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LEFSCHETZ FIXED POINT THEOREMS
FOR A NEW CLASS OF MULTI-VALUED MAPS

MICHAEL J POWERS

The Lefschetz fixed point theorem states that whenever
the Lefschetz number Λ(f) of a map / : X->X is nonzero,
then / must have a fixed point. The theorem is known to
hold when X is an ANR and / is a compact continuous map.
The theorem has been studied for compact, upper semi-con-
tinuous, acyclic multi-valued maps and is known to hold in
this setting for topologically complete ANR's.

A more general class of multi-valued maps is considered
in this paper: the class of compact upper semi-continuous
maps which can be written as a composition of acyclic maps.
Using this class of maps, a theorem is proved which gener-
ates spaces for which the Lefschetz theorem holds. In par-
ticular, the Lefschetz theorem holds for all (metric) ANR's.

Lefschetz fixed point theorems for multi-valued maps of compact
spaces were first studied by Eilenberg and Montgomery [2]. Moti-
vated by the LeRay-Schauder fixed point results, the concept of
Lefschetz space has been generalized to that of Λ-space and MΛ-
space for multi-valued maps ([3], [4], [6], [8]). A space Xis a yl-space
if, for every compact map / : X —>X, the Lefschetz number is
defined and the Lefschetz theorem holds. An M/ί-space is defined
in a similar way for multi-valued maps. The multi-valued maps,
however, are required to be both compact and acyclic (i.e., the image
of each point is an acyclic subset). This additional condition is
necessary in order to define the induced homomorphism on the
homology groups.

A method of generating M/ί-spaces from known M/ί-spaces was
presented in [8]. In applying the method, however, the acyclicity
condition created a problem. It was possible to conclude, for example,
that (metric) ANR's where Λ-spaces, but not that such spaces were
MΛ-spaces. While enlarging the concept of MΛ-space to include
maps which are compositions of acyclic maps, a more general generat-
ing theorem can be proved. The category of all metric ANR's is
produced by this generating theorem.

2* Definitions* The image of a subset A of X under a multi-
valued map F: X-+ Y is F(A) = \JxeAF(x). The map F is compact
if F(X) is contained in a compact subset of Y. Let Γ(F) denote
the graph of F. The projections p: Γ(F) -> X and q: Γ(F) -> Y are
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called the projections associated with F. F is upper semi-continuous
(u.s.c.) if:

( i ) F(x) is compact for each xeX and
(ii) for each xeX and each open set V containing F(x), there

is an open neighborhood U of x such that F( U) c V.
If F: X—> Y and G: Y—>Z are multi-valued maps, the composi-

tion of F and G is denoted G°F: X—*Z and is defined by GoF(x) =
Ui/eî s) G(y). The composition of u.s.c. maps is again u.s.c.

A point x is a fixed point for F: X—+X if xeF(x).

Eilenberg and Montgomery [2] defined an induced homomorphism
for certain multi-valued maps F: X—> Y with X and Y compact.
Their definition was extended to the non-compact case in [8]. Only
the basic definitions are given here. Let cΓ denote the category
of Hausdorίf spaces and continuous maps. Let s/ denote the category
of graded vector spaces over the field & of rational numbers and
homomorphisms of degree zero. Let έ%f\ ^~ —> S# be a covariant
functor which satisfies the homotopy axiom and agrees with the Cech
homology functor H on the subcategory of compact spaces. We also
require that <§ίf satisfy a Vietoris mapping theorem of the following
type:

If / : X—> Y is a morphism in j?~ such that
( i ) / i s inverse acyclic (i.e., for each y e Y, f~\y) is acyclic

with respect to βgf) and
(ii) / i s proper (i.e., for each compact subset K of Y, f~ι(K)

is compact), then 3ίf(f) is an isomorphism in sf.
A functor H satisfying these conditions was exhibited in [8].

A multi-valued map F: X—*Y is acyclic (with respect to &?)
if for each xeX, F(x) is an acyclic subset of Y. When F: X-+ Y
is u.s.c. and acyclic the projection p: Γ(F)—*X satisfies the con-
ditions for the Vietoris Theorem above.

DEFINITION 2.1. Let F: X—> Y be an u.s.c. acyclic multi-
valued map of spaces in ^ 7 The homomorphism induced by F (with
respect to 3(?) is defined έ%f{F) = c^(q)o,^(py\ where p> q are the
projections associated with F. We write 3(?(F) = F*.

THEOREM 2.2. Let F: X-+Y and G: Y—*Z be u.s.c. acyclic
maps of spaces in J^ If GoF is acyclic, then (G<>F)* = G*°F*.
(See [8], Theorem (3.8).)

Finally, we recall the definition of trace for endomorphisms of
infinite dimensional vector spaces given by Leray [7]. Let φ be an
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endomorphism of a vector space V; let Nφ = {v \ φp(v) = 0 for some
p ;> 1}. Suppose that V/Nφ has finite dimension. Then the trace
of φ, tr(φ) or trv(φ), is defined by trF(^) = trv/Nφ(φ'), where φ' is in-
duced by φ and tr(^') is the classical trace.

DEFINITION 2.3. Let Φ = {φk}: V—> V be an endomorphism (of
degree zero) in Szf. Then / is said to be of finite type if

( i ) VkINφk has finite dimension for each k and
(ii) NΦk — Vk in all but a finite number of dimensions k.

DEFINITION 2.4. Let φ: V—>V be an endomorphism of finite
type in ,szf. The Lefschetz number of φ is

LEMMA 2.5. Let φ: V-+ W and ψ: W —> V be homomorphisms
(of degree zero) in s>f. If ψoφ; y—> y is of finite type, then φoψ:
W —> W is also of finite type and in each dimension k, tr(ψkoφk) =
tr(φkoψk). (See [7], Prop, c.)

3* MΛ-spaces. We will consider u.s.c. maps F: X—+X which
can be factored into a sequence Gn © o Go of acyclic u.s.c. maps.
We will then want to use Λ(Gn* © . . . o Go*) as a Lefschetz number for
F. However, an easy example shows that some care must be ex-
ercised. It is possible to have

G2oG, = F - H2oH, and Λ(G^oG^ Φ 0, A{H^H^ = 0 .

Simply let F: S 2 — S2 by F(x) = S2 for all xeS2. Define K: S2-* S2

by K{x) = {yeS2 \ \\x- y\\^ 7/4}. Then K is u.s.c. and acyclic.
In fact, K is homotopic to the identity on S2 and hence K* is the
identity. Let G, = G2 = iΓ. Let 23; be defined by ϋ^α;) = JSΓ( —α?)
and let H2 - 25Γ. Then G2oGL = F = H^H,; but Λ{G2*oGx*) = 2, while

) - 0.

will denote a subcategory of ^ Γ

DEFINITION 3.1. An u.s.c. map ί7: JΓ-^Xof a space in ^ " is
admissible (relative to J7~Q) if there are maps

(where Yo = Yn+1 = X) satisfying
( i ) F = G , o . . . o G 0 ,
(ii) Gi is acyclic and u.s.c. for each i = 0, •••,%, and
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(iii) Yi is in ^7, for i = 1, , n.
Each such sequence Go, , Gn is called an admissible sequence for F.

DEFINITION 3.2. An admissible map F: X-+X is an M-Lefschetz
map (relative to J71) if

( i ) for each admissible sequence Go, , Gn for F, Gn* o o Gt*
has finite type and

(ii) whenever Go, , Gn is an admissible sequence with

Λ(Gn* o . . . o G») Φ 0 ,

then F must have a fixed point.

DEFINITION 3.3. A space X is an M-Lefschetz space [MΛ-space]
(relative to JΠ) if each admissible [compact admissible] map F: X—+X
(relative to ^7) is an M-Lefschetz map (relative to

Note that a single-valued continuous map / is admissible iff /*
has finite type. Thus the theory here is no more general in the
case of single-valued maps than that presented in [6].

The concept of M-Lefschetz space and MΛ-space is more general
than that presented in [8]. We continue to use the same terminology
since the definition presented here seems to be the one that most
warrants further study. Moreover, it will be shown that spaces
already known to be M-Lefschetz or MΛ-spaces remain M-Lefschetz
and M/1-spaces in this more general setting.

4* Generating theorems* The following theorems present a
method for generating MΛ-spaces from known M4-spaces. Similar
theorems hold for M-Lefschetz spaces. It was recently pointed out
to the author that this method of generating M/ί-spaces was used
by W. Hurewitz in his lectures for the proof of the Lefschetz
theorem for compact ANR's.

DEFINITION 4.1. Let F, G: X-+Y be multi-valued maps and
a G Cov Y, the set of open covers of Y. Then F is a-near G if for
each x e X and each y e F(x), there is a U in a containing y and
meeting G(x).

THEOREM 4.2. Let X be a Tz-space in ^ 7 . Suppose that for
each a e Cov X there is an MΛ-space Ya (relative to ^7) and maps
Ha: X—> Ya, Ka: Ya-+X satisfying

( i ) Ha9 Ka are u.s.c. and acyclic,
( i i ) Ka*°Ha* = 1 ^ ( Z ) , and
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(iii) Ka°Ha is a-near lx.
Then X is an MΛ-space(relative to J7~i).

Proof. Let F: X~+X be an u.s.c. compact map which is
admissible (relative to J71). Let Go, •••,(?« be an admissible sequence
for F. Take any a e Cov X and Ha, Kay Ya as in the hypothesis-
Consider the diagram

Ha ° Gn ° ° Go ° Ka __
•*- a -*• «

Hal ^^F-Ka I
I \ /Ha

The map HaoGn° ••• o G0°Ka is compact and admissible (relative to
^ ) . Since Ya is an M/ί-space Ha* o (Gn* o . . . o G^K^) has finite type.
Thus by (2.5) (Gn* o . . . o G0*oKa*) o fl"^ = Gn, o . . . o (?0* has finite type
a n d Λ(Gn* o . . . o Go*) - Λ(Ha*oGn* o . . . o G0*oKa*).

Now suppose Λ(Gn* o o Go*) ^ 0. Then for each α e Cov X,
Ha°Gn o . . . o GQoKa is a compact admissible map and

Thus the map has a fixed point i/α e Ya.

Since τ/α e HaoF°Ka(ya), we can choose ^α in F(Ka(ya)) S i^(X)
such that yae Ha(xa). Choose #α in Ka(ya) such that xaeF(xa)* Final-
ly, since KaoHa is α-near l x and since xa e Ka(ya) £ Ka°Ha(xa), then
there is an element ί7α of α: which contains both xa and xa. Now
{̂ α: α G Cov X} is a net in the compact space F(X) and there is a
subnet T — {T(m): meE} converging to a point xoe F(X) a X.
(Then there is a map N: E—+CovX of directed sets satisfying
T(m) — xN{m) and for each a e Cov X, there is an ne E such that
m > n implies N(m) > a.)

Consider the net S = (<S(m): meE} defined by S(m) — xN{m). It
suffices to prove that S also converges to x0. For then S x Γ is a
net in J Γ ( F ) converging to (x0, α?0). But since F is u.s.c. its graph
is closed. Hence (x0, x0) e Γ(F) and xoeF(xo).

Let F be any neighborhood of x0. To show that S is eventually
in V, first recall that α;α and xa are both elements of Ua for each α:
in Cov X. Since X is regular, there is an open neighborhood W of
x0 such that WczV. Let a0 = {V, X- W) in Cov X. Since the net
T converges to xQ, there is an element nw in E such that m > nw

implies T(m) e ΐ^. Moreover, there is an element n0 of E7 such that
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N{m) > a0 when m > n0. Since E is directed, there exists an element
n of E such that n > n0, nw. Now for any m > n it is easily verified
that S(m) e V. For Γ(m) = ^ ( w ) e IF and c^ ( w ), a^(m) are both in
UN(m). Then UN{m) Π TF ̂  0 and hence C/̂ (m,-ςz! X - TΓ. Since
m > w0, JV(m) > tf0 and UNim) c F. Thus xN(m) = S(m)e V.

Condition (iii) of the theorem is fairly restrictive. However, for
the present applications Ha and Ka will be single-valued maps and
the condition is perfectly reasonable.

COROLLARY 4.3. A retract of an MΛ-space is again an MΛ-space.

If X is a metric space, let {ek} be a sequence of positive numbers
converging to 0 and let ak be some open cover of X by s^-balls, for
each k. Then while D — {ak} is not cofinal in Cov X in general, we
still obtain the following theorem.

THEOREM 4.4. Let Xbe a metric space in Jf^ Suppose that for
each akeD there is an MΛ-space Yk(relative to J^l) and maps Hk:
X—>Yk and Kk: Yk—>X satisfying

( i ) Hk, Kk are u.s.c. and acyclic,
(ii) Kk*oHk* = 1^ ( X ), and
(iii) KkoHk is ek-near l z(i.e., for each xe X, KkoHk(x) c B(x; εk))m

Then X is an MΛ-space (relative to

Proof. Let F: X—>X be an u.s.c. compact map which is admis-
sible (relative to ^ ) . Let Go, •••,(?„ be an admissible sequence
for F. Then for each integer k and Hk, Kk, Yk as in the hypothesis
it can be proved, just as in (4.2), that

Λ{Gn* o . . . o Gv) = Λ(Hk*oGn*o . o G0*oKk*) .

Suppose that Λ(Gn* ° ° Go*) ̂  0. Then for each k, the compact

admissible map Hk°Gno ••• o G0°Kk: Yk-+Yk has nonzero Lefschetz

number and hence has a fixed point yk e Yk. Just as in the proof of

(4.2), ykeHkoFoKk(yk) and there are points xk in F(Kk(yk)) and xk in

Kk(yk) such that ykeHk(xk) and xkeF(xk). Now since KkoHk is εk-

near 1Σ and since xke Kk(yk)a Kk°Hk(xk), then d(xk, xk) < ek. Now

{xk} is a sequence in the compact space F(X) and there is a sub-

sequence, still denoted {xk}, which converges to a point xQe F{X)aX.

It suffices to prove that the corresponding subsequence of {xk}

also converges to a?0. For then {(xk, xk)} is a sequence in Γ(F) con-

verging to (a?0, O and αj0GF(ί»0). Given s > 0, choose fcL so that for

k > k19 ek < ε/2. Choose k2 so that for fc > fc2, d(«fc, α?0) < e/2. Then

for ft > max {ftlf ft2}, d(a?fc, »*) < βfc < ε/2 and hence d(xk, x0) < ε. Then
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the subsequence {xk} converges to xQ.

5* Applications* In this section, ^ will be the category ^~M

of metric spaces and continuous maps.

LEMMA 5.1. Let f: X—+ Y and g: Y—+Z be maps in ^~ which
are proper and inverse acyclic (with respect to £%f). Then gof is
also proper and inverse acyclic (with respect to

Proof, gof is clearly proper. Take zeZ and let A — g~ι(z).
Then A is an acyclic subset of Y. Let fγ\ f~\A) —> A be defined by
/. Then fγ is a map in J7~ satisfying conditions (i) and (ii) for the
Vietoris Theorem. Hence /i* = 2ίf(f~~\A))—*3(f{A) is an isomorphism
and f~\A) = (g°f)~\z) is acyclic.

THEOREM 5.2. (Eilenberg and Montgomery). Let X be a compact
metric space and P a finite polyhedron. Let /, g: X—+P be con-
tinuous maps such that f is inverse acyclic. Then Λ(g*of~ι) is
defined and if Λ(g*of~ι) φ o, then f and g have a coincidence. (See
Theorem 4, [2].)

THEOREM 5.3. Finite polyhedra are M-Lefschetz spaces (relative
to

Proof. Let P be a finite polyhedron and F: P-+P an u.s.c.
admissible map. Let Go, •••,£?* be an admissible sequence for F,
where G :̂ Y£ —> Yi+1 with YQ — Yn+1 = P and all Yζ are metric spaces.
Then GΛ, o . . o Go* has finite type since P is finite.

Now suppose that Λ(Gn, o . . . o G>) Φ 0. We prove that F has a
fixed point for the case n — 1. The proof for arbitrary n is an
exact generalization of this proof. We have Go: P—>Y and Gv Y—+ P,
where Y is a metric space and JP = G^G0. Let p0, g0 be the projec-
tions associated with Go. Then p0 is inverse acyclic. The composition
Gi°Qo' ΓGz —> P is an u.s.c. acyclic map.

Let Pi, (h be the projections associated with G^q^ then pι is
inverse acyclic. Then by (5.1) ίVPi is inverse acyclic and we have
QuPo°Vi' ΓG1oq0-^P where ΓG^q0 is a compact metric space (since
P is finite). It is easy to check that G^G^ = g^GvPi)* 1 a n d hence
•^•(Qi*0(Po0Pi)^1) Φ 0. Then by (5.2) gx and po°^i have a coincidence,
say (a, 7/, xr) e ΓG^q0. Since (a?, y, xr) is a coincidence point for these
maps, x = α;'. And (α?, ̂ /, xf) 6 ΓG^q^ implies that xf — x e G^q^x, y) =
G ^ ) and yeG0(x). Thus α e G^GQ{x) = F(x).
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Pi/

ΓG0-
Qo

po
/ G o

THEOREM 5.4, Every polyhedron with the Whitehead topology
([5], p. 99) is an MΛ-space {relative to

Proof. Let P be a polyhedron with the Whitehead topology and
F: P—*P an u.s.c. compact admissible map. Let Go, •••, Gn be an
admissible sequence for F. As in the proof of (5.3) it suffices to
consider n — 1. Then we have u.s.c. and acyclic maps Go: P—> Y
and GL: Y—>P where Y is a metric space and F = GL°GQ.

Since P has the Whitehead topology and F(P) is compact, there
is a finite subpolyhedron P ' of P with J P ( P ) c P ' . Let Γ ' = G0(P')
and define F ' : Pf -> P ' , (?ί: P ' — Γ', Gί: Γ ' — P ' by ί7, (?0, Gx. Con-
sider the commmutative diagram where (?", Gί' are defined by Go, Gt

and the single-valued maps are inclusions.

T

Gi

.Go'

P'
Go Gί

P' .

Then G ôGo* = {GZG'βoi* and G ôGo* - i , o ( G ; ; 0 Q . Since Λ{G[*G[*)
exists, (2.5) implies that A(G^GQ*) exists and they are equal. Final-
ly, if ΛiGvoGr) Φ 0, then by (5.3) F' has a fixed point. This is also
fixed point for F.

THEOREM 5.5. (a) Every (metric) ANR is an MΛ-space (relative
to ^f~M) (b) Every compact (metric) ANR is an M-Lefschetz space
(relative to
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Proof, (a) Let X be a (metric) ANR and a e Cov X. Then
there is a polyhedron Pa (with the Whitehead topology) and con-
tinuous maps ha: X—>Pa, ka: Pa—*X such that kaoha and lx are α-
homotopic (See 1, Theorem 14.3.) In particular, ka*oha* = 1^ ( X ) and
fcαo/^ and l x are α-near. Then by (4.2) and (5.4) X is an ikLί-space.

(b) The proof follows as in (a) using finite polyhedra and (5.3).

As a final application, the results (6.1) and (6.2) of [8] can be
strengthened.

THEOREM 5.6. Let X be any convex subset of a Banach space
and F: X—>X a compact u.s.c. map which is admissible (relative to

Then F has a fixed point.

Proof. X is an AR and hence is an MΛ-space. Let Go, •••, Gn

be an admissible sequence for F, where Gs. Y{ —> Yi+ί with Yo =
Yn+1 — X and all Yi are metric spaces. It suffices to show

Λ(Gn* o o Go*) Φ 0 .

But since X is convex, the Lefschetz number of Gn* ° ° Go* is
simply its trace in dimension 0.

Take a point yoe Yo and for i = 0, •••, n let yi+ι be an element
of Gi(Vi). Consider the diagram.

^ ( •* l ) > £ % 0 ( J-2) > * * " > <^>0 \ * n+l)

Jθ* ΐ t

— > ^ (ίi/J) — 0 ({y,})
Co* Cι* Cn*

For each i, Λ+^C^T/,) = yi+1eGi(yi) = Gioj^y,). Thus Λ +^Ci is a cross-
section of GiJi But in general, if F and ί7' are acyclic maps and
F is a cross-section of i*7', then F* — F* (see [8] (3.7)). Hence the
diagram commutes. Since i0* and j n + ι * are isomorphisms, we conclude
that Gn* (?0* is an isomorphism and hence its Lefschetz number is
nonzero.

COROLLARY 5.7. Let X be a metric AR and F: X—+X a com-
pact u.s.c. map which is admissible (relative to ^~M). Then F has a
fixed point.

Proof. X can be imbedded as a closed subset of a convex set
C in a Banach space and there is a retraction r: C-+X. Then For
is a compact u.s.c. map and is admissible (relative to J7~M). By (5.8)
For has a fixed point. This must also be a fixed point for F.
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