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THE HASSE-WITT-MATRIX OF SPECIAL
PROJECTIVE VARIETIES

LEONHARD MILLER

The Hasse-Witt-matrix of a projective hypersurface de-
fined over a perfect field ¥ of characteristic p is studied using
an explicit description of the Cartier-operator. We get the
following applications. If L is a linear variety of dimension
n + 1 and X a generic hypersurface of degree d, which divides
p — 1, then the Frobenius-operator % on H*(X-L; Z..y) is
invertible.

As another application we prove the invertibility of the Hasse-
Witt-matrix for the generic curve of genus two. We don’t study
the Frobenius .&# directly, but the Cartier-operator [1]. It is well-
known, that for curves Frobenius and Cartier-operator are dual to
each other under the duality of the Riemann-Roch theorem. A similar
fact is true for higher dimension via Serre duality. We have there-
fore to extend to the whole “De Rham” ring the description of the
Cartier-operator given in [4] for 1-forms. We give this extention in
§1. Diagonal hypersurfaces are studied in §2 and the invertibility of
the Hasse-Witt-matrix is proved, if the degree divides » — 1. The
same theorem for the generic hypersurface follows then from the
semicontinuity of the matrix rank. The §3 is devoted to hyperelliptic
curves and is intended as a preparation for a detailed study of curves
of genus two.

1. The Cartier-operator of a projective hypersurface. We ex-
tend the explicit construction of the Cartier-operator given in [4] to the
whole “De Rham” ring, but restrict ourself to projective hypersurfaces.

As an application we show: Let V be a projective hypersurface
of dimension n — 1, defined by a diagonal equation F(X) = >~ a,; X7,
a;€k a perfect field of chark =9 >0,a; # 0. Let X be a linear
variety of dimension ¢ + 1. If # divides » — 1, then

\g‘: .Ht(X‘ V, ﬁx.v) HH‘(X' V, ﬁx.v)
is invertible, .# being the induced Frobenius endomorphism. We have
to rely on a technical proposition, which is a collection of some lemmas
in [4]. We give first the proposition.
PROPOSITION 1. Let
v k[T] — k[ T] (T = (T, ++-, T.)
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be k p~'—linear and

g if p=p-y
0 else .

W(T*) = {

Then the following holds:

(1) 4(Ty, =+ Tp k) = T, +++ Tuh, for some hek[T]

(2) LetD,= T,.(©0/0T,) and D,g = 0 for a given 1 < pt < n, then
¥(Duh-g) =0

(3) Let D.g =0, then y(h*""D,h-g) = D, hy(g).

Proof.
(1) By the p~‘-linearity of +» we may assume % to be a monomial.
The statement follows then directly from the definition of .
(2) + is p~“linear, so we may assume i to be a monomial

h=Tnre-Ti», O=r=p-—1

(say ¢ = m), then D,h = r,+h. If #, =0 then (2) is trivially true.
So 7, #= 0. Again because of p*-linearity we may also assume g to
be monomial.

But D,g =0, so

g=TpeeeTirt O0=wv=p—1.

So the exponent of T, in D,h-g is 7, and 0 < r, < p — 1, therefore
not divisible by p. The definition of + gives

v(Dah-g) = 0.

(3) We may write
h=fot fooTut oo+ forTi,  0Sr<p—1

and

D'ufi:O-

We progeed by induction on T. 7 =0 clear. Let » =1, then & =
f + T.h with D,f =0 degTﬁ < r. Now

Ty W DA TR = (L (Lele + Bet)
u

By p~*-linearity of + and induction assumption for » we get
Y(@- T2 h* "D (Tuh)) = Tuhop(9) + Tui(9+h*~*Dh)
= (@) (T + T.D,h)
= Du(Tuh) -4 (9) .
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On the other hand

Te = = (b — f)7 = Bt 4 22

where P is a polynomial in f and A. We have
DT.k) = D,(h — f) = D,h .
So
Tz~'h*~*D(T.h) = k*~'D,h + D,P.
Multiply by g and apply +r, then one gets
D (9) = DT )y (9) = 4 (R*"D,h-g) + (D, P-g) .

But by (2)
y(DP-9) = 0.

Let F(X,--- X,) define a absolutely irreducible hypersurface V/k
in &, , chark = p > 0. We denote by f(X, --+ X,) an affinization of
F. Let F,= (0/0X,)F, similar f, 1 < < n. We assume f, not to
be the zero function on V. Let K = K(V) be the function field of
V. We assume that K = K?(%, -++ &; --+ ©,) for any index j. The z;
are the coordinate functions and #; means omit x;. As a consequence
of these assumptions, we have that for a given index j any function
z€ K can be represented modulo F' by a rational function G(X, --- X,,),
which is X;-constant, i.e. such that 0G/0X; = 0. Write

Fipi, , = (X5, +++ X; - X,)7'F.

1 tr,n
DEFINITION 1. Let

Qlf\pil’...,i .

T

n = Fi1,~~,i,.,nofllv/\oFiT,lu',ir,n .
Let w = Z"l"'ir h,

12

it d; N\ oo A dw;, be r-form on V. Put

= dxu/\ e /\ dx,-r
FIRTR f” .

;

Define
Clw) = > Yriperipnllsys, — F)@; i
Pt S

The definition is justified by the following theorem.

THEOREM 1. (1) C s p~*linear
(2) If o =dp, then C(w) =0
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(3) If o=z 2l7'd2; N\ -+- Ndz; then C(@) =dz; A «+- Adz;,.
In other words, if one restricts C to Z7,, the closed forms, then

C: Z;/k iand Q;/k
18 the Cartier-operator of V [1].

Proof of the theorem.
(1) The p-linearity follows from the p~-linearity of +.
(2) Let @ =3 i, Pipeeri,_0%;, A o+« Ada; _ be a (r — 1)-form,
then

QP =3 5 L@ s Adu A e Ada,_
J

$pyeneyip—l axj
To simplify the notation we put for the moment

Pifyeensipy = @
and
Fj = F .

PO TIPS TP

To compute C(d®p) we have to compute

¢;<i¢ -fn)

awi

for every system (5, %, «+-, 4,_).
Now remembering the definition of 4" we have to show

V(F* D, FX; ++- X;, D;p) =0

in order to get C(dp) = 0.

We have to use the above proposition. We apply first (8) and
then (2) and get:

V(F* ' D, FX; - X;, \D;®) = D, Fy(X; »++ X; . Dip) = 0.
Remark, that we assume j # (3, + -+, ©,_,) otherwise
dxj /A dxii VANECERIVAN dxir_l =0.

That shows C(d®) = 0
(3) Let w =207 eee2b7idey, N\ oo Ndz; .
We have
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dz,,;l /\ cee /\ dzzr = 2 Dj].z”:l cee Djrz’;r dle /\ cee /\ dxjr ’
dyeedp Xy ove X5
0
D- = X;— .
! ! ax,-

To Compute C(w), we have to work out
U= y(F"D,F-Z;D;Z;++-Z}"'D; Z;) modulo F' .
Z;mod F' = z; .
We apply several times (3) of the propositition and get
U= D,FD;Z; +--D; Z; mod (F) .
Therefore

C@) = 3.D,fD;z; - D,-Tzi,dwfl A ooe A da;,
drip T fus, oo 5,

:-dzz/\ s /\dz,;r.

All forms of highest degree n — 1 are closed. We use the fact,
that H°(V, 2"") has a basis of the following form

W, = xlﬁ cee xano .
where

_du A\ eee Ndw,,

@,
A

ﬁuigrm:degV and 1< u,;.
i=1

Recall #; = X;/X, are coordinate functions on V and of the affinization
of F,f, = 0f/ox,.
We get the important corollary to the theorem.

COROLLARY 1. Let A, , be the matrixz of the Cartier-operator on
H(V, 2~ with respect to the above basis w,. Then

A,., = coefficient of X° im (F?7X")

n
Xt = Xpooer Xin, St =30 =7
=0

1 =0

1§%;f 1
1< o or 1= n .

= 3



448 L. MILLER

Proof. By definition

dw, A\ oo+ A da,,
S

C(@,) = Yp,. (@5 ov i)
= Y (fr %), .

Now recall

Y(freat) = q/f( FVIX‘);;O;; . X’ur) mod F'

Sty =r, 1=Zu;, t=1-en.
=0

If A,, is the coefficient of X* in (F?'-X").
Then
Clw,) = > A,z amo, =3 4A,,0,.

150,57
T=1eeem

Notice

n
=

n
U, =>20=7r, 1u,l1sv,1=1+--n.
0 1=0

REMARK. We have now on explicit description for the Cartier-
operator on H'(V, 2y%). We can use Serre duality H(V, 23V =
H" YV, 7). Under this duality C is the Frobenius.# on H YV, ).
We have therefore also an explicit description for .#.

2. The Cartier-operator of a diagonal hypersurface. Let
F(X) = > ,a;X; define a “generic” hypersurface. To compute the
Cartier-operator, by the preceding discussion we have to analyse

WFTXY) (Sw=r, w>0).

1=0

Let us adapt the following notation:
o =00, a0 =Tlatt, X*n= ][ Xe,
lulzgum u>0=u;>0 ((=0---mn).
THEOREM 2. Let
chark = p > 0, F(X) = iZ:‘aaiX[ ) ili[oai #+0¢ck

ViE is defined by F. Suppose r divides p — 1. Then the Cartier-
operator
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C: Ho(V, Qyi) — Ho(V, &

18 tnvertible.

Proof.

Fri= 3 (p — 1)!aerm .

imi=p—1  m!

Using p~linearity of + we get

YFXY) = 3 anp(Xe) = 3, TranXe.
|mi=p—1 M. Imi=p—1 M.

We put @ = a7, and rm + u = pv. Notice if © > 0 and |u| = 7, then
also » > 0 and |v| = ». If we write

PETXY) = > AKX,
|vi=r
>0

then we have

1 »

——a if ™ m=@E-Lv+v—u
b m!
AL, = lul=vl=7r >0 v>0
0 else .
Let us now assume:
»p—1=r7r-s.
If » divides v — w put v — w = r-E(u, v) then

——l-a’" if rlv—w and m = sv + Eu, v)
Ar = m!

0 else .
We fix now a total ordering of w,v. Let us order the mn-tuples

(u, +-+ u,) resp (v, --- v,) lexicographically and put

n n
Uy = T — D, U; YESP. Uy = 1 — 2, V;
i=1 i =

v <4 means now, that either v, <wu, or v;=u, for 1=1.--5 — 1 but
v; < u;. If any case, if v < u, then v; < u; for some j. We claim
if v <wu, the 4,, = 0.

Case 1. » does not divide v — v, then 4,, = 0.

Case 2. r divides u —v. Now if v < u then for some j w; — v; >0
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and » divides u; — v;. But r = u; and v; =1, so r —1=u; — v,
therefore r cannot divide u; — v;. This contradiction shows, if v < u,
then 4,,=0. A,, is therefore a triangle matrix.

What is the diagonal?

with m = s.u. Therefore

(et 4,,.)” =TI (—(s—j&)az -0

COROLLARY 2. The assumptions are the same as tn the theorem.
Then

FH"V, &y) > H YV, &y) (F 1is the Frobenius morphism)

is tnvertible.
Proof. Clear by Serre duality and the fact that C =7

The Cartier-operator of W-H. The differential operator C as
given in Definition 1 on ' is by p~*-linearity completely determined
on @' by its value on @ = h-dx, where « runs through a set of coordi-
nate functions.

We have C(w) = z~'yr(xh)dx, that notation is only intrinsie, if
dw = 0, because + depends on the coordinate system. If we choose a
different coordinate system, then we get in general a different opera-
tor; but for w with dw = 0, we get the same, namely the Cartier-

operator.
That fact can be exploited in the following way. Suppose

W:{xlzxz"':xt:()}nH'

We write now Cjy resp. C, for the the operators. The above defini-
tion shows @:., Kdx,; is stable under C;. But by the property of 4,
w(X;H) = X;H for some H, we have for

w = x;hdx; 1%+ 7 t,J arbitrary
Cu(w) = w;hda; .

Let % = {x, --- x,}, then AL, P Bi., & xdx; is stable under C;. By
the exact sequence

t
0— A%y + @ O uQx; — Qe — Ly — 0

Cy induces an operator C; on 2,. C, has again the properties
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(1) Cy is p~*-linear
(2) Cy(dh) =0
(8) Cy(h*™'dh) = dh .

If we restrict C,, to the closed forms on W, then Cj is the Cartier-
operator.

Let now L be an arbitrary linear variety. After a suitable coordi-
nate change we may assume L is the intersection of some coordinate
hyperplanes. W = L-H has then the above shape.

Let us assume that the hypersurface H has a diagonal defining
equation of degree d diving » — 1, » = char k. Then the above Theo-
rem 1 shows that C, is semisimple on Zj,;. In the same way as
before we can extend Cj to any £}, in particular to 2}, where
m = dim W. As result of this discussion we get:

THEOREM 3. If L is a linear variety of dimension m + 1, then
there ewists a hypersurface H of degree d, which divides p — 1, such
that

%Hm(L'H, ﬁL-H) '_’Hm(L°H, ﬁLH)

18 tnvertible.

3. The Cartier-operator of plane curves. For curves the explicit
description of the Cartier-operator is of special interest if one wants
to study, how the Cartier-operator varies with the moduli of the curve.
Unfortunately one is restricted to plane curves, because the above ex-
plicit form of the Cartier-operator is available only for hypersurfaces.

If one specializes the above results to plane curves, one has to
assume, that the curve is singularity free.

The space W = {homogenous forms of degree d — 3} is for non-
singular curves V of degree d isomorphic to H°(V, Q;,,) under

W~ H(V, Q1)
P(X) — P(x)w,

where the coordinate functions are given by
z=X/X,, y=X,/X, mod F,

F being the defining equation for V and f(z, y) the affinization, f,
denotes of/oy. With that notation w, = dz/f,.

But it is important to know, that one can give a similar description
also for singular curves. Then W is the space of P(X), which define
the “adjoint” curves to V. These are those curves, which cut out
at least the “double point divisor”.



452 L. MILLER

To give an explicit basis depends on nature of the singularities.

Hyperelliptic curves: Let p = chark > 2.

For a detailed study of the Hasse-Witt-matrix of hyperelliptic
curves one needs the explicit Cartier-operator with respect to various
“normal forms”.

Let the hyperelliptic V' be given by 4 = f(x), deg f(x) = 29 + 1
and such that f(x) has no multiple roots. V has a singularity at
“infinity”. One could apply the above method and work out the adjoint
curves in order to get a basis for H(V, 2},,). But we have already
a basis, namely if ® = dz/y then {r’w|i =0--- g — 1} form a basis.

We specialize the results of §2 and get from Corollary 1 as matrix
for the Cartier-operator with respect to the above basis (let us put
p—1/2 = m):

A, , = coefficient of x°** in (f(x)™z**) 0= ?; <g-1.

Legendre form: We assume now the defining equation in Legendre
form.

fo)=a@—DII@—r) 72071
=t NFENEO0, L.

Notation: Let

ol =0+ -+ + 0,
AP = AL eee N2,

The permutation group of = elements S, operates on the monomials
MNP e S, .
Let G, be the fix group of A and G*® = S,/G,. Let
H(p)(x) — Z’ )\‘m—-r(p) .

eGP
Apparently
H* = H?  iff p=7().
We may therefore assume
l=p=so=p0.=m.

For given

0<y<g—1 let p=|o]—vp+u.
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Put

ot = () o ()

and

Ag,v:ZP“CLL’jLH(p)(k’) Oéqqfég_l’lr:zg—l

the summation condition being:

O_S_pl—g"'éprsm’ 100:[[0|""'Up+u7 0§p0§m

w—u+m=[pl=vp—u.

We state as a proposition

PROPOSITION 2. Let be A,,, 0= <9 — 1, as defined above, and

o = dx/y, then
Clxw) = X A, 20

v=g—

18 the Cartier-operator.

Applications: We want to investigate, when the Cartier-operator
is invertible. It seems that an answer to that question, without any
restrictions is not available. It is therefore worthwhile to have various
methods even in special cases.!

We restrict ourself to genus 2, although the method could be
applied to higher genus, but the calculations would be very easy.
Let p >2 and g =2

le. Y=o — D@ — )@ — )@ —N), NM=EN#0,1 7£7.

The notation is the same as above.
H®(\) is homogeneous in the \’s of degree 3m — |p|, m = (p — 1)/2.

We have
A= 3 anHON

0=pySp Zpp=py=m

A
A

%
p=1

Co=|pl—vp+u vp—u=s[p/Zvp—u+m.

We want to know of A2 ,, what the forms of lowest homogeneous degree
in the A\’s are. We have to give |0| the maximal possible value.

We use the shorthands

1 Added in proof: We settled this question in the meantime, see [6].
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(5)=1()

and D(u, v) = degree of the lowest homogeneous term in AZ,. In the
list below is p, = max |p| — v» + u.

(u, v) \ max 0] ‘ ©o b D(u, v)

(0, 0) m m p—1

1, 0) m—1 m D

{, 1) 3m i m 0 .

We get therefore:

Az A2, = terms of degree p — 1 + higher terms
A? A7, = terms of degree p + higher terms.

The lowest degree term L in det (4,,)” is given by

L=m3 (’g)HW(x)

O+ 0+ 0 =m
0<p<o<p.

Notice, if 0 s p, then H® and H® have no monomial in common.
Therefore L is not the zero polynomial. We are able to specialize
the variables (A, X\, \;) in the algebraic closure of %k, such that
det (4,,.) # 0. In other words, there exist curves of genus two with
invertible Cartier-operator.

We do not know, what the smallest finite field is, over which
such a curve exists.

REMARK. For large p we could push through a similar discus-
sion for higher genus. We omit that, because there is a more elegant
method for large » by Lubin (unpublished). Let y*=a**'+ax’*'+ 2.
The claim is, that for large p (depending on g) and variable a the
Hasse-Witt-matrix of that curve is a permutation matrix.
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