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A THEOREM ON BOUNDED ANALYTIC FUNCTIONS

M I C H A E L C. MOONEY

The purpose of this paper is to prove the following
THEOREM: Let ΦuΦt, be an infinite sequence of func-

tions in Lψ, 2π\) such that L(/) = lim I f(eiθ)φn(θ)dθ exists
n-+co JO

for every feH°°. Then there is a φ e L\[0, 2π]) such that

*f{eiθ)φ(θ)dθ for a l l / e i ί 0 0 .

Throughout this paper we will use the following notation and
conventions: D will denote the unit disc and T its boundary. In
order t o save time we will avoid making distinctions between T and
[0, 2π] if no confusion results. Similarly, it will be convenient to
treat elements of ff°°[= iJ°°(.D), the bounded analytic functions on D]
as though they were the same as those functions on T with which
they a r e naturally identified.

If weD, the symbol gw will stand for the function z—+g(wz).
C(T) will stand for the usual space of continuous functions on T. A
will denote the subspace of C(T) of functions analytically extendable
to D. λ will denote ordinary Lebesgue measure divided by 2π and
"WLOG" means "without loss of generality".

In their paper [4] Piranian, Shields, and Wells observed that the
theorem stated above would imply their result, namely that if α0, alf

was a sequence of complex constants such that l i m ^ Σ~=o 0»6n?**
exists for all /eH°° [with Taylor coefficients δ0, bl9 •], then the α j s
are t h e the nonnegative Fourier coefficients of an Z/([0, 2π]) function.
They also mentioned that our result here was a question raised in [1].

Kahane [3], using a somewhat different method than that in [4]
showed that under the hypothesis of our main theorem, there was a φ e
&([(), 2τr]) such that the conclusion held for all f e A. He went further
to show that the subset of H°° for which the conclusion held was
large i n some sense. Our proof here makes use of Kahane's result.

2* Remarks and lemmas* First, given the hypothesis of the
main theorem we may assume WLOG that the φn's are uniformly
bounded in U norm. To see why this is so we observe that for each

n, g —> Jj%(g) = gφn is a bounded linear functional on A. By the

uniform boundedness principle, the norms of the Ln's as elements of
A* are uniformly bounded, say by M. By the Hahn-Banach Theorem,
each Ln may be extended to an element of C(T)*with norm less than
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M. This extended functional corresponds in the usual way to a Borel
measure μn on T having variation norm less than ifef For each n,

Pn — \Φn is also a finite Borel measure on T. Since this measure is
orthogonal to A, it must be absolutely continuous [by the classical
F. and M. Riesz Theorem] and, in turn, so must μn. Hence we may
replace φn's with dμn'a if necessary. From here on we assume ||0w||i ^
1, for all n.

Suppose now for purposes of contradiction that there is an f e

H°° such that L(f) Φ \ fφ where φ is the function referred to in
JT

Kahane's result. We may assume WLOG that φ = 0 [simply subtract
φ from 0Λ's beforehand and that I/U = 1. We also assert WLOG:

LEMMA 1. There exists a bounded, increasing function β on T
such that

limί \φn\ = \ dβ
n-*oo JE JE

whenever E is a finite union of closed subintervals of T.

Proof. Since all our previous assertions remain valid if the φn's
are replaced by an infinite subsequence, we will do this if necessary

so that the functions U^J's converge pointwise on Γ to a function
which we call β. This construction and the conclusion of the lemma
follow from the Helly's Theorem. [See Zygmund [5] IV-4.6-(p. 137).]

We consider the fact that:

lim lim ( frφn = 0 Φ lim lim ί frφn = L(f)
r - n — w-»oo JT %->°o r-»l— JT

despite the fact that / r 's are uniformly bounded and converge to /
in measure. It is reasonable to subspect that in some useful sense

of the word that the support of \fφn tends to become concentrated

on smaller and smaller sets as n-+ °°.

To be more specific, our plan at this point is to produce a sequence

of pairwise disjoint "nice" closed sets El9 E2, such that \ fφn

tends approximately to L(f) while \ \fφn\ remains uniformly < ε <
JT-En

I £(/)!• [We will find that it is expedient to replace / with f — fr

for some r in order to do this.]
Ultimately we will construct g e H°° so that g is approximately

(-l)n on En. The function gf [actually we will look at g x (/ - fr)\
will give us a counterexample to the condition that L(h) exists for
all h e H°°, and hence we will have a contradiction to the assumption
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L(f) Φ 0.
Let ε0 = (l/10)|L(/)|. In order to prove Lemma 2, it will be desir-

able to keep the singular part of β small, say less than εo/2. To be
sure of this we can choose a closed subset E of the support of the
singular part of β such that outside of E, the singular part of β
has variation norm less than εo/2.

Let g denote a Rudin-Carleson type function such that ge A, g is
zero on E, and g is close to 1 outside some neighborhood of E. Such
functions were used in both [3] and [4], and a proof of their existence
is available in Hoffman [2] p. 80, 81. [See also [2], Notes on p. 95 ]
If the original φn's are replaced by gφn's, we may proceed as before
with our new set of φn'&, φ, β, etc. The new dβ = \g\ times the old
dβ, and hence the singular part of the new β will have variation
norm less than εo/2. This process gives us a new value for L{f),
however, and we must be sure that the new value is close enough
to the old that our assertion is still valid when the new value of L(f)
is used in the expression for ε0. To do this we observe that the
functions fφn also satisfy the hypothesis of our Theorem [in place of
the φn's] and that by Kahane's Theorem, there isa ^G ^([0, 2π]) such
that

lim 1 hfφn — \ hψ for all he A .
n->o° JT JT

In particular this is true when h = g. Since ψ is absolutely con-
tinuous and since we can make g uniformly as close to 1 as we like
outside neighborhoods of E taken as small as we like, the new L(f) —

\ g^γ can be taken as close to the old L(f) = \ ψ as we like. Hence
JT JT

WLOG we may assume that the singular part of β has variation norm
less than εo/2. Let us now choose δ > 0 such that

\(E) < δ => \ dβa < εo/2 - ( dβ
JE JT

where βa and β8 are the absolutely continuous and singular parts of
β respectively. We note that if J is a finite union of closed intervals,
and λ(J) < δ, then for n sufficiently large I \φn\ < εo/2.

Choose r e (0,1) such that X{F) < δ where

F = {θ I θ e [0, 2π], \f{eiθ) \ - fr(eiθ) \ S ε0} .

Let G be an open subset of T such that F a G and λ(G) < 3.
Since

L(fr) - 0, L(f) = L(f - fr) = lim ( (/ - fr)φn + lim \ (/ - fr)φn .
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[We may choose subsequences of the original φn's if necessary in order

to guarantee the limits exist.] Now for each n, I | (/ — fr)φn | ^ ε0.
I C JT-G

H e n c e | \{f - fr)φn - L(f) < ε0 for all sufficiently large n.

LEMMA 2. There exists a sequence of sets El9 E2, a sequence
of positive numbers δl9 δ2, and an increasing sequence of positive
integers j\, j2, such that:

(a) Each En is a finite union of closed intervals.

(b) Let Ej denote the closure of the δj neighborhood of Eά. Then
E]dG.

(c) jΦk^E'jΠEί^ 0. [Note that this =>x(Ej)—0, and

o.]
( \Φ, k\<e0/2 for k = 1, 2, .-•.

G-Ek

(d) (
J

(e) \ (/ - fr)Φin -* ô where \ xQ - L(f) \ < 2ε0.
jEn

Proof. Construction using mathematical induction and the fol-
lowing scheme: After the first k, E/s, δ/s and jn'& are constructed, we
pick jk+1, Ek+1, and δk+ί in the order.

Using the fact that lim ί u ,\Φn\ < (l/2)e0 [since λ(Uί=i K) <

λ(G) < δ] and the fact that I (/ — fr)φn eventually comes within ε0

JG r

of !/(/), we have that for jk+1 sufficiently large: I fc f \φjk+1\ < (l/2)e0

and j ^ u f c E,(f-fr)Φsk+1, is within 2ε0 of L(f).

We now choose Ek+1 inside the open set G — (J£=i Ef* Using the

absolute continuity of φjfc+1 we can choose Ek+1 large enough that (d)

holds, and that 1 (/ — fr)φjk+1 is within 2ε0 of L{f).
jEk + l

δk+1 will now be chosen so that (b) and (c) satisfied. Obviously
our construction will satisfy (a), (b), (c), (d). We may choosen an
appropriate subsequence if necessary in order that (e) be satisfied as
well.

3* Construction of the counterexample function*

LEMMA 3. Let E be a closed subset of T, ε > 0. Then there is a
function, s, analytic on D such that:

(a) 8 has positive real part and [ s ^ < 1
(b) θeE=>\s(eiθ) - 1\ < ε
(c) θ g E => \s{eiθ) I < 2X{E)/ε dist (θ, E)
(d) \s(0)\<X(E)/ε.
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Proof. Let U = (l/ε)πE on T [πE denotes characteristic function
for E]. Let u be the harmonic function on D corresponding to U on
the boundary [u is the integral of U with respect to Poisson's kernel].
Let v be the conjugate harmonic function for u such that v(0) = 0.
Let g = u + iv. [g is analytic on D with positive real part.]

Note that for θ £ E, \g{eiθ)\ = \v(eiθ)\ where

dφ = M *™V-Φ) dφ .
2πs)l cos (θ φ)V(e) P φ) dφ M

1 7 2ττ J - 1 - cos (θ - φ) 2πs)El - cos (θ - φ)

The maximum modulus of the function inside the integral occurs when
\θ — φ\ = dist (0, JE). In order not to be troubled by awkward trigono-
metric expressions in the material to follow, we observe by some ele-
mentary calculations that |sin x\/(l — cos x) <2J\x\ for \x\ < π. Hence
we may assert that \v(eiθ)\ < 2λ(£r)/ε dist (θ, E). Now let

8 - g/(l + g) = l - 1/(1 + g) .

(a) Since g is of positive real part, the range of 1/(1 + g) is
contained in the disc {z\ \z — 1/21 <l/2}. So is the range of s.

(b) For θ e E, Re (g(eiθ)) = 1/ε and hence Re (1 + <?(^)) = 1 + 1/e.
This makes 11 + flr(eί<?) | ^ 1 + 1/ε and in turn 11/(1 + g(eiθ)) \ ̂  ε/(l + e)< ε
whence \s{eiθ) - 1| = 11/(1 + g{eiθ))\ < ε.

(c) For θ£E, \s(eiθ)\ = \g(eiθ)\/\l + g(eiθ)\ where

I g(eiθ) I < 2X(E)/ε. dist (0, JS?) and 11 + ^(eίθ) | ^ 1

(d) s(0) = g(0)/(l + βr(O)), where #(0) = λ(#)/s and the proof is
complete.

Construction. Given ε ^ O , ε 2>0; a sequence of functions slΛ s2,
is to be constructed as follows:

Suppose sx, s2, , sk have been chosen and that Sk = Σy=i s i is
such that ISfclco = Λί& < oo, §A;+1 will be of the form ck+1s where ck+ί is
a positive real number and s is related to Enje+1 in the same manner
that s is related to E in Lemma 3.

We want ck+1 sufficiently large and ε [in Lemma 3] sufficiently small
that:

(a) θ e Enk+l => ε2 log | Sk+ι(eiθ) \ = (-l)fe+1(^/2)(mod 2π)-π/2 within
an error of magnitude not more than εlβ Note that we can pick ε
dependent only on εί and ε2 [independent of k + 1], and ck+1 > Mk so as
to make the ratio between \sk+1 + Sk\ and |Re(sΛ + 1) | small enough to
make log | Sk+1 \ close enough to log (ck+1) on En}c+1 for this purpose.
Furthermore, the choice of ck+ί depends only on Eni, E%2, , Enje.
We wish further to have:

(b) θeEnk = ε2log\Sp(eiθ)\ - (-l)&τr/2(mod 2π) - π/2 within an
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error of magnitude not more than ε,. for all p > k. To do this, we
use the fact that for Θ e E%k, p > k; then dist (#, Enp) > δnk [independent
of p-note]. Hence \sp(eiθ) \ < cpX(Enp)/a-dist (θ, En/< cpX(Enp)/ed%k. Re-
call that the choice of cp depends only on Sp^ and is independent of
Enp. Hence we may require that X(Enp) —> 0 sufficiently rapidly to
guarantee that Σ P = f c + 1 cpX(Enp)/edn]c is always small enough that (b) is
satisfied. The above requirement also guarantees that Σ~=i ckX(Enk)/e
converges.

Each sp has positive real part and hence by Harnack's principal
the Sps must either converge to an analytic function, S, of positive
real part on D, or diverge to °° on D. The latter is impossible since
each I Sp(0) \ < Σϊ=i I **(0) I ̂  Σϊ=i ckX(En])/ε < ΣU ckX{Enk)lε < oo. We
also note that our requirement in (b) above also guarantees that the
Sps converge absolutely on each En]c and hence we also have: θ e Enjc ==>
ε 2 l o g | S | = ( — l)fcτr/2(mod 2π) — π/2 within an error of magnitude not
more than εL.

Let g = eίε2losS. Then g is bounded on D [in fact: e~**πίi < \g(z) \ <

βε2,/2 f o r a l l z e D]Λ θ e E^ ^ argument (g(eiθ)) = ((-1)^/2)(mod 2π) -
τr/2 + error not larger than εx. This is, given ε3 > 0 we may choose
el9 ε2 so that 1 — ε3 < |g(z) | < 1 + ε3 for all ze D and such that
\g(eiθ) - (-l)p\ < ε3 for all θe EUp. Now:

\r9(f ~

Recalling Lemma 2, we see that the first of these three integrals
is within 2εo(l + ε3) of ( — l)pL(f); the second has magnitude less than
εo(l + ε3) [by (d), Lemma 2] and the third also has magnitude less
than εo(l + ε3) [from the way in which fr and G were chosen]. If

ε3 is chosen small enough, I g(f — fr)φs , fails to have a limit as k —•

oo and we have our contradiction.
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