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THE HASSE-WITT-MATRIX OF SPECIAL

PROJECTIVE VARIETIES

LEONHARD MILLER

The Hasse-Witt-matrix of a projective hypersurface de-
fined over a perfect field k of characteristic p is studied using
an explicit description of the Cartier-operator. We get the
following applications. If L is a linear variety of dimension
n + 1 and X a generic hypersurface of degree d, which divides
p — 1, then the Frobenius-operator &~ on Hn(X-L; έ?L γ) is
invertible.

As another application we prove the invertibility of the Hasse-
Witt-matrix for the generic curve of genus two. We don't study
the Frobenius J?~ directly, but the Cartier-operator [1]. It is well-
known, that for curves Frobenius and Cartier-operator are dual to
each other under the duality of the Riemann-Roch theorem. A similar
fact is true for higher dimension via Serre duality. We have there-
fore to extend to the whole "De Rham" ring the description of the
Cartier-operator given in [4] for 1-forms. We give this extention in
§1. Diagonal hypersurf aces are studied in §2 and the invertibility of
the Hasse-Witt-matrix is proved, if the degree divides p — 1. The
same theorem for the generic hypersurface follows then from the
semicontinuity of the matrix rank. The § 3 is devoted to hyperelliptic
curves and is intended as a preparation for a detailed study of curves
of genus two.

1* The Cartier-operator of a projective hypersurface* We ex-
tend the explicit construction of the Cartier-operator given in [4] to the
whole "De Rham" ring, but restrict ourself to projective hyper surf aces.

As an application we show: Let V be a projective hypersurface
of dimension n — 1, defined by a diagonal equation F{X) = Σ?=o UiXL
di e k a perfect field of char k = p > 0, a{ Φ 0. Let X be a linear
variety of dimension ί + 1. If r divides p — 1, then

is invertible, Jf being the induced Frobenius endomorphism. We have
to rely on a technical proposition, which is a collection of some lemmas
in [4]. We give first the proposition.

PROPOSITION 1. Let

( Γ = ( Γ l f ••-, Tn))
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be k p~ι—linear and

(0

if μ = p.v
) 1 Λ else .

Then the following holds:
(1) ψ(Tμi Tμh) = Tμι - Tμih, for some hek[T]
(2) Let Dμ= Tμ (d/dTμ) and Dμg = 0 for a given 1 ^ μ ^ n, then

ψ(Dμh g) = 0
(3) Let Dμg = 0, then ψ{hp~ιDμh-g) = Dμhψ(g).

Proof.
(1) By the p^-linearity of ψ we may assume H o be a monomial.
The statement follows then directly from the definition of ψ.
(2) f is p^-linear, so we may assume h to be a monomial

h= 2T* . - . 2 > , 0 ^ n ^ ^ - 1

(say μ = n), then DΛΛ, = rn'h. If rΛ = 0 then (2) is trivially true.
So rnφ 0. Again because of ^"'-linearity we may also assume g to
be monomial.

But Dng = 0, so

So the exponent of Tn in Dnh>g is rΛ and 0 < rn ^ p — 1, therefore
not divisible by p. The definition of ψ gives

ψ(Dnh g) = 0 .

(3) We may write

*^ — JΓ o ~Γ / i * •* j« ~Γ • • • "T" J r * •*• μ ) v = Ύ = ί^ ί

and

-D Λ̂ = 0 .

We proceed by induction on T. r = 0 clear. Let r ^ 1, then Λ =
/ + T Λ with Dμf = 0 degΓ;ιΛ < r. Now

TΓιh*-γDμ{Tμh) =
JL μ

By ^"'-linearity of ψ- and induction assumption for Λ we get

= Tμhf(g) +

= f(g)(Tμh + 2V

= Dμ(Tμh).ψ(g) .
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On the other hand

Tfr'h*-1 = (Λ - fY~ι = h*-1 + ̂ f ,

dh

where P is a polynomial in / and h. We have

Dμ(Tμh) = Dμ(h - /) = AΛ .

So

Multiply by 0 and apply ψ, then one gets

Dμh ψ(g) = Dμ(Tμh)ψ(g) = ψ(h*-ιDμK-g) + f(DμP g) .

But by (2)

ψ(DμP.g) = 0 .

Let ίXXo Xn) define a absolutely irreducible hypersurface
in ^ Λ f f c char k = p > 0. We denote by /(.Xi Xn) an afϊinization of
F. Let JP^ = (d/dXμ)F, similar fμ 1 ^ μ ^ n. We assume fn not to
be the zero function on V. Let K = K(V) be the function field of
V. We assume that K = ϋΓp(α;1 α?,- xn) for any index j . The »<
are the coordinate functions and xs means omit xd. As a consequence
of these assumptions, we have that for a given index j any function
z e K can be represented modulo F by a rational function G(Xι Xn),
which is Xj-constant, i.e. such that dG/dXj = 0. Write

F' • — (X X X )~'F

DEFINITION 1. Let

Let ω = Σ i r v ^•v . v ' ^ i Λ ••• Λ dxiγ be r-form on F . P u t

= oa?^ Λ Λ ftXir

Define

The definition is justified by the following theorem.

THEOREM 1. (1) C is p~ι-lineaτ
(2) If ω = dφ, then C(ω) = 0
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( 3 ) Ifω^z?-1--- zf~ldzh Λ Λ dzir then C(ω) = dzh Λ Λ dzir.
In other words, if one restricts C to Zγlk, the closed forms, then

is the Cartίer-operator of V [1]

Proof of the theorem.

(1) The ^- l inear i ty follows from the ^- l inear i ty of ψ.

(2) Let φ = Σί 1, ..,v_1^i1,. ,v_ 1^ 1 Λ ••• Λ dxir^ be a (r - l)-form,
then

dφ = Σ Σ £-(<Piv....ir-ι)<tes Λ ώ?^ Λ Λ ώ? < r - 1 .

To simplify the notation we put for the moment

and

To compute C(dφ) we have to compute

for every system (j, i, , ir_,).

Now remembering the definition of α/rF we have to show

ψ(F^DnFXh Xir_J)sφ) = 0

in order to get C(dφ) = 0.

We have to use the above proposition. We apply first (3) and
then (2) and get:

. -X^DSP) = DnFψ(Xh X^-fitf) - 0 .

Remark, t h a t we assume j Φ (ίίy •••, ίr-i) otherwise

dxd A dxh Λ Λ dXir_t = 0 .

That shows C(dφ) = 0

(3) Let ω = f̂-1 . z?~ιdzh Λ Λ d«<r.

We have
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dzh A Λ dzir = Σ DhZh
χh χlr

D, = xt±.,

To Compute C((ϋ), we have to work out

U = ψiF'-'D.F-Zf-Difrs -Zζ-ιDirZύ modulo F .

Z3 mod F = Zj .

We apply several times (3) of the propositition and get

U s DnFDhZir DirZiψ mod (F) .

Therefore

C(ω) = Σ ^A-A&

All forms of highest degree n — 1 are closed. We use the fact,
that H°{V, Ω71"1) has a basis of the following form

ft/^ — X^ i Xy^Ct/Q a

where

a) — ̂ i A ••• A &xn-γ

Σ Mi = ̂ > ̂  — deg F and 1 ̂  ^ .

Recall ίCi = -3Γί/-3Γo a r ^ coordinate functions on F and of the affinization
of F,fn = df/dxn.

We get the important corollary to the theorem.

COROLLARY 1. Let Au>v be the matrix of the Cartier-operator on
H(V, β™"1) with respect to the above basis cou. Then

AU)V = coefficient of Xv in ir{Fv'1 Xu)

X* = Xo

u° x;», Σ ̂  = Σ ^ = r

for % — 1 n
1 ^ v
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Proof. By definition

Now recall

If AUtV is the
Then

coefficient

•) - ψ{
n

i=0

of X" in ψ

Xou° -
Xo"r

1 ^ ί

• x;; )
i

mod

= 1

i — 1 •••>ι

Notice

•̂ -1 -^n

i=0 ΐ=0

REMARK. We have now on explicit description for the Cartier-
operator on H°(V, Ωψfi). We can use Serre duality H°(V, Ωϊγkψ =
Hn~\V, έ?π). Under this duality C is the Frobenius ^ on Hn~\V, έ?r).
We have therefore also an explicit description for ά?~.

2* The CartierΌperator of a diagonal hypersurface* Let
F(X) = Σ?=o ^i^ί* define a "generic" hypersurface. To compute the
Cartier-operator, by the preceding discussion we have to analyse

(Σ
\i=0

Let us adapt the following notation:

ι = PPι = Po Pi

THEOREM 2.

char & = p > 0, JP(X) = Σ ^iχϊ » Π ^ ^ 0 G
i0

is defined by F. Suppose r divides p — 1. T%e% ίfee Cartier-
operator
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is invertίble.

Proof.

ml

Using p ^linearity of ψ we get

-'X*) = Σ =^ά

We put α = α1/?), and rm + u = pv. Notice if u > 0 and \u\ = r, then
also i; > 0 and I v I = r. If we write

v>0

then we have

— — - α m if rm = (p — l)v + v — u
ml

\u\ = \v\ = r u > 0 v

0

Let us now assume:

else .

1 =

If r divides v — u put v — u = r E(u, v) then

( — αm if r\v — u and m = sv +
m!

^0 else .

We fix now a total ordering of u, v. Let us order the ^-tuples
(Uί wn) resp fa i;Λ) lexicographically and put

u0 = r — Σ »̂ resp. v0 — r — Σ »̂
i=i ΐ=i

v < u means now, that either v1<uί or vt = ^ for i = 1 i — 1 but
Vj < Uj. If any case, if v < u, then ^ < % for some i . We claim
if v < u, the AMjV — 0.

Case 1. r does not divide u — v, then Attjί; = 0.

Case 2. r divides u — v. Now if v < t6 then for some j Uj — v3- > 0
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a n d r divides Vn — Vj. B u t r ^ uό a n d Vj^l, so r — 1 ^ uβ — vj9

therefore r cannot divide Uj — vs. This contradiction shows, if v < u,
then AUfV = 0. Aw>, is therefore a triangle matrix.

What is the diagonal?

Aζ,u = — ί -
ml

with m = s u. Therefore

(su)

COROLLARY 2. The assumptions are the same as in the theorem.
Then

^:Hn~ι{V, έ?v)-» Hn~\V, έ?γ) (^~ is the Frobenius morphism)

is invertible.

Proof. Clear by Serre duality and the fact that C = ^ Γ

The Cartier-operator of W H. The differential operator C as
given in Definition 1 on Ωι is by ^-linearity completely determined
on Ωι by its value on ω = h dx, where x runs through a set of coordi-
nate functions.

We have C(ω) = x"1ψ(xh)dx9 that notation is only intrinsic, if
dω = 0, because ψ depends on the coordinate system. If we choose a
different coordinate system, then we get in general a different opera-
tor; but for ω with dω = 0, we get the same, namely the Cartier-
operator.

That fact can be exploited in the following way. Suppose

W = {x, = x2 = xt = 0} Π H.

We write now CH resp. Cw for the the operators. The above defini-
tion shows φl = 1 KdXi is stable under CH. But by the property of ψ,

for some H, we have for

ω = XihdXj iφ j i, j arbitrary

CH(ω) = xjί

Let 21 = {x1 a?J, then 2O2 /̂fe 0 0 =i ^ ^ ^ is stable under CH. By
the exact sequence

CH induces an operator Cw on Ωι

wιh. Cw has again the properties
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( 1 ) Cw is ^ - l i n e a r
( 2 ) Cw(dh) = 0
(3 ) Cw{h»-ldh) = dh .

If we restrict Cw to the closed forms on W, then Cw is the Cartier-
operator.

Let now L be an arbitrary linear variety. After a suitable coordi-
nate change we may assume L is the intersection of some coordinate
hyperplanes. W = L H has then the above shape.

Let us assume that the hypersurface H has a diagonal defining
equation of degree d diving p — 1, p = char k. Then the above Theo-
rem 1 shows that Cw is semisimple on Zψlk. In the same way as
before we can extend Cw to any Ωr

wjk, in particular to ΩwJk, where
m = dim W. As result of this discussion we get:

THEOREM 3. // L is a linear variety of dimension m + 1, then
there exists a hypersurface H of degree d, which divides p — 1, such
that

is invertible.

3* The Cartier-operator of plane curves* For curves the explicit
description of the Cartier-operator is of special interest if one wants
to study, how the Cartier-operator varies with the moduli of the curve.
Unfortunately one is restricted to plane curves, because the above ex-
plicit form of the Cartier-operator is available only for hypersurfaces.

If one specializes the above results to plane curves, one has to
assume, that the curve is singularity free.

The space W = {homogenous forms of degree d — 3} is for non-
singular curves V of degree d isomorphic to H°(V, Ωι

v,k) under

W~H\V,Ω\lk)

P(X)-+P(x)ω0

where the coordinate functions are given by

x = XJX0 , y = X2/X0 mod F ,

F being the defining equation for V and f(x, y) the affinization, fy

denotes dfjdy. With that notation ω0 = dx/fy.
But it is important to know, that one can give a similar description

also for singular curves. Then W is the space of P(X), which define
the "adjoint" curves to V. These are those curves, which cut out
at least the "double point divisor".
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To give an explicit basis depends on nature of the singularities.

Hyper elliptic curves: Let p = char k > 2.
For a detailed study of the Hasse-Witt-matrix of hyperelliptic

curves one needs the explicit Cartier-operator with respect to various
"normal forms".

Let the hyperelliptic V be given by y2 = f(x), degf(x) = 2g + 1
and such that f(x) has no multiple roots. V has a singularity at
"infinity". One could apply the above method and work out the adjoint
curves in order to get a basis for H°(V, Ωγlh). But we have already
a basis, namely if o) = dx/y then {xιo)\i = 0 g — 1} form a basis.

We specialize the results of § 2 and get from Corollary 1 as matrix
for the Cartier-operator with respect to the above basis (let us put
p - 1/2 = m):

Au>v = coefficient of xv+1 in ψ(f(x)mxu+1) 0 ^ ^ ^ g - 1 .

Legendre form: We assume now the defining equation in Legendre
form.

f(x) = x(x - 1) Π (a? - λ4)
 r = 2 ί / " X

ί = 1 λ< ^ λy ^ 0, 1 .

Notation: Let

I /O I = Pi + + Pr
\p = λ f i . . . λ;».

The permutation group of r elements S r operates on the monomials

λ' — λ^', π e S r .

Let G^ be the fix group of Xm~p and (?(ί)) = Sr/Gp. Let

Apparently

i ϊ ( ^ - i ϊ ( ^ , iff p = TΓ^) .

We may therefore assume

0 <̂  px ^ ft ^ ^ r <J m .

For given

O ^ J J ^ f l r - 1 let ft = (̂ 1 - vp + %.
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Put

and

{ρ) —

ΛP _ v π(p) ττ(p)(\\ 0/
ΛU)V - Σi a,UfVn (X) 0 ^ u ^

the summation condition being:

0 ^ p ι ^ ^ ρ r ^ m , p0 — \p\ — vp + n , 0 ^ p0 ^ m

vp — ^ + m ^ [ |θ [^^p — ^ .

We state as a proposition

PROPOSITION 2. Lei δe Aw>v, 0 ^ ^ ίg 0 — 1, as defined above, and

a) =

is ί/̂ β Cartier-operator.

Applications: We want to investigate, when the Cartier-operator
is invertible. It seems that an answer to that question, without any
restrictions is not available. It is therefore worthwhile to have various
methods even in special cases.1

We restrict ourself to genus 2, although the method could be
applied to higher genus, but the calculations would be very easy.
Let p > 2 and g = 2

i.e. y2 = x(x — l)(x — \)(x — \2){x - λ3) , λ< Φ X, Φ 0, 1 i Φ j .

The notation is the same as above.

H{p)(X) is homogeneous in the λ's of degree 3m — \p\, m = (p— l)/2.
We have

Aζ,v — ^J U>u,vJ-L VV 0 < ^ < 1

pQ ~ \p\ — vp + u, vp — u ^ \p\ ^ vp — u + m .

We want to know of AζfV, what the forms of lowest homogeneous degree
in the λ's are. We have to give \p\ the maximal possible value.

We use the shorthands

1 Added in proof: We settled this question in the meantime, see [6].
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and D(u, v) = degree of the lowest homogeneous term in AζtV. In the
list below is p0 = max \p\ — vp + u.

(0,0)

(0,1)
(1,0)

(1,1)

max | p |

ra
3ra

ra — 1
3ra

Po

ra
ra — 1

ra
ra

Z>( ,̂

P ~
0

0

V)

1

We get therefore:

AjfCAffl = terms of degree p — 1 + higher terms

AfflAff0 = terms of degree p + higher terms .

The lowest degree term L in det {AUyV)
p is given by

ft + ft + ft = w

Notice, if p Φ p, then ίjw and H{p) have no monomial in common.
Therefore L is not the zero polynomial. We are able to specialize
the variables (λx, \, λ3) in the algebraic closure of k, such that
det (Au>v) Φ 0. In other words, there exist curves of genus two with
invertible Cartier-operator.

We do not know, what the smallest finite field is, over which
such a curve exists.

REMARK. For large p we could push through a similar discus-
sion for higher genus. We omit that, because there is a more elegant
method for large p by Lubin (unpublished). Let y2 = x2g+1+ax9+1 + x*
The claim is, that for large p (depending on g) and variable a the
Hasse-Witt-matrix of that curve is a permutation matrix.
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