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FIXED POINT THEOREMS FOR SET-VALUED MAPPINGS
OF CONTRACTIVE TYPE

NApiMm A. Assap AND W. A. KIRK

In this paper a new fixed point theorem is proved for
contraction mappings in a complete metric space by observing
that if the space is metrically convex, then significant weak-
enings may be made concerning the domain and range of the
mapping considered. While the main theorem is formulated
for set-valued mappings, its point-to-point analogue is also a
new result. This result, proved in §1, is the following: Sup-
pose M is a complete, metrically convex, metric space, K a
nonempty closed subset of /M, and ¢ a contraction mapping
from K into the family .7 (M) of nonempty closed bounded
subsets of M supplied with the Hausdorff metric. Then if ¢
maps the boundary of K into subsets of K, ¢ has a fixed
point in K, i.e., there is a point x,c K such that x, < ¢(x,).

Many applications of the contraction mapping theorem occur in
a convex setting, and in particular the results of this paper are
applied to obtain new fixed point theorems in Banach spaces. For
example, if H is a closed convex subset of a Banach space X and T
is a contraction mapping of K into H where K is a nonempty closed
subset of H, then the requirement that 7" maps the boundary of K
relative to H back into K is sufficient to guarantee a fixed point for
T. Hypotheses of this type are not new in analysis; for mappings
which are completely continuous, H is often taken as the positive
cone in X and K the intersection of H with the closed unit ball.

In §2 we use the above theorem to obtain an improved version
of Lami Dozo’s generalization [9] of a theorem of J. Markin [10],
and in §3 a connection between fixed point theory of Lipschitzian
pseudo-contractive mappings and that of nonexpansive mappings yields
a theorem which generalizes results of Kirk [7], [8].

1. Set-valued contraction mappings. Let (M, d) be a metric
space and let .7 (M) denote the family of all nonempty bounded
closed subsets of M. For A, Be .7 (M), let D(A, B) denote the distance
between A and B in the Hausdorff metric induced by d on .7 (M).
In particular, if for » > 0 and Ee .9 (M) we define

V.(E) ={xeM:dist (x, E) < 7},
then we have
D(A, B) = inf{r: AcV,(B) and BCV.(A4)}.
553
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In the theorem below we shall assume M is a complete metric
space which is (metrically) convex, that is, M has the property that
for each x, ye M with o # y there exists ze M, © ++ z = y, such that

d®, 2) + d(z, y) = d(@, y) .

K. Menger has shown that in such a space each two points are
the endpoints of at least one metric segment. (A proof of this theorem
due to N. Aronszajn may be found in L. M. Blumenthal’s book [1,
p- 41].) This fact immediately yields the following:

REMARK. If K is a closed subset of the complete and convex
metric space M and if xe€ K, y¢ K, then there exists a point z in the
boundary of K such that

dx, 2) + d(z, y) = dix, y) .

We shall also make use of the following lemmas, which are noted
implicitly in Nadler [11]. Here M denotes a metric space and .7 (M)
the family of nonempty bounded closed subsets of M.

LEMMA 1. If A, Be 9 (M) and e A, then for each positive
number « there exists yec B such that

d@, y) = D(4, B) + a .

LEMMA 2. Let {A,} be a sequence of sets in 7 (M), and suppose
lim,_. D(A,, 4) = 0 where A, e 7 (M). Thenif v,c¢A,,n=12 ---,
and if lim,_ ., 2, = 2, it follows that x,c A,.

In the theorem below we consider a mapping @ on a subset K
of M which takes values in .7 (M). Such a mapping is called a
contraction mapping if there exists a constant & < 1 such that D(p(z),
?(y) < kd(x, y). Also, we use the symbol 0K to denote the boundary
of K.

THEOREM 1. Let M be a complete and convex metric space, K a
nonempty closed subset of M, and ® a contraction mapping from K
wnto 7 (M). If o(x) < K for each x € 0K then there exists x, € K such
that x,€ P, (i.e., @ has a fized point in K).

Proof. Let a, 0 < a < 1, denote the Lipschitz constant of . We
select a sequence {p,} in K in the following way: Let p,c¢ K and
plep(p). If pie K, let p, = p}; otherwise select a point p, € K such
that d(p,, p.) + d(p,, p;) = d(p,, »;). Thus p,€ K and by Lemma 1 we
may choose p,€ @(p,) so that
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d(p;, p;) = -D(g)(po)5 @(pl)) + a.

Now put p, = p, if p,e K; otherwise let p, be a point of 6K such that
d(p,, p,) + d(p,, P)) = d(p,, p}). By induction we may obtain sequences
{p'n}, {p:'b} such that for n = 1, 2, oo,

(1) Pun€P(pa),

where

(iii) Phy = Pur if D€ K, o1
(lV) d(pny pn-l—l) + d(pn+1y p;+1) = d(pn, p:¢+1) if p;+1 ¢ K.
Now let

P={pe{p)ip=p,1=12 ++};
Q - {pze{pn}: pz * p:;i = 1) 27 "°} .
Observe that if p,€ @ for some m, then p,,, < P.

Now for n = 2 we consider the distance d(p,, »,..). Three cases
must be considered:

Case 1. p,e P and p,,, € P. In this case we have

A Pry Drss) = ADh, Prsr) = DP(D,), P(D0) + "
= ad(p,, Pn) + .

Case 2. p,cP and p,,, €Q: Here we use (iv) to obtain

A(Day Putr) = A(Day Dot
= d(Ph, Dus+r)
= D(@(Pa-y), P(D.) + "
= ad(pa, p.) + a”.

Case 3. p,€Q and p,.,c P: By the above observation, two con-
secutive terms of {p,} cannot be in @, hence p,_,€ P and p,_, = p,_,.
Using this below, we obtain

A(Duy Dutr) = A(Da, D) + ADY, Dats)
= d(Dn, P1) + A(D7, Diss)
= d(Da, p7) + D@{p.), P(0.) + "
= (P, p2) + @d(p,y, D) + @
< dPu, PV + @
= d(py, 1) + a”
= D(@(0r), P(Du) + @7 + @
< ad(Pusy Puey) + @7+ a” .
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The only other possibility, p, €@, p,.: €@, cannot occur. Thus for
n = 2 we have

Ad(Pry Pn) + ¢, OF

* d <
( ) (pm pn+l) = a’d(pn_z, pn—i) + an + an—l .

Now let 0 = a™* max {d(p,, p.), d(P:, :)}-

Assertton. For n =1,
(**) d(pm pn+1) -g anIZ((S + 7?/) .

In order to prove this by induction we must establish the cases n =
1,2. Forn=1

d(p,, p) = a0 < al*(o +1) .
For n = 2 we use (*) and take each case separately.

d(p;, ;) = ad(p,, p,) + &
< a(@’ + o)
<ald+2);

d(ps, o) < ad(py, p)) + " + &
S a@’o + a+ 1)
Sa@+2).

Now assume (**) holds for 1 < n < N, and for N = 2 consider the
two cases:

1. d(Dyis, Pr+o) = @d(Dy, Py) + @
= afa"@ + N)] + a”
§ a(N-)—l)/za + (N+ l)a(zv+2)/2
S aWRGe + (N + 1) .
2. d(Dyis, Dysd) = @d(py_y, Dy) + & 4+ ¥
é a[a(N—x)/Z(a + (N _ 1))] + aN+1 + 6\{N
< a¥+ory + (N— 1)auv+1)/2 + a+ + a”
=a™Eo + (N + 1)) .

This proves the assertion, and from (**) it follows that
(***) AP, py) <05, (@1 + i@y, k>Nz=1.
i=N i=N

This implies {p,} is a Cauchy sequence and since M is complete and
K closed, {p.} converges to a point x,€ K. Also observe that there
exists a subsequence {p, } of {p,} each of whose terms is in the set
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P (i.e., p,, = phy k=1,2,+-+). Thus by (i), p\, € P(Pu,-1), k =1, 2,
+++, and since p,,, — &, as k— c we have @(p,, ) — P(@,) as k— o
in the Hausdorff metric. It follows from Lemma 2 that w,c@(x,),
completing the proof.

REMARK. In the above proof the rate at which the sequence {p,}
converges to a fixed point of ® is obtainable from (***). If @ is a
point-to-point mapping then one can always take p, = @(p,_,) in defining
the sequence {p,} thus obtaining in place of (ii)

APy, DY) = AP(D,), P(Pa-y)) -

Using this one obtains, in place of (***), the sharper estimate
Dy, px) S 03, (@, k>Nz1.
i=N

For subsets K, H of a Banach space we use the symbol ;K to
denote the boundary of K relative to H. In particular, if K is closed.

0, K = {zc K: Uz, v) N H\K = @ for each r > 0},

where U(z, r) = {xe X: ||z — || < 7}.
By taking M = H in Theorem 1 we obtain:

COROLLARY 1. Let X be a Banach space, H a closed convex subset
of X, and K a closed subset of H. If : K— 7 (H) is a contraction
mapping such that @(x) = K when xcdyK, then there exists x,€ K
such that w, € P(x,).

COROLLARY 2. Let K and H be as in Corollary 1. If T: K—
H is a contraction mapping, and if Txec K when x € 0yK, then T has
a (unique) fized point in K.

Both of these corollaries are used in the subsequent sections.

2. An approach of Lami Dozo. In [12] Opial observed that
every uniformly convex Banach space which possesses a weakly con-
tinuous duality mapping [3] satisfies the condition:

(A) If the sequence {z,} is weakly convergent to 2, and if x =
x,, then

lim inf ||z, — || > liminf ||®, — o] .
Following Lami Dozo [9], we say that a Banach space satisfies

Opial’s condition if it has property (A). Such spaces include Hilbert
spaces, and the spaces 1,1 < p < o (see Browder [3]).
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For a Banach space X, let 2¢7(X) denote the family of nonempty
compact convex subsets of X supplied with the Hausdorff metric, and
let B denote the closed unit ball in X. In [10] J. Markin proved
that if X is a (real) Hilbert space, if @: X — 277(X) is a nonexpansive
mapping (that is, D(@®@), (%) < ||& — y|| for all z, ye X), and if
®(x) B for every x € B, then ® has a fixed point in B. Subsequently,
E. Lami Dozo [9] generalized this result. He proved that if X is a
Banach space which satisfies Opial’s condition and if C is a nonempty,
weakly compact, convex subset of X, then every nonexpansive set-
valued mapping defined on C whose values are nonempty compact
subsets of C possesses a fixed point. Application of Corollary 1 to
Lami Dozo’s approach yields the improvement of his result given
below.

THEOREM 2. Let X be a Banach space which satisfies Opial’s
condition, H a closed convex subset of X, and K a nonempty, weakly
compact, convexr subset of H. Let T be a nonexpansive poini-to-set
transformation on K into the nonempty compact subsets of H, and
suppose Tx c K whenever x€0,K. Then T has a fized point in K.

Proof. It is readily seen that we may assume, without loss of
generality, that 0 K. Choose a sequence {r,} of real numbers, 0 <
r, < 1, such that r, —1 as n— . For each =, r,T is a point-to-set
contraction mapping from K to the nonempty compact subsets of H.
Furthermore, if ¢ d,K then r,Tx C K because 0 € K and K is convex.
By Corollary 1, it follows that for each =, »,T has a fixed point in
K; say z,er,Tx,NK,n =12 -.-. Hence z,/r,€ Tx, and thus
z,1—1/r))ex, — Tz, = (I — T)#,. Since {x,}c K and K is weakly
compact, it follows that {x,} has a weakly convergent subsequence,
and we may merely assume {x,} itself converges weakly, say to x,.
Furthermore, since {z,} is bounded,

w, = 2,0 — 1/r,) — 0 strongly.

Following the argument of Lami Dozo, we show 0e (I — T)x, and
conclude z, is a fixed point of T.

Since w,e (I — T)x we may write w, = ¢, — u, where w,e T%,.
Thus

D(Tw,, Tro) < |20 — @l
and u, e T%, implies existence of %, e T, such that
1y — @, || = D(T,, T,) .
Thus,
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”un - ’En“ é ”xn - xO” .
It follows that

lim inf ||®, — %,|] = lim inf ||u, — @,]|

= lim inf ||z, — w, — &,] .
Now, since {#,} is contained in the compact set Tw, we may suppose
subsequences again have been chosen so that {#,} converges strongly,
say to u,e€ Tx,. Therefore,
liminf |2, — w, — @,]]|

= lim inf (|2, — w, — %, + %, — Uol|

n—00

> lirﬂinf (@, — woll — llwall — ||%n — %oll]
= lim inf [|@, — || + lim inf (— [lw.]))
+ lirr_lmionf (— 1%, — %ol])

= lim inf ||z, — ]| .

Thus we have shown:

lim inf ||2, — %,|| = lim inf ||z, — ]| .
Since %, — x, weakly, we have, by Opial’s condition, x, = u,. But
u, € Tz, S0 we have the desired result.

3. Pseudo-contractive mappings. We include an application of
Corollary 2 which generalizes a theorem of Kirk in [7].

In [5], F. Browder introduced the following definition: Let X be
a Banach space and D c X. A mapping U: D — X is said to be pseudo-
contractive if for all w, ve D and all » > 0,

(1) lw =2l = 1A + M — 1) — r(UW) — UW)| .

Pseudo-contractive mappings are characterized by the property:
U is pseudo-contractive if and only if I — U is accretive (see [5],
Proposition 1). It is easily seen that these mappings include the
nonexpansive mappings.

The approach of [7], showing how fixed point theorems for pseudo-
contractive mappings may be derived from the fixed point theory of
nonexpansive mappings, may be modified to obtain the following:

THEOREM 3. Let X be a reflexive Banach space, H a closed
convexr subset of X, and K a nonempty, bounded, closed, convex subset
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of H which posseses mormal structure. Let U be a Lipschitzian
pseudo-contractive mapping of K into H such that U(x) € K when x ¢
0xK. Then U has a fixed point in K.

The concept of “normal structure” [2] enters here only so that
the theorem of Kirk [6] may be applied. In particular, if X is uni-
formly convex, or if K is compact, then K always possesses normal
structure.

Proof of Theorem 3. Since U is Lipschitzian there exists a number
A, 0 <A< 1, such that ZU is a contraction mapping. Taking M\ =
r/1 -+ r), (1) implies that the mapping 7, = I — MU satisfies

I Tiw — T:) =2 @ =M u -], wveK.
Hence (1 — M) 77" is a nonexpansive mapping on its domain. Now let
v el —-MNK={1-NMNy:yek},
and consider the mapping U;: K — X defined by
Ulx) = U@ + y*, zcK.
For x €0, K, then U(x) € K, hence
U,@) =2 U@) + 1 — Ny

for some ¥ ¢ K, and this implies U,(x) ¢ K. Thus U, is a contraction
mapping satisfying the assumptions of Corollary 2, so there is a point
2* ¢ K which is fixed under U,. Hence

AU@E*) + y* = o*;
I —AD)a* = y*.
Therefore T,(K) D (1 — MK, which implies
1-MNT1—-—NK— 1 - NK.

By the theorem of Kirk [6] the mapping (1 — M) T;* has a fixed point
ze(l — M K. Letting z = 1 — M\)z* one quickly sees that U(z*) = z*
(cf. [7]).

The above theorem also extends Theorem 2.1 of [8], which was
proved by a different method, from the class of nonexpansive mappings
to the class of Lipschitzian pseudo-contractive mappings.

The connection between pseudo-contractive and nonexpansive mapp-
ings has recently been further refined. R. E. Bruck has made the
interesting observation that if C is a closed convex set which has
the fixed point property for nonexpansive mappings, and if U:C —C
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is a Lipschitzian local pseudocontraction, then U always has a fixed
point.

4. A theorem in Hilbert space. The assumptions on the mapp-
ing of Theorem 2 may be considerably weakened if X is a Hilbert
space and K a closed ball centered at the origin. Here we give a
theorem which was proved for point-to-point mappings by Browder
[3, Theorem 3].

THEOREM 4. Let 57 be a Hilbert space and B the closed unit ball
wm 7. Suppose P is a nonexpansive mapping from B into the
nonempty compact subsets of S#. If @ satisfies the condition:

(i) e¢p@®) if ©coB and )\ > 1,
then @ has a fixed point in B.

Proof. We use the fact that “radial projection” in Hilbert spaces
is nonexpansive. For xe B, let

P@) = {z:ze (@) and [|z]] = 1} U {z/l|z|: ze P(x) and ||z|| > 1} .

Then @ is also a nonexpansive mapping from B into the nonempty
compact subsets of B. By Theorem 2 (or the result of Lami Dozo)
there exists x,€ B such that x,e @(x,). Since \x, ¢ P(x,) if 2, € 0B and
A > 1, it follows that x, € @(w,).
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