmm @5 U Ho(s U {a}, £ U {a})
= Go(s U {a}, tU{a}) S H.s, ?) .

Thus
(6) G({a}, s, t) N do & Hu(s, 1) -

We have that d,Nd; =0 if @ = B s0 if 1€ Uuc.d. We let a; to be
that « for whichied,. Let T(?) ={<a, g>er xN|te G({a}, {a}, {B}}
forie U.d.. |T(7)] < @ because G(r, s, t) & X,,,.uy and 2 € G{a}, Vi, W)
where V; = Dom T(¢) and W; = RgT(i) (this is due to multiplicativity
of G). The last statement is true for every i€ J.d.. It follows from
(6) that ie H, (Vi W;). A function f’ then can be defined on U.d.
satisfying

f'('b) € neevi B}«'® — Uﬂswi Ct.

f" is a piece of a function f which will belong to M. Qs N N Ega.
We check that this piece has the right properties. Let v < A. Hence
there are « and g such that r = k,(8). Then

) (i@l e G((@), (8), 1) N d. S (3] /() € Bi=w)
and
)] {10 eCNUade I — Us Uaer G}, s, {B)) -

Because the left hand side of (7) does not belong to J it is clear
that no matter how we extend f’ to a function from I7A; the
result will belong to M. Qs. The right side of (8) belongs to J.
Hence if we extend f’ to f in such a way that {{e ] — U.d.|f(@)e
Cfed for g < M we are done (J is closed under U). To do this we
define

F(S) = (I— {iIUaes Cé'l = Az}) N Xls!



564 MIROSLAV BENDA

for se S,(\). Because FIP(K) we have that F: S,(\) — D. By &-good-
ness of D there is a multiplicative function G:S,(») — D such that
G(s) S F(s) for each se S,(\). Let t(¢) = {a|i e ({a})}. Then e G(t(r) =
F(t(7)) hence we can define f” on I — J.d, such that f"(@)e A; —
U.e: Cf.  Consequently, {i ¢ U.d.| f”(%) € Cf} = I—-G({a}) e J for every
a < . As we have explained before f = f’U f” is a function be-
loging to M. Qz« N Ne Roa-

For the other direction we assume that every direct product reduced
by D is (@, k)-saturated. In particular 2//D (2 being the 2-element
Boolean algebra) is (@, k)-saturated. Realizing that 2//D = S(I)/D
and that (@, k)-saturatedness of a Boolean algebra is a stronger pro-
perty than k-compactness we get that S(I)/D is k-compact.

To prove that D must be x-good we take a A < £ and a function
fiS.,(\)— D, f decreasing. Let 4;={s|i¢e f(s)}and let A, = < 4;,, &>.
If seS,(\) then f(s)e D so there is a function Se/lA4; such that
{¢|5(i)) = s}e D. Let 3 = {¢, & v,|se S,(\)}. This is a set of quantifier
free formulas of the language L(c). Interpreting the constant ¢, in
II¥,/D by §/D we get that X is finitely satisfiable in [7%;/D; using
our assumption we can find an z € IT A; which satisfies ¥, i.e., {t|5(¢) &
h(i)} € D for each se S,(\). Let g(s) = {i|s & n(©)}. It is easily seen
that ¢: S.(\) — D ¢(s) & f(s) for se S,(\) and g is multiplicative.

To prove og-incompleteness of D we let P, = {m < w|m = n} for,
n<owand A= <o, P,>,.,. Then I ={P,(v)|n< w} < @, is finitely
satisfiable in A’/ D, hence there is an f: I — w such that {{| f(?) e P,} e D
for every n < w. If X, = {i|f(¢) e P,} we have {X,|n < w} & D and
Ni<o X, = 0. The proof of the theorem is thus completed.

3. DEFINITION. A structure 2 is called rich if for any formula
@ of L() there is a relational symbol R of L(¥) such that ¥ = @ — R.
A theory T in a language L is called open if for any formula @ of L
there is a quantifier-free formula + such that T — @ « .

The proof of the following result can be found in [11].

THEOREM 2. If {U;|tel} is a set of rich structures, D is a filter
over I and S(I)/D s atomless then the theory of IIW,/D is open.

Using this result we get the following corollary to Theorem 1.

COROLLARY 1. If D is k-excellent and <& = S(I)/D 1is atomless
then IIW;/D is k-saturated for any sequence < W;|tel >.

Proof. We expand U, to a rich structure ;. By Theoreém 2 the
theory of 7I%;/D is open. By Theorem 1 IIA}/D is (@, k)-saturated
hence /I}/D is k-saturated and so is its reduction /I191;/D.
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We can get a better result than Corollary 1 but to that we need
a few more facts.

LEMMA 6 (i). IfaZS I a&d and D is a k-good filter over I then
D(a)—the filter generated by D and {a}—1is k-good.

(ii) If a & I is such that [a] is an atom in S(I)/D then D(a) is
an wltrafilter.

(iil) If aeS({I) — J and S(I)/D is k-compact then S(I)/D(a) s k-
compact.

(iv) If aeS{I)— J and [a] is an atomless element in S(I)|D
then S(I)/D(a) is atomless.

Proof. (i) is almost obvious. (ii), (iii) and (iv) follows from the
fact that S(I)/D(a) = {[«]|[x] < [a]}, where the last set is viewed as
a subalgebra of S(I)/D. The isomorphism is given by [b],., — [6Na],.

The proof of the next theorem involves different method than those
discussed here. For a reference, see e.g., [3].

THEOREM 3. If n < w and for every j < n the structure 2U; is k-
saturated then I];.,U; is k-saturated.

COROLLARY 2. If D is k-excellent and S(I)/D has finitely many
atoms then II;/D is k-saturated.

Proof. Let a, <+, a,_, = I be mutually disjoint and such that
{[a;]|7 < m} is the set of all atoms of S(I)/D. Let a, =1— Uicna:
and let D; = D(a;) for 1 < n. If follows from Lemma 6(i) and (ii)
that for ¢ < n D; is a k-good ultrafilter. Lemma 6(i), (iii) and (iv)
imply that D, is k-excellent and that the algebra S(I)/D, is atomless.
By Theorem 2.1 of [6] we get that /I9,/D; is k-saturated for j < n.
That 11%,/D, is k-saturated we get using Corollary 1. Note that D =
N;<. D;. Using Theorem 1.2 in [4] we get

()W D = [1s<a (1A D;)

Theorem 3 yields that the right hand side of (-) is k-saturated and so
is 11%;/D.
Our next corollary deals with Boolean algebras:

COROLLARY 3. If a Boolean algebra <Z has at most finitely many
atoms and it is of the form S(I)/D where D is a k-good filter then <&
is Kk-saturated iff <& tis k-compact.

Proof. It follows from Corollary 2.
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4. Let us pass now to a brief investigation of k-excellent filters.
We will be primarily interested with products of filters but we will also
touch upon questions which will naturally arise.

Throughout this section D, will be a filter over I,, where k < 1.
As before we define J, = {a S I,|I, —xeD,}. If x= I, x I andiecl,
then o' = {je L,|< 4,7 >}ex. The product D, x D, of D, and D, is
the following filter over I, x I:

{e = I, x I,|{i|x*e D} e D} .

The following proposition is obvious.

PropPoSITION 1. D, x D, is o-incomplete iff D, or D, is g-imcom-
plete.

The next result is known as well and is proved in [8].
PROPOSITION 2. D, X D, is k-good tff D, 1s.

DEFINITION. A filter D is called x-compact if the algebra S(I)/D
is k-compact.

ProposITION 3. If D, x D, is k-compact then D, is k-compact.

Proof. Let {x,|a <N} & S(I,) — J, be such that {[z.]|a < A} has
the finite interesection property. Let y,=1I, X ®#,. Then y,&J, X J,
and {[y.]la <A} has f.i.p. in S(I, x L)/D, x D,. Let y< I, x I
be a set satisfying y ¢ J, x J; and [y] = [y.] for every & < A. Then 2z =
{ieL|y' ¢ J,} & J, hence [2] # 0 and it is clear that [z] < [x,] for every
o < N

The other implication is false. Takee.g., I, = ®, D, = {w}, I, = 2
and D, = {1}. Then S(2)/D, is finite hence saturated, but S(I, x I,)/D, x
D, = S(I, x I) is not w,-compact. Nevertheless we have a partial re-
verse.

PropOSITION 4. If D, is an intersection of finitely many ultra-
filters over I, and D, 1s k-compact them D, X D, is k-compact.

Proof. Let D, be an intersect on of n distinct ultrafilters. By
Theorem 1.2 in [4] we get

211Dy x D, = (2")"/D, .

(2" is the direct product of » copies of the algebra 2).
The referee has suggested the following continuation of the proof
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which is simpler than our original one. Because (2")"/D, = (2"1/D)" it
suffices to show that if <%, .--<&,_, are k-compact Boolean algebras
then & = &, x+++-xX Z,_, is also k-compact. Indeed, if {b,|a < \}
(M < k) has f.i.p. in & and b, = <{buy, ***, bun—ry then for some m < n
{bsn] @ < A} has f.i.p. in &Z,. Let ¢, be such that 0 <e¢, < b,, for

a <\ and let ¢, be 0 for k= m. Then 0<<e¢, +++,¢,_> < b, for
every a < A.

In order to avoid rigid expressions we adopt the following
convention:

CONVENTION. We say that a set {z,|:--a---} & S(X) has f.i.p. in
S(X))Y if [z.)y # 0 and {[z.]y|+--a@---} has f.i.p. in S(X)/Y where Y
is a filter over X.

We may now ask: What happens if D, is not an intersection of
finitely many ultrafilters and D, X D, is k-compact? We naturally
expect that D, has some additional property. This property, called
fineness is captured in the following definition.

DEFINITION. A filter D over I is called k-fine if it is g-incomplete
and for every )\ < £ and every function f:S,(\) — S(I) — J which is
S-decreasing there is a g: S,(\) — S(I) — J which is multiplicative and
9(s) & f(s) for every seS,(\).

REMARK. It follows from the proof of existence of good ultrafilters
(see e.g., [7] or [9]) that any filter generated by at most £ sets is
kgt-fine (and it is not x*™-good). For ultrafilters these notions (good
and fine) coincide.

PROPOSITION 5. If D, is not intersection of finitely many wultra-
Jfilters, D, is N-regular for every N < £ and D, X D, is k-compact then
D, is k-fine.

Proof. Since D, is not an intersection of finitely many ultrafilters
we can find {o;]7 < w} & S(I,) — J, such that a; N a; = 0 if ¢ j. Let
) < £ and let f:S,(\) — S(I,) — J, be a decreasing function. Because D,
is v-regular we can assume without loss of generality that N..r f({a}) =
0 for any infinite X S \. Let T(?) = {se S,(\)|7¢€ f(s)}, where i€ L.
Then for every ie I, | T(3)| < ®, so let T(¢) be {si|k < n(@)}. For a <
we define z, & I, x I, by

z, = Ulaz|laesi},iel .

Now wz,&J, X J, because {t|Ise T(?))[aes]}&J, for any a < rx. We
want to show that
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@) {ie LlNaes wa & o} = f(5) -

That the right hand side of (1) is included in the left hand side
is obvious. For the other inclusion, if (... 2% ¢ J, there must be a
k< ®w such that a, & N.e.2. Then aes, for every aes, hence
s & sie T(i), so ie f(s) as follows from monotonicity of f.

Consequently the set {x,/a <A} has f.i.p. in S(I, x I)/D, x D,
(see the convention in the previous proof) and by k-compactness of
D, x D, thereis an xe S(I, x I) — J, X J, such that [z] < [x,] for each
a < Letd={tel|s¢J} and let g({a}) be {ted|a’ — 2ied)}. We
extend g to a function on S,(\) 9(5) = Naes 9({a}). The g is a multi-
plicative function from into S(I,) — J,. We have to show now that
9(s) & f(s) for se S,(\). Let ieg(s). Then &' — zeJ, for each aes,
80 & — MNees 5 €J, Since 1ed, 2°¢J, hence there must be a k< @
such that a, & Nee: % That means « e si for every a es hence s & s
which gives 7 ¢ f(s). .

The result has the following interesting corollary.

COROLLARY. If D, is not an intersection of finitely many ultra-
filters, D, is n-regular ultrafilter for every » < k£ and D, X D, is k-
compact then D, is k-good.

As we have seen before compactness of D, is not enough to assure
compactness of D, x D,. Proposition 5 suggests that an additional
property should be assumed about D,; this suggestion is shown to be
true in the next result.

PropogsITION 6. If D, is k-compact and k-fine then D, X D, 75 k-
compact and k-fine. .

Proof. Let {z,|Jaa <A} & S, x I) — J, x J, has f.i.p. in S(I, X
s)/D, x D,. Let

f(S) = {ieL!naes WZQEJO}

for se S,(\). f is a &-decreasing function into S(I)) — .J, so by our
assumption there is a g: S,(\) — S(I,) — J, which is multiplicative and
9(s) & f(s) for every seS,(\). By k-compactness of D, there is a
y € S(I,) — J, such that y — g(s) € J, (i.e., [y] = [g(s)]) for each s e S,(\).
Put t(7) equal to {a|teg({a})}. Because D, is o-incomplete we can
assume that #(¢) is finite. Let = be that subset of I, x I, for which
the following holds: if 1ey then ' = N, @& and if 1€ I, — y then
' =0. It is easy to check that x¢J, x J, and [2] < [#,] for each
a < A. The fact that D, x D, is k-fine follows just from the assump-
tion that D, is £-fine. The proof is similar to the proof of Proposition
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2 so we leave it to the reader.
PROPOSITION 7. If D is k-compact and k-good then D is k-fine.

Proof. Let f:S,(\)— S(I)—J be =&-decreasing. Thus {f(s)|se S.(\)}
has f.i.p. in S(I)/D, therefore there is a Y < I such that Y — f(s)ed
for every se S,(») and Y& J. Let F(s) =1 — (Y — f(s)). Fisa func-
tion from S,(\) into D, so a function G:S,(\) — D exists which is
multiplicative and G(s) & F'(s). Let g(s) = G(s) N Y for se S,(). Ob-
viously ¢: S,(\) — S(I) — J and g is multiplicative. Moreover, for every
s5eS,A)9B) =GENYS FNY=I—- XY —-fEe)NYES f(s)e So
D is k-fine.

Using the last result and Propositions 2, 3 and 6 we immediately
get

ProprosITION 8. D, X D, is k-good and k-compact iff D, is. If D,
18 o-incomplete them we also have that D, X D, is k-excellent iff D, is
k-excellent.

The last result yields a simple proof of existence of k-excellent
filters. In faet, for any Boolean algebra <& and any &£ there is a
filter D which is £*-excellent and <& = S(I)/D. The argument, which
is due to Keisler, runs as follows: using Ershov’s theorem (see [2])
we find a filter ' over w such that <% = S(w)/F. Then we get a
k*-good o-incomplete ultrafilter over I’ (see [11]) G and we form the
filter D =F x G. Now G being an ultrafilter is A-compact for any
A. Hence by Proposition 8 D is x*-excellent. Because S(I)D = 2//D =
2¢/F)" |G = 2°/F we get S(I)/D = <&.

5. This section contains a number of remarks relevant to the topics
discussed before as well as some open problems.

(a) We have been investigating various properties of filters. It
may be interesting to note that these properties can be put into one
of the following three groups: (i) properties which have something
to do only with elements of the filter: (ii) properties which have
something to do with elements of S(I) — J; (iii) properties of the Boolean
algebra S(I)/D. E.g., goodness, regularity and incompleteness are
properties of the first kind. To be fine or to be separable are properties
of the second kind while compactness is a property of type (iii). Here-
with a set of natural questions is connected. Given a class of filters
(e.g., those which make reduced products saturated) we can ask whether
the class can be characterized by properties listed under, say, (iii). Or
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we can ask whether ‘‘to bz £-excellent’’ cannot be reduced to a property
of type (i) (we believe it can’t).

(b) Let @ be the set of formulas which has the property: if e @
and D is a filter then /I2;/D & @(fo/D, -+, fo/D) iff {1|A; = P(fo(d)-+-)} &
J. If R is a relational symbol then — Re @, @ is closed under v and
if pe @ then (qv)pe @. Similarly as in [1] we can prove that if D
is a k-fine filter then /I,/D is (@, k)-saturated. What other model-
theoretic propsrties products reduced by fine filters have? The same
question can be asked for separable filters.

(¢) Are there any natural examples of k-compact filters? It is
proved in [11] that on w every countably generated o-incomplete filter
is k-compact. Is the situation similar on larger cardinals? Specifically,
if F', is the filter over S,(\) generated by the set {{s|aes}|a < &} is
F. g*-compact?

(d) While w,-complete ultrafilters are rather exceptions there are
natural and ‘‘small’”’ w-complete filters. Even though they play an
important role in set theory their model-theoretical properties have
not been studied in detail. It is conceivable that many results about
first order properties of reduced products can be extended to L. -
properties of products reduced by ,-complete filters.

(€) Another notion which could be of interest is («, \)-saturated-
ness. A structure is (£, \)-saturated if every set of formulas of power
£ is satisfiable in it provided the set has the property that every
subset of power < A is satisfiable. Almost every result about saturated
structures can be reformulated so a question about (x, \)-saturated
structures. In connection with this one could ask whether there is a
good filter D such that S(I)/D is (£, w,)-compact but not (x, w)-compact
(i.e., not k-compact). The referee has pointed out that no w,-complete
filter makes all structures (w,, w,)-saturated.

REFERENCES

1. M. Benda, On saturated reduced products, Notices 5 (1969), 842.

2. Yu. L. Ershov, Decidability of the elementary theory of relatively complemented
distributive lattices and the theories of filters (Russian) Algebra i Logika Sem. 3 (1964),
17.

8. S. Feferman and R. L. Vaught, The first order properties of products of algebraic
systems, Fund. Math., 47 (1959), 1957.

4. T. Frayne, A. C. Morel and S. C. Scott, Reduced direct products, Fund. Math., 51
(1962), 195.

5. B. J6énsson and Ph. Olin, Almost direct products and saturation, Composition Math.,
20 (1968), 125.

6. H. J. Keisler, Ultraproducts and saturated models, Indag. Math., 26 (1964), 178.
7. , Good ideals in fields of sets, Annals of Math., 79 (1964), 338.

8. , Ideals with prescribed degree of goodness, Annals of Math., 81 (1965), 112.
9. K. Kunen, Two teoremsh on ultrafilters, Notices, No. 4, 17 (1970), 673.



ON SATURATED REDUCED PRODUCTS 571

10. J. Myecielski and C. Ryll-Nardzewski, Equationally compact algebras, Fund. Math.,
LXI (1967), 271.
11. L. Pacholaki and C. Ryll-Nardzewski, On countably compact reduced products (to

appear in Fund. Math.).
12. 8. Shelah, Generalization of theorems on ultraproducts to reduced product (to
appear in Bulletin).

Received October 2, 1970. A large portion of this paper was sketched when the
author was under an NSF grant held by Professor Keisler to whom we thank for many
stimulating discussions.

UNIVERSITY OF CALIFORNIA, BERKELEY








