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ON FREDHOLM TRANSFORMATIONS IN
YEH-WIENER SPACE

CHULL PARK

Let Cy denote the Yeh-Wiener space, i.e., the space of all
real-valued continuous functions f(z,%) on I?=[0,1] X [0, 1]
such that f(0,y) = f(z,0)=0. Yeh has defined a Gaussian
probability measure on Cy such that the mean of the process

m(x, y) = SCY S, y)dyf=0

and the convariance
Ris, b2, = | fls, 0@, p)dvf = (12) min (5, 2) min (4, )
v

Consider now a linear transformation of Cy onto Cy of
the form

T: flw, y) — g(z, )

1.1)
=flx, y) + S 2K(ac, Y, s, t)f(s, t)dsdt ,

which is often called a Fredholm transformation. The main
purpose of this paper is to find the corresponding Radon-
Nikodym derivative thus showing how the Yeh-Wiener inte-
grals transform under the transformation.

The transformations considered here contain the Volterra trans-

formation
TLf, ) = Fio,0) + || K@ v, 5,056, Odsat
as a special case.

Such transformations in Wiener space have been studied a great
deal by Cameron and Martin [1], Woodward [9], Segal [5], [6], and
Shepp [7], and the results have proved very useful in the evaluation
of various Wiener integrals.

The transformation theorems in this paper are based on stochastic
integrals called the generalized Paley-Wiener-Zygmud (P.W.Z.) inte-
grals given in [3] and [4]. For a function h(x, y) € L*(I*) and f(x, y) € Cy,
the generalized P.W.Z. integral is defined to be

(1.2) | wraef =1im | @f)dr
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where (hf), is the =™ partial sum of the Fourier expansion of
ez, y)f(x,y) with respect to a C.O.N. set belonging to a class of
C.O.N. systems {a,(x, ¥)} with each a,(z,y) of B.V. satisfying the
condition

l.i.m. i a;(x, y) Sy Sz a,(s, t)ydsdt = % ,
0 Jo

n-—r00 Jj=1

and the limit and on the right of (1.2) is an ordinary Riemann-Stieltjes
(R-S) integral. It it known that the limit in (1.2) exists for almost
all f in C, and it is essentially independent of the particular choice of
the C.0.N. set in the class. (For details see [3] and [4].)

The Fredholm determinant D(K) of K(z,w, s, t)e L*(I*) for » =
—1 is defined by

D(K) =1
- 1 K(xly yly xly yl)' ° 'K(xly yly xk; yk)
+ 3 ——g ........................ pevens dx,dy, -« ~dx,dy, .
el ARPEY

K(xkr yky xly yl) b 'K(xk’ y/cy xk; yk)
2. Statement of main results.

THEOREM I. Suppose that each K(x,y,s,t),1=1,2,3,4, is con-
tinuous on I* and absolutely continuwous in xz,y for each (s, t) € I* and
K\(0,y, s, t)=K,(x, 0, s, t) = K,(x, 0, s, 1) = K,(0, ¥, s, t)=0. Let K(z, v, s, 1)
be defined on I* by
K (x, y,s,t) if v <s,y<t
Kz, y,s,t) if x>s8,y>1
Ki(z, y, s, t) ife>sy<t
Kz, y, s, t) if v <s,y>t
(2.1) K(z, y, s, t) =927 (K, + Ky)(x, ¥y, =, t) ife=s89y<t
274K, + K)(x, 9, 2, t) ifx=sy>t
27K, + K)(, y, s, ¥) ife<s,y=t
27K, + KJ)(, 9, s, Y) ife>sy=t
4K + K+ K, + K)@,y,2,y) fr=s,y=t,

where (K, + K))(z, v, x, t) = K (=, y, x, t) + Ki(z, vy, 2, t), etc., and let
¢(x? S! t) = K(x! t+’ s’ t) - K(x, t~? s’ t)
"l’(yy 8, t) = K(5‘+, Y, s, t) - K(S—’ Y, s, t) .

To be definite at each jump discontinuity, let us agree that the
partials take left-hand limit whenever it fails to exist at a point, i.e.,

2.2)
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0° . 0
ayaxK(a’y Y, s, t) = H(-’I?, Y, s, t) - (u,v)llz?},y") ovou

K(u, v, s, 1)

~

o _ o i
(2.3) 5ot @ s, 1) = Az, 8, 1) = ul_lgl MACR RN

5 0
= t = = — ) y
5y W 8 1) = By, 5, 1) = lim =2y, 5, 1)

and assume that there exists an integrable function M(s, ) such that

for all (s, t)e I*
SUPG e 2 | H(%, Y, 8, T)]
var, y)el? H(xy Y, S, t)
var,.; H(z, 1, s, t

(2.4) + H ) < M(s, t) .
var,., H1, vy, s, t)
var,., Az, s, t)
var,.; B(y, s, t)

Also assume that
(2.5) |A(z, s, t)|, | B(y, s, t)| = B, a constant, and
(2.6) D(K)=+0.

Then for any Yeh-Wiener measurable functional F(f), we have
under the Fredholm transformation (1.1)

(2.7 |, F@)sg = [ DK)| || F(TF)-exp(~0())dsf |

where

2

o(f) = HO jaxgﬂK(“” U, s, 1) F(s, t)ds dt]zdxdy

(2.8)

0* .
+ zgﬂ[ayaﬁigﬂK(x’ Y, 8, t)f(S, t)ds dt]d f(xs y) )

and “ = 7 indicates the existence of one side implies that of the other
and the equality.

THEOREM II. Let h(z,y)e L? on I?, K(x,y,s,t) and F(f) as in
Theorem I. Then under the (nonlinear) transformation

L: f(x,y) — 9(x,y) = f(x,y) + fo(2, ¥)

(29 + | K, v, 2,5, 056, 0ds dt
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where fi(x, y) = Sygxh(s, t)ds dt, we have
0Jo

|, F@dig = | DE)|  FILp)-exp{~T()dss |

where

v =| |

+ 2&2[

3. Definitions. C 3 responding to each continuous funetion f(z, ¥)
on I*, the (»'") quasi-polyhedric function f,,(x, ¥) of f(x,y) is defined
to be

0* 2
Syon S K(z, y, s, t) f(s, t)ds dt] dx dy

856905,2[{(“’ Y, s, t) f(s, t)ds dt] a* f(x, Y) .

(3.1) S (@, y) = a;wy + b + iy + di;

on each square Q;; = [(? —1)/n, ¢/n] X [(j — 1)/n,j/n], 7,5 =1,2, -+, n,
where a;;, b;;, ¢;;, and d;; are so chosen that f,,(x, ¥) and f(x, y) agree
at the vertices (¢/n, j/n), (i/n, (j — D)/n), ((t — 1)/n, j/m) and ((t — 1)/n,
(7 — D/n).

REMARKS. (i). Since the function f, (x, ¥) is linear horizontally
and vertically in each square Q,;, we see that f,(x,y) is continuous
on I’. Furthermore the sequence {f.(x, v)} converges to f(x, y) uni-
formly on I* as »— . Evaluating a,;, b;;, ¢;;, and d,; explicitly, and
then combining terms, we have on each square Q;,

Foolr, 1) = (-, L)y — (i~ V(i — 1)y + (i~ 1)~ D)]

s + f(i ; %)[—nzxy + n(j — Da + niy — i(j — 1)]
< g1 >[ way + nje + n(t — Dy — ji — 1)]
+ f( )[n xy — mjw — wiy + ij] .

(ii) If K(z,y, s, t) is continuous on I‘, then for each (s, ¢)e I*
we can think of K(zx, v, s, t) as a function in x, y and so we have the
(»**) quasi-polyhedric function K, (2, ¥, s, t) in 2, ¥, namely for (x, y) €
Qi3 1,5=1,2,+-+, n, we have
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K(n)(x, Y, s, t)
= <%, in’ s, t)[nzxy —w(j —Dax—n@E—Dy+ @E—1)(7—-1)]
t—1 g5 o . T
(3.3) + K] R t>[ wxy + n(j — D + niy — i(j — 1)]
n’ on
1—135—1 . . . ..
+K< P ,s,t){nxy—mm—my-l—zj].

We also see that K, (z, v, s, ) 2K(w, v, s, t) on I* as m — oo, provided
that K(w, y, s, t) is continuous on I*. Here “ =7 indicates uniform
convergence.

For each ¢ > 0 let

0.(s) =sgns —sfe if |[s]|=Z¢

A
(-4 =0 it |s|>e.

Let K(z, v, s, t) and +(y, s, t) be as in Theorem I. Then the function
defined by

(3.5) L.(x,y,s,t) = Kz, ¥, s, t) + 27'[Q.(s — ©) — 2.(5M)]v(y, s, t)
is continuous in z,s. Now define

(3.6) J(,s,t) = L.z, t7,s,t) — L(x,t7, s, 1),

and

K.(x, 9,8t = Lz, y,s, t) + 27'[2.(t — y) — 2.(t")]J(z, s, t)
= K, y, s, t) + 27[2.(s — )2.(sH]v(y, s, ?)
(3.7) + 27Q.( — y) — 2.(N)]8(, s, 1)
+ 47[2.(s — @) — 2.2 — v) — 2K, + K.
— K, — K)(s, t,s, ) .

Then K.(z,y, s, t) is continuous on I*, and K.(0,y,s,t) = K.(z, 0, s, t)
= 0. Furthermore K.(z, ¥, s, t) is uniformly bounded in ¢, , ¥, s, ¢, and
lime—»o»FKz(xy Y, S, t) = K(xy Y, s, t)‘ NOW’ deﬁne

Cx,s) =¢/2 if —e<s—a<Le

(3.8) .
=0 otherwise.

Then from (3.7), (3.4), (3.8), and (2.8) it follows
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H(a:y,st)_ K(xy,st)

(3.9) _ H(x, v, 5, 1) + C.(, $)B(y, 5, t) + C.(u, A, s, ¢)

+ CE(.”U, s)-CE(y, t)'(Kt + Kz - Ka - K4)(S, t, 8, t) y

with the understanding that whenever the partial derivatives are not
defined at a point, then the value at the point to be the left-hand
limit with respect to 2 and v (for the uniqueness sake) as in (2.3).
Thus by using the mean-value property and the dominated convergence,
we see that for almost all (z, y) in I*

Elgr: SIZHE(x, Y, s, t)f(s, t)ds dt
(3.10) = SH(@ y, s, 1) f (s, yds dt + S:B(y, @, O f (@, Hdt

+ S;A(w, s, Yf(s, y)ds+ (K, + K, — K,— K)(%, ¥, @, ¥)- f (2, )
But the right hand side of (3.10) is exactly equal to

(62/8y8x)S12K(x, v, s, O f (s, t)ds dt .

Therefore for a.a. (v, y) in I*

lim S A
e—0+ Izayax

0°

- 0yox

—K.(x, y, s, 1) f(s, t)ds dt
(3.11)

§ K, v, 5, 0)f (s, )ds dt .

4. Some Preliminary Lemmas.

LemMmA 1. Let K, (z,y,s,t) be the n-th polyhedric function in
(x, y) with the understanding that K., (z, ¥, s,t) = 0 for all (z, ¥y, s, t) &
I'. For i,5,p,9g=1,2, +++,n let

@y A= g (2 L s ) ns—p) -t —ql)dsdt

(g—=1)[n J (p—1)]n

Then for any f e Cy we obtain:

' 23 w (2 4
() | K L5 ) s dt = S A (2, L),

n

.o — (n) .ﬂ_ __q_
(11) S ayaa/K(n)(x y)S t)f(n)(‘g t)dS dt % p;IBum (ny n



ON FREDHOLM TRANSFORMATIONS IN YEH-WIENER SPACE 179

i—1 Jj—173
Sfor (x, y)e( , n> X ( , n)’ where

n n

B%[;t;)q = Awpq Aéﬁ)l,qu - Ai‘beleq + A,ET,,J-_,M )
(iii) g [S;z&yaxK‘"’(x Y, S, ) fm(s, t)ds dt] dx dy

= 3 | 3 B D,

1,71 P,q=1 n

N2

V) | | 5 Koo vy 5, 0Fs, s dt |d F (e, )

=w 3 | 8 B2 L) | it

n- n

where

st = 15 3) =) - )

St—137—1
+ j( ) ) :
The proof of this lemma is similar to that of corresponding results
in [1]. Next, we consider a transformation of C, to C;:

T: 9@, 9) = (@, 1) + | Koo, 4, 8, ) Fo(s, s d .

Then by (i) of Lemma 1 and the fact that f,,(i/n, j/n) = f(¢/n, j/n)
at each 7 and 7, we have

@) Too(L, L) = f(L L)1 5 am (L L); ij=12,-m

n n' n et n
The determinant 4(K ) of this transformation is given by
(4.3) AK ) = det (Afp + 0rp)rr = 1, 2, n

where A, = Ai}), with I = (¢—-D)n+j, P=(p—-Dn+q,1=4,7,p, ¢ =
.

LEMMA 2. Let F(f) be a Yeh-Wiener measurable functional which
depends only on the W values of f(x,y) at (x,y) = (¢/n,j/n); ¢,5 =
1,2, ---, n. Let the n'® quast-polyhedric function in x, y, K., (2, ¥, s, t),
satisfy that K,,(z,y,8,t) =04 © =0 ory =0, and that 4(K,,) + 0.
Then
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|, Fadg = 123K | Flrw + | K, s 0506, 0ds di
¥ ¥

5 :
exp{~ | || 5755 Kl .5, 0o, s dt [ do dy

@
62
2] [ s Koo, v, 5, 0F1(s, s dt s, 1) o
In view of Lemma 1 and a Yeh-Wiener integral formula (see Theo-
rem I, [11]) the proof is word for word identical to that of the cor-
responding lemma in [1].

Lemma 3. If K(z, y, s, t) is continuous on I*, and ©f the Fredholm
determinant D(K) = 0, then
lim 4(K,,,) = D(K) .

Proof. Using (4.3), we may expand 4(K,,) as:

A(K ) = det (Afp + 0/p) 1 pe1,eeem

72 1 n2 .

=1+ > A% + E >, det (A;:in)i,jﬂ.z
P=1 « Pp,Po=1

1 =
(4.4) o e

” 1 ”

=1+ pE Ajine + 55 D, det( ;’Z’)IiP]le)i =12
»g=1

2! P1,91,P2,q2=1

det (Afp )i e o

bt s det (AL im0 )i 51s et -

(nz)’ P11 415 P2:02:" > P2y Q271
Let M be the bound for K on I*. Then by (4.1) we have |[n*A{},] <
M uniformly in =, 1, 7, p, ¢. Thus by Hadamard’s inequality it follows:

(4.5) |det (AL o Jirgoreee| = (MY NYE

Upon using (4.5) in (4.4), we conclude that |4(K,,)| is uniformly
bounded by the convergent series 1 + 3,5, MYN¥?2/N!, and for each N

lim > det (A 0,)i 5reeer

Moo P1,q1scc P NN =1
K(Sn tu Sy tx)' * 'K(Su tu Sy t;\')
= S ............................ dsldtl cee dsA,dtN R

"

12N
K(S‘\'y t.\'y Sla tl) K(SA'; tx\'y S;’\'y t.\')

Hence the conclusion follows.
Similarly it follows:
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LemMA 4. Let Kz, vy, s, t) be a bounded integrable function with
D(K) = 0 and let {K,(x, vy, s, t)} be a set of Borel measurable functions
which are uniformly bounded in \, x, y, s, t, and let 1im,_: K;(x, ¥, s, t) =
K(z, y,s,t). Then lim, .+ D(K;) = D(K).

LEMMA 5. For each (s,t)e I® let H(x, v, s, t) satisfy that

sup |H(z,y,s,t)|, var H(z,y,s, 1), var H(x, 1, s, t), var H(1, y, s, t)
(z,y) e 12 vel yel

(x,y)yel2
are all dominated by an integrable function M(s,t). Then

(4.6) Szﬁ[glzﬂ(x’ Y, 8, 1) f(s, t)ds dt]df(x, Y)

_ Sﬂ £, t)[SIZH(x, Uy 8, DS (@, y)ds di .

Proof. Let “||.]|” denote the supremum of the absolute value.
Then from the fact that

var o | His, v, 5,056, Ods di
]2
.7 varyeIS H, 1,5, 6,56, 0dsdt =< |1 /1| MG, Hdsdr < o=,
12 JI2
var,., | H(L, v, 5, 0, 0ds de
12

the left member of (4.6) exists as an ordinary R—S integral. Hence
for the net: x;, =i/n,y;, =j/n;%,7=1,2,--+, 0, and 2,_, < z¥ < z,,
Y =Y =y, we have with 4,7 (x,y) = f(w, ;) — f@imy, ¥;) —
f(xi; yj~—1) + f(mi—-u yj~—1),

|11 H@, v, 5,056, nas dt 4@, )
(4.8) —lim 3 [SIH(x;*‘, ut, s, 81 (s, t)ds dt]dw- F@, )

n—oo 4,31

n

= tim | £, 0)[ 3 Heor, 3, 5, 047 @, ) [ds de

i,9=1

But

3 HET 158, 0400 @, 0) |
4.9 = |IfIll var H(x, vy, s, t) + varH(z, 1, s, t) + varH(1, y, s, t)
( . ) (z,y) €12 zel yel

+ [H(1, 1,5, )]
= 4|[f 1 M(s, 0) ,

and since M(s, t) is finite a.e. we see that for a.a.(s, t) € I*
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lim 3, H(w?, y}, 5, )4, (@, 9) = gle(x, Y, 5, )df (@, 9) .

n—00 3,j=1

Thus (4.6) follows from this, (4.8) and (4.9) by dominated convergence.

LemmA 6. Let H(x, vy, s, t) be as in Lemma 5, and let

In In
(4.10) Ho(w, v, s, 1) = ns S Hu, v, s, t)du dv
(¢—1)/nJ (p—1)n
. (p—1 _P_] g—1 i] _
for (x,y)e( pounl ><< pra o y 0, e =12, m.

Then for every f (x; y)e Cy

1im§ [S H(z, y, s, 1) fus, H)ds dt]zdx dy
12 12

Nn—03

(4.11) _ Sﬂ[SﬂH(x’ Y, s, ) f(s, t)ds dt]zdw dy ,

2

(4.12) [S [SﬂH"(x,y,s,t) Fon(s, t)ds dtwa dy’é(llfHSﬂM(s, t)dsdt)z,

tim | [[ #0w,0,5, 00065, s dt 07,0, )

n—yoo

(4.13) = | ||, H@ 05,056, st )i, -

Proof. (4.11) and (4.12) are immediate. By (4.7) the function
S H(, y, s, ) f(s, t)ds dt is of B.V. Now
12

L[LH (@, ¥, 8, 1) f (s, t)ds dt]d f(x, )

- % Sﬂ[mg"’” S”’" H(u, v, s, t)du, dv] f(s, yds dt-d, .f

(p—1)[nJ (¢—D)/n
where . =1 )= (5 ) (0 S ) (5 )
Since

Sz[nz Sqln Sp/n H(u, v, s, t)du dv]f(s, t)ds dt

(¢—1)/nJ(p—1)n

is the average value of SzH(x, Y, 8, t)f(s, t)ydsdt in the square
I

((@ — D/n, g/n] x ((g — 1)/n, p/n], the existence of the R—S integral
implies
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lim SI [SﬂH”(x, u, 5, O f (s, H)ds dt]d (&, )

n—+00

(4.14)
= | || He,v,5, 056, 0ds dtJarw, v -
2L)r
Now,
var H"(x, vy, s, t) < Var H(x Y, 8, t) < M(s, t)

(z,y) e 12

var H*(x, 1, s, t) < var H(x, 1,s,1) < M(s,t)
(4‘15) zel zel

var H"(1,y, s, t) < var H(1, y, s, t) < M(s, t)

yel yel

|H"(1,1,s,8)| = sup [H(z,y,s,t)|= M(s,1) .
(z,y) el

Seeing the fact that H"(w, v, s, t) is constant in x, ¥ in each square

-1 -1 '
(2—%——,%] <q_n—’ %] and that f.(v,y) and f(x,y) agree on the

vertices of this square, we can write

gﬂ[gﬂHW(n)’ Y, 8, (s, t)ds dt]df(,,)(x, Y)

Il

3 SI H( L t> Fo(s, O)ds dt- 4,

P,q=1 n’' n’

|

Il

S H(E L s t)a,,f fisar

»,q

Therefore
Hze[gﬂﬂn(m’ Y, s, 8)f (s, )ds dt]df (=, v)
_ Sﬂ[gﬂ H"(, Y, 5, ) fin(s, s dt]d Fonle, ) |

= [ 1560 = Fus, 01 3 H(L, L, 5, 0)- a0 Jas e

< 4l1f = LA 1) MG, Ods at
thus obtaining

» lim | [ | 2@, v, 5, 0505, 0ds dt |17 @, )
o =tim| [| H"w,0,5,076, tdsat|ir@, v) -

n—rco

Hence (4.13) follows from (4.14) and (4.16).

COROLLARY. Let K(w, v, s, t) be as in Theorem I, K.(x,y, s, t) the
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corresponding function defined by (3.7), and K, .,(x,¥,s,t) the n®
quast-polyhedric function of K, in x, y. Then

. 0 2
lim | [ 575 K@, 9, 5, 1) F s, s dt | o dy

(4.17)
=§ [S,zayaxK(” v, 5, 1, t)dsdt]dxdy,

}al_.IE S,z[gﬂﬁa;EKeym)(m, Y, 8, 1) fim(s, t)ds dt]df(m(x, Y)
4.18)
_ S U ajawK @, v, 8, (s, O)ds dt]d ey

Proof. In view of (3.9), (3.8), and (2.4) we obtain

sup | |H.(z, 4, 5, 0)| < M(s, ) +ﬁ+ 1621(K1+K2—K3

(z,y) e

), b8, )],

var H(@,v,s, 0 < M(s, 1) + —M(s, £) +—§—ZI(K1+K2— K,

(z,y) e I2

- 4)(3y ta 8, t)l ’

(4.19)
var H.(s, 1,5, 1) < Mis, 0) + (26 + Ms, 0] + 551 (K, + K,

- Ks - K4)(8, t! S, t)l 3
var H(L, v, 5, 1) < M(s, 1) + =128 + M(s, D] + 51 (K. + Ku
yel e 2¢e

- Ka - Ki)(s, t’ 8, t)l .

Let M,(s,t) be the sum of the four right members of (4.19). From
(3.3) it is obvious that

2

0 q/n ?ln
@20 5Kl v, 1) = nS S O K(u, v, s, tydu dv

g—1/nd (p—1)/n avau

for p—m <z <pm,(g—Dn<y=gmnpqg=1,---, n. Hence
from (4.10), (4.20), and the fact that (0*/0vou)K.(u, v, s, t)=H.(4, v, s, t),
we see that

2

a—ya;H&(n)(xy Y, 8 t) = Hz, ¥, s, t) .

(4.21)

Thus the conclusions follow directly from Lemma 6*
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5. Some discussions on resolvent kernels. Let us denote the
resolvent kernel of K(x,y, s, t) in the Fredholm transformation (1.1)
by K*(z, v, s, t), i.e., if

(6.1) 0, 1) = £, 9) + | K, v,5,076, s dt ,
then
(5.2) @) = 0w, ) + | K@ 0,5 09(s, Ddsdt

Let K(x, v, s, t) be a bounded L*-kernel on I* with D(K) # 0, and set
(5'3) 9(%, y7 Sa t) = K*(ﬂ’}, yy 8! t)'D(K) M

Then, using the familiar results for resolvent kernels for Fredholm
integral equations with » = —1 (see [8], pp. 66-75), we can establish

(5.4) K(x,y,s,t)+K*(,y,s, t)=—§ Kz, y, w, v)-K*(u, v, s, t)dudv ,
J12

(5.5) D@, y,5,1) = 3, Culs, u, 5, t)/n!

n=0
where Cy(z, vy, s, t) = —K(z, vy, s, t), and other C,s are found succes-
sively by

C.(x, y, s, t) = J(K)-K(z, ¥, s, 1)
— ng Kz, y, u, v)C,_,(u, v, s, t)dudv ,
I2

ley 19 Ly "'Kmly 19 Lny Yn
5.6) (@, Yy, @, Y1) (1 Yy Ty Ya)

K(@uy Yy 1, Y1)+ KTy Yy Tay Yu)
dxdy, --- dx,dy, .

By Hadamard’s inequality it follows from (5.6) that
G, y, 8, 8) | = (n + L)VEK|" .

Therefore the series in (5.5) is absolutely and uniformly convergent.
If K(z, vy, s, t) satisfies the assumptions in Theorem I, then

S K(x, y, w, v)C,(u, v, s, t)dudv
I2

is continuous on I* for n = 0,1, 2, ---, and hence from (5.6) we sze
that the jumps for C,(u, v, s, t) coincides with those for K(zx, ¥, s, t),
and thus it takes average value at each jump, and so does
Sy Col@, y, s, t)/n! by uniform convergence. By absolute convergence
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we may rearrange the terms in the series (5.5), and then use the
uniform convergence to obtain

9(%, Y, 8, t) = 2 %[Jn‘K(xy Y, s, t)
(5.7) — n| K@, v, 4 9).C.w, v, 5, )dudo|
I2
=C-K(x,v,s,t) —§ Kz, y, u, v)- 2 (u, v, st)dudv ,
72

where C = 3=, J,(K)/n!. Corresponding to each K¢ (x, ¥, s, t), define
K(t)(wy Y, S, t) by
K(}:)(xy y) sy t) = D(K)né](s)(my Y, 81 t)

(5.8) = DK)[ C-K@, v, 5,9

—S K.(z, y, u, v)+ Z(u, v, s, t)dudv] .
I2

Then Kp(z, v, s, t) is continuous on I*, and since <(u,v,s,t) is
bounded, we have that KX (x, v, s, t) is uniformly bounded in ¢, z, y, s, t,
and from (3.9), (4.19), and (5.8) it follows that

02
H(f,(x, Y, s, t) = ayaxK(T)(xy y’ S, t)

(5.9) - D(K)[C-Hs(ﬂc, Y, 8, 1)
B SIZHE(xy Y, u, V) Z(u, v, s, t)dudv] ’

and sup(x y)e12|H(>:)(xr y: 8, t) !& Var(z,y}eﬂH(,:)(m) y, Sy t); VarzeIH(t)(m1 19 S) t)r
and var,.; H}(1, v, s, t) are all dominated by |D(K)|(|C|+ ||<=]).
M.(s, t). Furthermore, by Lemma 4

(5.10) €1_1’£r+1 D(K}) = D(K*) = D(K) .
6. Additional lemmas. Utilizing (3.7), (3.9), (3.11), (5.8), and
(5.9), we have the following
LEMMA 7. If K(x, v, s, t) satisfies the hypotheses of Theorem I, then
[ Ko, 9,5, ) — K@, 0,5, 0176, )dst |
= e + ol fII-IKI

(6.1) S,[ S,é?aa’oé K.z, y, 5, (s, t)dsdt]zdxdy
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< 171 | MGs, st + 2 + 41 K]

limS [S aja K.z, 4, 5 ) (s, t)dsdt] dedy

c—0%

(6.2) . 2
_ S[ ayaxgﬂK(w, v, s, 1) f (s, t)dsdt] dady |
69 K@, 0,50 — K@, 0,50 |75, Odsdt |
= 4+ 9IS KN DE)-(IC] + 1=z 1) ,
Kt (v, , 5, 0)F (s, dsdt | dady
(6.4) S [Sﬂayax ]
= (171 DEF(CT+ )| | s, asat + 2 + 41K
1}£1}S [S zayaxK“’(% Y, s, t) (s, t)dsdt] dxdy
(6.5) '

_ Slz[ayame(x U, 5, OF (s, t)dsdt] dasdy .
The following two lemmas are the key results:

LEMMA 8. Let K(x, vy, s, t) be as in Theorem I. Then

§ [ajax§ K(@, y, 5, 8) f (s, t)dsdt]d* f@,y)

defined as in (1.2) converges for a.a. f in Cy, and any two C.O.N.
sets in the class lead to the same value for a.a. f in Cy. Further-
more, we have

e—=0t

Lim. S[S i K v, 505G, t)dsdt]df(x v)
(6.6)
_ S,z[ayaaxg K, y, 5, 0)f (s, t)dsdt]d* f@, v) on C,

where the mean convergence s in L*-sense.

Proof. First we observe that

Szz[ajaxg Kz, y, s, ©) 1 (s, t)dsdt]d (2, v)
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:S [S aya%K(ac v, 5, Of (s, t)dsdt]d* F(, v)
.7 + | [\ Bw, o 056, vat|os@, v
| [V 4@, 5,056, wids|arr@, v

| (K K- K= K, 0,5,9)- 7@, 040 @, 0)

and the existence and the consistency of each of last three expres-
sions follow in the similar manner as in the generalized P.W.Z. integral

~

) hfd*f. On account of (3.9) and Lemma 5 we may write
2

S [Sz@yaxK(a' Y, 8, 0 f(s, t)det]df(“? Y)

- S U r0yow

©8) Sﬁ s, t>[SﬂCe<x’ 9By, s, O (=, v) |dsdt

s, 1) (s, t)dsdt]df(w Y)

+ gﬂf (s, t)UIZCE(y, HA(z, s, Hdf(x, y)]dsdt
+| K K= K= K)G, 15, 0] | O, 9C. 0, 0 @, ) Jdst

Obviously,

|t

=S UI aya_%K(oc v, 5, )1, t)dsdt]d* fz,y) for aa.feC, .

s, )1 (s, t)dsdt]df(’c ")

Thus to establish (6.6) we need only show that

Li.m. Sﬂ £Gs, t)[SﬂCe(x, $)B(y, s, t)df (z, y)]dsdt

e—ot

(6.9)
= SIZ[S:B(Z/, x, 0)f (, t)dt]d*f(x, y) on C,,

and so on. To see this we observe that the Yeh-Wiener integral

§Cy{§ﬂf (s, t)UﬂCS(x, 9By, s, )df (z, y)]dsdt}zdy f

N %{S [HC(” s)B(, &', t')ds’dt’]zds dt de dy
14 tJs
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T [S, (STCe(w, 8)B(y, s, t)dxdy) dsdt]2
+ gﬂ(S i C.(x, s")B(y, s’ t')dxdy)
% (S 3 C.(z, 9)B(y, s, t)dxdy>dsdtds'dt’} ,

1AL LV Bw. = 07 @ nat jo @, o) o
_ %{S [S(&B(y o, t’)dt’)zdx’]dxdtdy

+ %[Sﬂ(SZB(y, x, t)dt)dxdy]z} )

and
X{S AL ’”[S,f’e(% $)B(y, s, H)df (x, y)]dsdt}
Al 18w, 5 05, vat|ir @ v},
- %{S U B(y, @, ') min (s, 2)C.(x, 5)B(y, s, t)dxdy]min(t, t')dsdtdt"
S (S 5 B(y', o' tz)[‘ S,Ce(w, s)B(y, s, t)dxdy]dx'dy’)dsdtdt’

+%S I(S B, o, t')[SOSOCe(S, 2)B(y, s, t)dwdy]dy'>dm’dsdtdt’} :

The techniques leading to the evaluation of above integrals can be
found in [3] and [4]. Using these and then taking the limit as e—0*,

we get
lim SCY{SIZ £ 0| | €, 9B, 5, dr @, y) |dsdt

~ | [\ Bw, o, 017 @, vt Jaor @, wdif =0,
which is exactly the same as (6.9).

LEmMMA 8. Let K(x, vy, s, t) satisfy the hypotheses of Theorem I.
Then for its resolvent kernel K* we have

(6.10) S,z[aj;x [ K@, v, 5,05, tisdt Ja*F @, )

converges for almost all f in Cy and is essentially independent of the
particular choice of the C.O.N. set, and
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Lim. HS K,y s OF G, t)dsdt]df(m ¥

+ Iiay 0

=07

(6.11)

:g [O;JK (@, v, 5, ) f (s, t)dsdt]d f@,y) on Cy.

Proof. The claim on (6.10) can be treated as that in (6.7). As

for (6.11) we may use (5.9) with H.(z, v, s, t) = aygt;%K:(x, Y, s, t) to see
that

62 % (e (e
[ ks v s 056, t)dsdt]df @ )

- oolef[],55

_ Sﬂ[gﬂ(gﬂgg———(;xlf:(x, Y, U, v). 7 (u, v, 8, t)dudv)f(s,t)dsdt]df(x,y)} ,

s, 1) f (s, t)dsdt]df(m Y)

and the first term in the braces converges in the mean to
c| [ @] K, v, 5,056, asdt a7, v
12 Jr2

on C, by the preceding lemma. Therefore, in view of (5.3) and (5.7), it
remains to show that

1.i.m.jlz[g (g 7 K.(x,y, u, v)(u, v, s, t)dudv)f(s t)dsdt]df(m Y)

0T 12 oy&m

= Sﬂ[a;;xgﬂ(sﬁlf(x, Y, u, v).<0(u, v, s, t)dudv)f(s, t)dsdt]d*f(:v, Y)

on C, whose proof is essentially on the same lines as that of Lemma 8.

LEMMA 9. Let F(f) be a nonnegative Yeh-Wiener measurable func-
tional on C,, and let K(x, y, s, t) satisfy the hypotheses of Theorem I.
Then under the Fredholm transformation T in (1.1), we have

(6.12) |, Fdg = |DK)I| F(TF)-exp (= 0(1)}d, /

viY

where O(f) is given by (2.8).

Proof. First we assume that F(f) is a bounded nonnegative func-
tional continuous on C, with respect to the uniform topology, and is
dependent only on the »* values of f at (z,¥) = (¢/n,j/n); 1,7 =1,
2, +++, . Since lim, ,- D(K.) = D(K) # 0 and lim, .. D(K. ,,,) = D(K.)
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by Lemma 4, there exist ¢’ and N(¢) such that 0 < ¢ < ¢’ and n = N(¢)
imply D(K.) # 0 and D(K,,,) # 0. For such ¢ and n we may apply
Lemma 2 to obtain

|, F0)drg = 19K )| F| Fort ] Kualer -, 8, OF s, )

sy

i :
6.13) cexp{~| [| 5o K@ 5 0fle t)dsdt [ dudy

- az
=2 [ 5y Ko@) s, tdsdt [0 ) s f

As n— o fi(x, ¥) = f(z, y) and K, (2, v, s, t) = K., y,s,t). Hence
02(3, 9) = Fun(@, 9) + | Koiw(@, U, 5,0 Fons, dsdt =2 0(z,9) = £ (2, 9) +
S K.(x, v, s, t)f(s, t)dsdt. Therefore F(g,) — F(g) boundedly. Thus
lim,, S F(g,)d,g = S F(g9)dyg.. Now, by Fatou’s lemma it follows from
(6.13) w1th the help "of Lemma 3, (4.11), and (4.13) that

[, Fodo 2 \DE) | F 7+ K- s 05 tdsit]

(6.14) -eXp{ ﬂ [SzzoyaxK @, 9, 8, ) £(s, t)dsdt] dady
—2§ [Sm’)ya K.(w, , 5, )£ (s, t)dsdt]df(x y)} .

By (6.1) S K.z, 9, 5, t) F (s, t)dsdt:::S K, v, 5, 0(s, t)dsdt as e— 0",
12 I '
and hence

F[ f+ SﬂKs(-, o s, Of (s, t)d‘sdt] - F[ 1+ SIZK(-, .5, OfGs, t)dsdt]

boundedly. Since “mean convergence” implies the existence of an
almost everywhere convergent subsequence, it follows.from (6.6) that
there exists a monotone sequence ¢, | 0 such that

N~—»00

limg [Sﬂﬁyaxl{ @, v, s, )F(s, t)dsdt]df(x )
(6.15)

glo[ayaa_,bg K(x, y, s, 1) f(s, t)dsdt]d*f(x y) fora.a.feC,.

Now we replace ¢, for ¢ in (6.14), and then use Fatou’s Lemma together
with (6.2) and (6.15) to arrive at (6.12). This completes the proof for
the case when F(f) in nonnegative, bounded, and continuous in uniform
topology. To obtain the result for arbitrary nonnegative measurable
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functionals, we go through, as usual, the following steps: after proving
it for the preceding case, we go to characteristic functionals of inter-
vals, then 0-sets, then 0;-sets, and then mull-sets. (In the last case
we get equality rather than inequality, both sides being zero.) Then
to characteristic functionals of measurable sets, nonnegative simple
functionals, nonnegative bounded Yeh-Wiener measurable functionals,
and then finally nonnegative Yeh-Wiener measurable functionals. For
the details of these steps see [2: pp. 391-392].

On account of (5.9), (5.10), (6.3), (6.5), and (6.11) we can establish
the following on the same lines as above:

LEMMA 9. Let F(g) be a monnegative Yeh-Wiener measurable
Sfunctional on Cy, and let K(x, y, s, t) be as in Theorem I and K*(x,v, s,t)
its resolvent kernel. Then under the tramsformation

T g, 9) — £, 9) = 9, 9) + | K@y, 5, 0o(s, dsde

we have
|, F()dsf = 1D7(O)| | F(T~9)-expl—0°(a))dyg .
where
0*(g) = ([ajayglfux , 5, 09(s, t)dsdt [ dudy
(6.16)

o s« *
+ 2] [572] K@ v, 5, 006, tdsdt [a*atw, v)

7. Proof of theorems. WeZ prove <Theorem I for nonnegative
Yeh-Wiener measurable functionals first. In this case by Lemma 9
we have under the transformation T in (1.1),

(1.) |, F@do= DE)| FITF exp{~0()dsf .

and upon applying Lemma 9’ on tne right-hand side of (7.1), we obtain
under the transformation

T 9@ y9)— f(@,9) = 9(w, ) + SIZK*(% Y, 8, t)g(s, t)dsdt

[, FITF1 exp (— 0},
12
= |D(K)|| F(T-T9) exp{~0(T"0)}-exp {~0"(@)dg -
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Hence if we show that
(7.3) o(T'g) + &*(9) = 0 for a.a. g in C,,
then it will follow from (7.1) and (7.2) that

|, Flodsg = DU FITA exp (—0()drf
= Fada,

and hence the theorem will follow for the case. Observe now that if
T(f) = g and so T7'(g9) = f, then

| K@, v, 5, 0£(s, 0dsdt = 9@, ) — £(2,9)
(7.4)
[ K@, v, 5, (s, Odsdt = £(z,9) — 9, 9)

and from (3.10) and (3.11), we see that the left-hand side of the first
equation in (7.4) is absolutely continuous, and

2

0
ayaﬂb‘gzzK(x’ Y, 8, 1).f(s, t)dsdt

is continuous. Therefore (0*/0ydx)[g(x, y) — f(x, ¥)] is also continuous.
Therefore by the corollary to Theorem 4 in [3], we see that

Sﬂaj;x[g(x, y) — f, Yld*lo(x, v) — f(x, v)]

(7.5)

= {zaslote, ) = 7, w1} dody -

Hence from (2.8), (7.4), and (7.5) it follows that

oT9) = 9(7)

| f5mlot@, v) - £, )1 dady
+ 2] =2t ) — Flo, DI, )

(7.6) = Sﬂ{a;;x[g(x, y) — f, y)]}zdxdy
+ 2] S0, ) — £, VIS, )

- 2S12{3Z;x[g(x’ W) — £, )]} dady
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and from (6.16) and (7.4)

12

00) = | {0l @ v) — ota, 91 dedy
(1.7)

* 2§Izza§;7c[f (x, y) — g(x, Yld*g(x, v) .

Therefore (7.3) follows from (7.6) and (7.7). Hence the theorem holds
for any nonnegative Yeh-Wiener measurable functionals. For arbitrary
real Yeh-Wiener measurable functionals the theorem will also hold by
considering the positive part and the negative part separately. For
complex functionals we get the same result once we consider real part
and imaginary part separately. This completes the proof of Theorem I.

To prove Theorem II we consider the following two transforma-
tions

I: f(z, ) — 9@, 9) = f(z,9) + [, ),
L £ (&, 9) — ho, 4) = £, 9) + | K@, v, 5,05 (s, Odsdt .

The theorem now follows by the use of Cameron-Martin translation
theorem (see [11] or more precisely Theorem 1.4 in [4] on L, and then
our Theorem I for L,.

REMARK. As mentioned in the introduction our theorems in one-
dimensional version have slightly different forms from the ones given
in [1], the difference being in the expressions of @(f) and Z(f). The
o(f) in [1] is given by

o(f) = [ 15| K, )7 @as
(7.8)
+ 2 [[ 2 K, 97 @as|is + { Twatren,

and ours is in the form

(1.9)  O(f) = S [;%c SK(ac 5) f(s)ds]zdx n 25 [a% SOK(x 5) f(s)ds]d* Fw) -

1 1
0 0l
However by the assumptions given on K(z, s) in [1], we have that

L1k, 9f 0)is = L Klo, 917605 + | Koto, 976

= (Ko, ) — Ko, /@) + | 5 K@, 97)ds
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19
= J@)f @ + | 5= K, 9)f (0)ds -
But assuming absolute continuity of J(x) with J'(x) € L*, it follows
from Theorem 5 in [3] that

| @r@F@anf@ - -;—S:J(x)d[fz(w)] for a.a. feC, .
Also as mentioned earlier

(e criy — UT12 -

[ 55K, )5 @ds o) = [ [ | 5 K, 97 6)ds jar @)
for almost all f in C,,. Thus (7.8) and (7.9) represent essentially the
same thing.
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