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WILD ARCS IN THREE-SPACE

3: AN INVARIANT OF ORIENTED LocAL TYPE
FOR EXCEPTIONAL ARCS

JAMES M. McPHERSON

This paper continues the investigations of previous papers
in this series, and attention is confined to exceptional arcs.
Given a special constructing sequence for an exceptional are,
the associated sequence of local linking matrices is defined,
and the cofinality class of this sequence is shown to be an
invariant of the oriented local arc type of the exceptional
arc. This paper also gives a set of sufficient conditions for
an arc to have a constructing sequence.

The paper closes with examples which show that there exist
uncountably many locally nonamphicheiral exceptional arcs of
any penetration index. No two of the locally nonamphicheiral
exceptional arcs exhibited here can be distinguished by the
invariant of nonoriented local arc type developed previously.

An exceptional arc of penetration index three at its wild point
is a Fox-Artin arc, and an invariant of oriented local type for such
arcs has already been developed in [4]. This paper uses the techniques
of [5] and [6] to find invariants of oriented local type for exceptional
arcs whose penetration index is at least five. The paper concludes
with examples of the application of this invariant and the invariant
of [5].

The results in this paper are generalisations of the results in
[2], pp. 45-70 and pp. 82-95. The notation and terminology used
here has been explained in [3], [4], [5], and [6].

1. Preliminaries. Let & be an oriented arc in R?® which is
locally tame except at the endpoint p, where Pk, p) = 3. Let

E->oEDE,D---

be a sequence of tame closed 3-cell neighborhoods of p such that

(i) E;.clInt E; for each 4, and N E; = p,

(ii) the sets A(E;, E,.,) (of those subarcs of k¥ in X, — E,,,
whose endpoints both lie on Bd E;) and B(F;,,, E;) (of those subarcs
of  in E;, — Int E,., whose endpoints both lie on Bd E;,,) are not
empty for any 1,

(ili) for each ae A(K;, E,,,) there exists a ge B(E;y, E;) such
that the pair («, ) is not splittable (cf. [3], p.230), and
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(iv) for each g€ B(E;., E;) there exists an a e A(E;, E;.,) such
that the pair (@, B) is not splittable.

Then we shall say that the sequence F, D E, D K, D ... has the
(Fox-Artin) property #.

The arce k is exceptional if it has a special constructing sequence,
that is a sequence

&: E,OV,DE DV, DEDV,D--.

of k-tori and tame closed 3-cells such that

(i) E,DVy>V,>V,> .- is a constructing sequence for % in
E, ([5]),

(ii) for each 1 =1, Bd E;cInt(V,_, — V;), and

(iii) the sequence E,D E,D E,D -.- has property .&#.

Note that P,(k, ») = 1 if k is exceptional. In this paper we will
be assuming that Py(k, p) = 5, so we may use the results of [5] in
our study of exceptional arcs; Theorem 1 of [5] is particularly im-
portant.

Let L=10Ul, be an oriented link of two components in an
oriented 8-cell E, that is, an embedding of the disjoint union of two
oriented 1-spheres in E. Each I, bounds an orientable surface S;cC E.
The linking number M1, 1,) of I, with I, is the number of intersec-
tions of I, with S,, counted algebraically; \(, 1) = v(l, N S,). The
value of A(l, l,) is independent of the choice of the surface S,, and

7\:(l1, lz) = ”(ll N Sz) = v(Sl N lz) = )"(lz, ll)

([8], p. 278). Since linking number is an invariant of the F-isotopy
class of a link, it makes sense to define A(a, B) for each

ac A(E;, E,,,) and B € B(E;.,, E;)

whenever we have a sequence K,D FE, D FE,D> .- with property &
(cf. [3], p.230).

Suppose k is exceptional, and & is a special constructing sequence
for k. Since k is oriented, the arcs of A(E;, E;,) and B(E;., E)
have a natural ordering for each ¢, namely the order in which they
occur in the arc k. Henceforth, we shall assume that these sets
have this natural ordering.

Then for each special constructing sequence &, the sequence of
local linking matrices is the sequence whose ¢th term is the local link-
g matric A(E;., E;) = [\.], where \,, = \Ma,, B,) for a, € A(E;, E;,.)
and pB,€ B(E;,,, E;). The rows and columns are ordered with the
natural ordering of A(E;, E;;,) and B(E;,,, E;). We will show in §3
that the cofinality class of the sequence of local linking matrices is
an invariant of the oriented local type of an exceptional arc.
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2. The existence of constructing sequences. Our aim in this
section is the proof of Theorem 1 below, which yields a partial answer
to Problem 1 of [5]. We will need to use some cutting and pasting
arguments in the proof of this and later theorems so, to save labor,
we prove Lemma 1 first.

LEMMA 1. Let E, DV, DE DV, D-.-- be a sequence of k-tort
and 3-cells, such that the sequence E,D K, D--- has property #,
and let VCInt E, be a k-torus. Let AcBAVNInt(V,_, — V,) be a
disc or an annulus whose boundary lies on Bd E, and whose interior
1s disjoint from Bd E;; if A is a disc, let A’ be one of the discs on
Bd E; bounded by the curve Bd A, and if A is an annulus, let A’ be
the annulus on Bd E; which is bounded by the two boundary curves
of A.

Then if AUClL(Bd E; — A’) bounds a 3-cell E! which contains p
(and therefore V) in its interior,

(i) the sequence E,DKE D+ DK, ,DE' DKE;,,D-++ has pro-
perty 7,

(ii) A(EY, E;_)) = A(E;, E;_,) and A(E;.,, E!) = A(E;,, E;), and

(iii) N(knNBd E)) = N(kNBd E,) (this is implied by (ii)).

Proof. We have two cases to consider: (a) Ac Cl(&, — E;) and
E!DE, and (b) AC E, and E/C E;,. We shall only prove the result
in case (a); the proof for case (b) is similar. If we use K to denote
the region bounded by A U A4’ in Int E,, then E! = E; U K.

Let ac A(E,_,, E;), so that « C E, — E;. Then ac E, — E]. For
vaNBdK)=v@nN A =0, and &k meets A in at most one point,
since A is part of the boundary of a k-torus; thus N(a@nA4) = 0 and
a meets neither A nor Bd E;, so ac E, — E!. [Note that, in general,
if V is a k-torus whose boundary lies in Int(V; — V;,,), then
anBd V=g and pNBAdV =@ for all a«c A(E;, E;,,) and BeB
(E;.., E;), for both y(@ N Bd V) and v(8 N Bd V) are zero.]

Therefore A(E,;_,, E!) = A(E;_,, E;). Now suppose there exists an
arc B e B(F;, E;_)) whose interior lies in Int K and whose endpoints
both lie in Int A’. Then we can join the endpoints of B by an arc
B’ lying in Int A’, so that g U g8’ is a tame knot, and note that the
3-cell E! splits S U B from a U Bd E;_, for each ac A(KE,_,, E;); this
is impossible because the sequence E,D K, D-+-- DK, ,DKE;D--- has
property &#. We conclude that no arc ge B(E; E;_,) can have its
interior lying in Int K. This implies that

NENA)<NENA<NENBAV)=1;

hence kN K is either empty, or a single arc joining the points kN A
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and kN A’ (cf. the penultimate paragraph on p. 231 of [3]) — in par-
ticular, N(kN A) = N(kn A’), hence N(kn Bd E!) = N(kn Bd E}).
This proves part (iii) of the lemma.

If tn(AU A) = @, B(E], E;,_)) = B(E;, E;_,) and there is nothing
to prove. So suppose kN K consists of an arc v which joins the
points £ N A and kN A’, and that kN A’ is one endpoint of the arcs
a.e A(E;, E;,,) and B, € B(E;, E;_).

Let a,e A(E;_,, E;) be chosen so that («,, 8,) is unsplittable; then
we claim that («,, ) is unsplittable, where g, is obtained from g,
by removing Int .

Suppose there exists a 2-sphere S which splits «, Ua from
B U B, where a and B are suitably chosen arcs on Bd E;_, and Bd Ej
respectively. S bounds a 3-cell C in E,. If 8;U B cCIntC then we
may use the usual cutting and pasting arguments, noting that («,,
B.) is unsplittable, to replace C by a 3-cell C’ such that

C'clnt(E;,_, — ),
and then replace C’ by a 3-cell C* whose boundary lies in
Int(E,_, — E! —a, UB,) .

If aya;cIntC, join BAdC to Bd E, by an arc ¢ in E, — (E! U B,
and let C’ be obtained from E, by removing an open regular neigh-
borhood of 6 UCUBd E,. Then C’ is a 3-cell which contains SU S,
in its interior and, after cutting and pasting, we may replace C’ by
a 8-cell C* whose boundary lies in Int (E;_, — E! — a, U B.).

Therefore the pair (a,, B,) is splittable if («,, Bi) is splittable,
for there exists a 3-cell C* such that

EupcE U cCcIntC*cC*cInt(E,, — «a,);

this contradicts our choice of «,, so («,, 8, must be unsplittable
whenever (a,, 5,) in unsplittable.

Let B,¢€ B(E;.,, E;) be chosen so that («,, 8,) is unsplittable — we
wish to prove that («, U7, 8,) is also unsplittable. If («a, U~, gB,) is
splittable, there exists a splitting 3-cell C in Int (B! — («, U 7)) and,
after cutting and pasting, we may replace C by a 3-cell C* whose
boundary lies in Int (E; — E;,, — «,. U B,). Then

B Ug,cIntC*c C*cInt (B, — a,)cInt (B — &, U") ;

which implies that («,, 8,) is splittable, contrary to our choice of g3,.
Hence (@, U7, B,) is unsplittable if («,, 8,) is unsplittable.
Now since

A(E{, E;.)) = (A(E;, E;) — {o,}) U {the are YU a,},
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and
B(Ei, E;.,) = (B(E;, E;..) — {8:}) U {the arc g, — Int~},
these results show that the sequence
EOoE D«-DHE,_ DE/DE,,,D---

has the property &, which is what we needed to prove for part
(i) of the lemma. To complete the proof of the lemma, then, we
need to prove that A(E!, E; )= A(E;, E;,_) and A(E;.,, E!)=
A(E;.,, E;); note that A(F], E;_)) will not differ from A(E;, E;_ ) except
perhaps in column », and A(E;,,, E!) will not differ from A(FE;.,, E))
except perhaps in row s.

For each geB(E;., E{), let S; be an oriented surface in the
interior of E;, bounded by B and an arc 5 on Bd E;,,. Because
vc Cl(E, — E;), v does not meet S; at all so v(v N S;) = 0; therefore

Ma, U, B) =S, N (. U7) =S, Na,)=NMa, g) .

Hence A(E;.,, Ei) = A(E;,, E)).

Similarly, if we let S, be an oriented surface in E, , — E
bounded by « € A(E;_,, E!) and an are o’ on Bd E;_,, then y(vyNS,)=0
because v E!. Therefore

Ma, B, — Intv) = v(S. N (B, — Intv)) = »(S. N B:) = Ma, B,)
and A(E!, E;_.) = A(E,;, E;,_)). This completes the proof of the lemma.

THEOREM 1. Let k be an arc which is wild at onme endpoint p,
at which PJk, p) = 5. Let

EOSV,DEDV,DEDV,D---

be a sequence of tame closed 3-cell and tame closed solid torus neigh-
borhoods of p, such that N(kNBAV,) =1 for all ©. Then if the
sequence E,D K, D E,D -+ of 3-cells has property .7, the sequence
EoV,>=V,>V,> --+ is a constructing sequence for k in E, (and
k is therefore exceptional).

Proof. We need to prove that for each index 7 =1, there is
no k-torus U(i) with V,_, > U(i) > V;, and that there is no k-torus
U(0) with E,D U(0) > V..

Suppose there was such a k-torus U(0) < Int E,. Since V, < U(0),
there exists a 3-cell C which contains V, and whose boundary lies in
Int (U(0) — V,). Foreach ac A(E,, E), « N Bd U@0) = @, and g U E,
lies in Int V, for each gec B(¥, E,); then the set
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(¢ UBd E) U(BU E)
is splittable by the 2-sphere Bd C, contradicting the fact that
E,DFE D---

has property &#. Therefore no such 8-cell C can exist; that is, if
U(0) is a k-torus whose boundary lies in Int (E, — V,), then V, has
nonzero order in U(0).

Suppose ¢ = 1, and that there exists a k-torus U(z) with

Via> U@ > V;.

We put Bd U(7) into general position with respect to Bd E;, so that
Bd U(%) N Bd E; consists of a finite number of simple closed curves,
none of which meets k. Using the cutting and pasting arguments
of the proof of Theorem 1 of [6], we may replace E; by a 3-cell EF
whose boundary meets & in as many points as Bd E;, lies in

Int(V,_, — V),

and is disjoint from Bd U(¢). It follows from Lemma 1, also, that the
sequence B, D K, D---D K, ., DEfDE,,,D--- still has property .#.

We then have two cases to consider. Either (i) EF < Int U(3),
or (ii) U(x) < Int Ef.

(i) Since U(7) < V,_,, there exists a 3-cell C which contains
U() in its interior, and whose boundary lies in the interior of
Vieo — U(3). For each ge B(E*, E;_,), SU E¥ lies in Int U(s) and
therefore in IntC, while aUBd E,, lies in Int(E, — V;_,) and
therefore in Int (B, — C) for each ac A(E,_,, E¥). But this means
that all the pairs (o, B) are splittable, contradicting the fact that
the sequence E,D.-- DK,  DE*>DE, ,D-.-- has property .

Therefore no such 3-cell C can exist, so if EF cInt U(:), U(®1)
must have nonzero order in V,_,.

(ii) Similarly, if U(4) c Int E*, we contradict the fact that the
sequence K, D---DF, ,DE*DKE,,,D--- has property & if we
assume the existence of a 3-cell C such that

VicIntCc CcInt UG) ,

so V; has nonzero order in U(:) if U(¢) lies in Int EF.
Cases (i) and (ii) show that there is no k-torus U(¢) such that
V:< U(t) < V;_,. Therefore the sequence

EODVO> V1>' V2> e

is a constructing sequence for %, and k is exceptional.
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3. The invariance of the sequence of the local linking
matrices. The result of this section is that the cofinality class of the
sequence of local linking matrices is an invariant of the oriented
local arc type of an exceptional arc. We need to start with a
lemma.

LEMMA 2. Let

EoT,oB>T,>2B,D+++DB,_,
>7,.. 2B, DV, DK, , DV, ,DE, ;D"

be a special constructing sequence for k, and let
EoU>U>U>--->U,, >V,
be a containing sequence for V,. Then there exist 3-cells
E,E, - - E,_, K,

such that

(i) E,2oUDEDUD---DE, DU, .DE,DV,DE, .. DV, Do
s a special constructing sequence for k in E, and, for all i =
O, 1, v, M,

(ii) A(E;y, B;) = A(B;y, By), and

(iii) N(kNBd E;) = N(k N Bd B;).

Proof. (Note that (ii) implies (iii), so we only need to prove (i)
and (ii).)
Let 77 be the class of all special constructing sequences

ESoTfoB*D>T*D .+« DBX,
D Tn*~1DB¢:k ) Vn :)E'thlD Vn+1DEn+zD b

for which A(B#,, Bf*) = A(B;s,, B)), t=10,1,2, .-, n, where we take
By = E, and B}, = B,,, = E,... 7 is not empty, by hypothesis.
Then there is a sequence in 7° whose boundary surfaces are in general
position with respect to the surfaces Bd U, ---, Bd U,_,, and meet
those surfaces in a minimum number of intersection curves — we may
denote this sequence by E, DV, DK DV,D-.--. We are assuming,
therefore, that

(a) (UBd Uy N (U= (BAV; UBA E,,,) consists of a finite num-
ber of simple closed curves, none of which meets k, and

(b) there is no sequence in 7" whose boundary surfaces meet
BdU, ---,Bd U,_, in fewer curves than do the surfaces of the
sequence K, DV, DE DV, D---.

The major part of the proof (Parts 1 and 2) consists of showing



606 JAMES M. McPHERSON

that the boundary surfaces of the sequence E, DV, D E, DV,D:...
are disjoint from the family {Jiz; Bd U;. The proof of the lemma is
then completed in Part 3 by showing that U, E; and U,> E,,, for
each 1=10,1, ..., n — 1 (we really show that Bd E,,, lies in

Int (U; — Us4)) -

Part 1. No intersection curve can be null-homologous on Bd Uj,
for any j.

Suppose there exists an intersection curve which bounds a dise
on Bd U,, for some index A. We may choose an intersection curve
o C Bd U, which bounds a disc Dc Bd U, containing no other inter-
section curves. We then have two cases to consider: either (i)
ocCBdV,, or (ii) c c Bd E,, for some index s.

(i) If ocBdV,, then ¢ bounds a disc D' on Bd V, (cf. part (a)
of the proof of Lemma 5 of [5]); let S be the 3-cell bounded by
DU D, and let N be a (judiciously chosen) closed regular neighbor-
hood of S. Then we write V! =Cl(V,— N) if DcV,, and V! =
V.UN if DcCl(E, — V,); it follows from Lemma 3 of [5] that V|
is a k-torus. Moreover,

BdU;NnBdV/cBd U;nBd V,
if 7 #+ h, and
BdU,NBAdV,cBdU,NBAV, — {0}

(for we have eliminated all those intersection curves lying on D’). The
sequence

EDSViDE D+ DV_ DEDV.DE, DV Dees

is still a special constructing sequence for %k in E,, has the same
sequence of local linking matrices as our original sequence in ¥; yet
meets the surfaces Bd U, ---, Bd U,_, in fewer intersection curves.
This contradicts the minimality assumption (b) involved in the choice
of our original sequence in </; so we conclude that no curve ¢ of
Bd V, N Bd U, can be null-homologous on Bd U,.

(ii) o BdE,. We may choose one of the discs on Bd E, which
is bounded by o, D’ say, so that E,., does not lie in the 3-cell S
bounded by DU D’. Let N be a closed regular neighborhood of S
in E, write E/=Cl(F,—- N) if DcE, and E/=E UN if
DcCl(E,— E).

It follows from Lemma 1 that A(E,,, E!) = A(F,.,, F,) and
A(E!, E,_) = A(E,, E,_,), for E! is the image of the 38-cell bounded
by DU (Bd E, — D') under a small isotopy (which fixes everything
outside an open neighborhood of D). The sequence
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EoV, Do DE, _ DV, _  DE/ DV, DE, DV, 1De--

is therefore still a special constructing sequence for k in E,, and is
in 77; further, we have eliminated all those intersection curves which
lie on D', without introducing any new intersection curves, so that
the boundary surfaces of this new sequence in &° meet the surfaces
Bd U, ---,Bd U,_, in fewer curves than did the boundary surfaces
of our original sequence. This contradicts the minimality assumption
(b), and we conclude that no curve o c Bd U, N Bd E, can be null-
homologous on Bd U,.

Thus no intersection curve can be null-homologous on Bd U; for
any index j.

Part 2. Suppose there exists an index & such that the family
of curves Bd U, N (U= (Bd V; U Bd E;.,)) is not empty. Then these
curves are parallel non-null-homologous curves on Bd U,. There exists
a largest index M(h) = M < n such that either
(@ BAU,NBdV,# @ but BAU, NBd E,,,, = &, or
(8 BAU,NBdE,. + 0.

(@) BAU,NBAdV,# @ but BA U, NBd E,;,, = @. Then there
exists an annulus R in V,, N Bd U, whose boundary lies in

Bd U, nBd Vy

and whose interior lies in Int V,. Let ¢ and ¢ be the boundary
curves of R. Then we must consider two cases, according as ¢ is
not or is a meridian of Bd V,, (Part (a) of the proof of Lemma 5 of
[5] shows that ¢ and = cannot be null-homologous on Bd V).

(i) o is not a meridian of Bd V,,. The annulus R splits V,, into
two solid tori, T, and T,, by Satz 1, p. 207 of [7]. T, has 0 as a
core (hence O(T, V) = 0) and O(T,, V,) = 1.

One of these tori, T, say, contains F,., in its interior. We put
Bd T, into general position with respect to the surfaces

Bd U, ---,Bd U,_,

by putting V), = T, — {an open regular neighborhood of R}. Then
V5 is a k-torus, and the sequence

EDVi>V.> oo >Vy i > Vy>Vyy > >V,

is a containing sequence for V, (cf. [5], Lemma 4, and Part (b) of
the proof of theorem 1). Then the sequence

EDSViDE D« e+ DVy  DE, DV, DEy, , DVyyDees

is a special constructing sequence for %k in 2/; whose boundary sur-
faces meet the surfaces Bd U, ---, Bd U,_, in fewer curves than did
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our original sequence, for we have eliminated ¢ and 7z and all the
other intersection curves which were on the annulus

Bd(V, — T,) — IntR.

The existence of this sequence in 7° contradicts our minimality as-
sumption (b), so 0 must be a meridian of BdV,if BA U, NBdV,, = @
but BA U, NBd E,., = ©.

(ii) o is a meridian of Bd V,. R separates V, into a solid
torus T(R) which has order one in V,, and another space K which
is a solid torus if and only if V, and T(R) are equally knotted.
T(R) and V, share a meridian dise D. (Satz 2, p.211 of [7]) Let
R’'cBd V) be chosen so that R’ U R = Bd K.

We will show that p ¢ K which, by Lemma 4 of [5], is sufficient
to show that T(R) is a k-torus.

If p lies in K, then E,,,cInt K; let g€ B(Ey., Ey). Then g
does not meet R’, for R'"c Bd V,,c Int (E,, — E,.,). Since R meets
k in at most one point, B8 cannot meet R at all because

YBN(RUR)) =v(NEK)=0.

But then gU Ey,,CInt K, so B8 does not meet the meridian
disc D. Because g does not meet Bd V,, 8 U Ey,, must lie in the
interior of the 3-cell C obtained by removing an open regular neigh-
borhood of D from V,; then the pair (a, 8) is splittable for each
aec A(Ey, Ey.), for

BUE, ,cIntCcCcV,cInt(E, — a).
This contradicts the fact that the sequence
ED«-DE,DEy,, D¢

has property .#.

This shows that p ¢ K, that is that p € T(R) and T(R) is a k-torus.
We put Bd T(R) into general position with respect to the surfaces
Bd U, ---,Bd U,_, by putting V, = T(R) — {an open regular neigh-
borhood of R}. Then V7 has order one in V,, and the sequence

EoVe> Vi e >=Vy,a > Vy>Vyu>-o >V,

is therefore a containing sequence for V,, by Theorem 1 of [5]. The
sequence

EOD VODElD VlD"'DVM~13EMD V.;[DEM-HD VM-HD"‘

is a special constructing sequence for %, in 2; whose boundary sur-
faces meet the surfaces Bd U, ---,Bd U,_, in fewer intersection
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curves than did our original sequence in 2" (for ¢ and 7 and the
other intersection curves lying in R’ have been eliminated). This
contradicts our minimality assumption (b) on the sequence

EOoViDE DV, DEDV, D

It follows that ¢ cannot be a meridian of Bd V), and this, to-
gether with (i) above, shows that the situation («) is impossible; that
is, Bd U, must meet Bd F,,, if BA U, N Bd V,, = &.

() BAdU,NBdE,., # @ [Note: It would be nice to eliminate
this case straight away by repeated use of Lemma 1, where we as-
sume that A is a disc or annulus whose interior lies in Int E,, ..
However, the minimality assumption guarantees that A cannot be a
disc, and that if A is an annulus, p lies outside the 3-cell bounded by
AUCHEy, — A’). We then have to “thicken” FE,, by attaching
annuli lying in Cl (&, — E).,); unfortunately, such annuli may meet
Bd V,.]

We will show first that Bd U, cannot meet Bd E,, and then that
Bd U, cannot meet Bd V,. Finally, we will show that if Bd ¥, is
not disjoint from Bd U,, then we can find a special constructing
sequence

EO:)VODE;l:)... DEMDVMDEJ,I+]DVM+IDEM+2D°'°

in &~ whose existence contradicts the choice of our original sequence
in 2. This result, taken with the result of («), will show that no
such maximal index M(h) can exist, and therefore that

BdV,UBdE, )NBdU,=¢@ forall ¢,7=0,1,---, 02— 1.

We start with a sublemma.
Sublemma. Bd U, Bd K, = &.

Proof. Suppose Bd U, meets Bd E,,. Then Bd U, must also meet
Bd V,; if a curve of Bd U, N Bd V,; is null-homologous on Bd V,, it
is also null-homologous on Bd U,, so the result of Part 1 shows that
we have an even number of curves of Bd U, N Bd V,, and that these
bound parallel annuli on Bd V,,. Also, we have an even number of
curves of Bd U, N (Bd V,, UBd E,; UBd E,.,), and these curves bound
parallel annuli on Bd U,.

Let A and g be generators of the homology group H,(Bd V),
representing the homology classes of a longitude and of a meridian
of Bd V,, respectively. The curves of Bd U, N Bd V,, all lie in the
one homology class { = an + by, and £ = 0 in H,(Bd V).

We may choose two curves @ — Bd U, N Bd E,, and
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BcBd U,NBd Vy,

so that a« and B together bound and annulus R,; c Bd U, which con-
tains no other intersection curves. Let D, be one of the discs on
Bd E,, bounded by «, and note that D, cannot meet Bd V, because
Vyc Int Ey.

Then D,U R,; is a dise in Cl (B, — V) which is bounded by the
curve B, so { = [B] (the homology class of 8 on Bd V) lies in the
kernel of the map H,(Bd V,) — H,(Cl (E, — V)) induced by inclusion.
Therefore b = 0 and { = an.

We may choose two other curves o’ cBd U,NBd E,,, and
g < Bd U,N Bd Vy, which together bound an annulus R/, Bd U,,
which contains no intersection curves in its interior. Let D’ be one
of the discs on Bd E,,, bounded by &', and note that D, does not
meet Bd V.

Then R/, U D, is a disc in V,, which lies entirely in the interior
of V, except for its boundary curve g’. Since [g']=C=[8], L = ar
must lie in the kernel of the map H,(Bd Vy) — H,(V,) induced by
inclusion. Therefore a = 0, and { = an + by = 0, a contradiction.

Thus the boundary of U, cannot meet the boundary of E, if
BdU,NBd Ey., + D.

Now we assume that Bd U, meets Bd V,, even though it does
not meet Bd E,;. Then there exists a pair of curves ¢ and 7 on
Bd U, n Bd V,, which bound and annulus R lying in

Bd U, N Cl(E, — Vi)

whose interior contains no intersection curves. We note that
R c Int Ey, by the sublemma. We have the usual two cases to con-
sider: (i) ¢ is not a meridian of Bd V, and (ii) ¢ is a meridian of
Bd V.

(i) o is not a meridian of Bd V,. o and t separate Bd V,
into two disjoint annuli R, and R,. One of these annuli, R, say,
together with R bounds a solid torus V which contains V,([7], Satz 1,
p. 218, Satz 2, p. 214). BAV is put into general position with respect
to the surfaces Bd U, ---,Bd U,_, by taking V; = V U (a closed
regular neigborhood of R}. V; is a k-torus, by Lemma 4 of [5].

V, will have nonzero order in V;, unless V, is unknotted and
o is a longitude of Bd V, when O(V,, V;) may be zero ([7], loc. cit.).
Vi lies in the interior of E,, so Vi < Vy_;; so V, will always have
nonzero order in V3 because

-EODV0> V1>'"'> VM_1>' VM>"'>‘Vn

is a containing sequence for V,.
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Theorem 1 of [5] guarantees that
ESoViDE Do DVy  DEyDVEDEy D VyD--

is a special constructing sequence for k, in the class 27 But the
boundary surfaces of this sequence meet the surfaces

Bd U, :--,Bd U,_,

in fewer intersection curves than did our original sequence in %7, for
we have eliminated ¢ and 7 and all the intersection curves lying in
Bd V,; — R,, without introducing any new intersection curves. The
existence of this sequence contradicts the minimality assumption (b)
involved in the choice of our original sequence, and this contradiction
shows that ¢ and = must meridians of Bd V.

(ii) o0 and t are meridians of Bd V. ¢ and ¢ separate Bd V,,
into two disjoint annuli R, and R, and one of these, say R,, together
with R is the boundary of a solid torus V which contains V, with
order 1 ([7], Satz 3. p.215). Lemma 4 of [5] shows that V is a k-
torus. We put BdV into general position with respect to the surfaces
Bd U, ---,Bd U,_, by taking Vi = VU {a closed regular neighbor-
hood of R}. As above, we obtain a special constructing sequence

EoD VoDElD VID"'DVM__],DEMD V/}?DEM_{_lj VM-HD'.

for k& in 7, whose existence contradicts the minimality assumption

(b) involved in the choice of our original sequence. This forces us

to conclude that Bd U, cannot meet Bd V,, if Bd U, N Bd E,,, # &.
Then

Bd U, N U (Bd Vi UBd E;.,) = Bd Uy 1 Bd By, 5

and by using the cutting and pasting arguments of the proof of
Theorem 1 of [6], Lemma 1, and the assumption (b) on the choice
of our original sequence in %; we may show that Bd U, cannot meet
Bd E, ., at all. This result (8) together with the result («) above
shows that no such maximal index M(h) can exist, so no surface
Bd U, meets any of the surfaces Bd V;, ---, Bd V,_, or

BdE,---,BdE,.

Part 3. For the sequence E,D V,D E, DV, > ..+ in ¥; therefore,
the family

(0 Bd U;) (Q B4 V;UBd E..,)

of intersection curves must be empty. From Theorem 1 of [5], it
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follows that either V;c Int U; and O(V;, U;) # 0, or U, Int V; and
oU;, V) # 0 for each i =0,1,---,» — 1. We wish to show that
Bd U, lies in Int (E; — E;.,) for each 1; it is sufficient to show that

Bd E;;, < Int (U; — U,y)

for all such 7 (where for U, we take the k-torus V).

If U,cIntV,, then O(U;, V;) # 0, so there is no 3-cell in Int V;
which econtains U;; so E;.,cInt U,. Of course E,.,cInt U, if
V.c Int U,.

Either U,,,cInt V.., or V,.,cInt U,,. In the former case,
Bd E;,, lies in Int(E, — V;,,) and therefore in Int(E, — U;;,). In
the latter case, V., has nonzero order in U,,,, so Bd E;., cannot lie
in Int (U,,, — V;;.); consequently, Bd E,,, must again lie in

Int (B, — Uss) -
For each ¢ = 0,1, ---, » — 1, therefore,
BldE, ,clntU,NInt(E, — U;,) = Int (U; — U;yy)

This completes the proof of the lemma.
This brings us to the proof of this paper’s main theorem.

THEOREM 2. Let k, and k, be exceptional arcs with wild points
p, and p, respectively, at which Pyk;, p;) = 5. If k, and k, have the
same oriented local type at their wild points p, and p,, then the
sequences {A(E;.,, E;)} and {A(B;;,, B;)} of local linking matrices are
cofinal, where E,DV,DE, DV, D --- is a special constructing sequence
for k, and B,D Uy, DB, DU, D+ is a special constructing sequence
for k.

Proof. Since the arcs have the same oriented local types at their
respective wild endpoints, there exist oriented neighborhoods N; of
p; and an orientation-preserving homeomorphism #4 which takes
Ny, k. N Ny, p;) to (N, kK, N N, p,). We may assume that our special
constructing sequence for k, lies entirely in N, and (by choosing a
smaller B, if necessary) that i(B,) C Int E..

Given an index ¢, there exists an index n(i) such that

Vs C Int W(T;)
and, by Theorem 1 of [5], there exists a family of k,-tori such that

EOD To> T1> e > Tl > h(Uo) > h(U1) D= e >‘h(l]~)
> Tz+a:+2 > Tl+i+3 > > Tn(i)~1 > Vn(i)
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is a containing sequence for V,,;. By Lemma 2, there exists a
family of 3-cells such that

(i) EO2T,0C2---2CO>T,2C, . D2MU)DCeaDWU)D -+
DCin DMU)DCriie D Thigua D ove
DCn DTy DCony D Vany D By D Vs D Bpgyia D v e

is a special constructing sequence for %k, in E,, and
(11) A(Cj+1’ CJ) = A(Ej-H, Eﬁ) .7 = Oy 1, ey n(’b) .

Our aim is to prove that A(C;.,, C;) = A(B;_;, B;_,.,) for all j =
l+2,1+38,---,1+ %, for then the theorem follows by letting 7 take
the values 3, 4, ---. Note that the matrices A(B;_;, B;,_,,) and
A(h(B;_;), h(B;_,_,) are identical.

A cutting and pasting argument of the type used in the proof
of Theorem 2 of [6] shows that we may replace the 3-cells

Cl+27 Cz+3, ] Cl+i+1

by 3-cells C%,, +--, C#%,;,, such that Bd CF N Bd W(B;_)) = @ for j =
l+2, ««-, 1+ 1+ 1. Further, for the reasons outlined below, it is
also true that the matrices A(C/,, C¥) and A(C,.,, C;) are identical
for j=10+1,--+,01+1%+1, (where C%, = C,,, and C/ ;. = Ci ;).

The proof of the preceding statement is as follows. We first
apply the cut-and-paste to C,., to obtain C,, then to C,., to obtain
Cj;, and so on inductively. Suppose C7., is obtained from C;,, by
attaching or removing a 3-cell S whose boundary is D U D', where
D is a disc on Bd i(B;_,.;) which contains no intersection curves in
its interior, and D’ is a disc (which has the same boundary as D)
lying on BdC;,,. Then %k NS consists of at most N(k, N BdC;,,)
arcs running between k, N D and k, N D’. Using this, it is easy to
show that there is a one-to-one order-preserving correspondence
a, — o between elements of A(C;., C;i) and A(Ci., C;i,), and a
one-to-one order-preserving correspondence B, — G¢ between elements
of B(C;.,, C;) and B(C%,,, C); under these correspondences, the pairs
(a, B,) and (a, &%) are F-isotopic for each a e A(C}, C;,,) = A(C}, C}.),
and the pair («,, B) is F-isotopic to the pair (&%, 8) for each
BeB(C;.,, C;y) (two pairs are F-isotopic if their associated links —ecf.
P, 230 of [3] — are F-isotopic). Hence

A(C;':H) Cj*) = A(Cj+1) Cj*) = A(Cj+1cj)
(by induction); which implies that

A(CE,, CF) = A(Cyy, C;)  for all j=1+4+1,+ee 1 +74+1,
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To complete the proof of the theorem, therefore, we only need
to prove that the matrices A(C},, C}) and A(h(B;_), W(B;_,_,)) are
identical. For each j=101+2,-+-,1+¢+ 1, C;F either lies in
Int W(B;_)), or contains A(B;_;) in its interior; in both cases, there are
N(k, N Bd h(B;_;)) ares of k, which run between Bd C} and Bd h(B;_,).
There are four cases to be considered for each 7, of which we shall
consider only the first; the rest are similar.

(i) CyclInth(B;_,) and C}, C Int W(B;_;..),

(ii) Cy cInt k(B;_,) and W(B;_.,) CInt C%,,

(ili) A(B;_;) cInt C} and Cj, c Int k(B;_;.,), and

(iv) Rm(Bj;_;)cInt Cf and W(B;_;y,) C Int CA,.

In case (i), C; lies in Int h(B;_;), and Cj, lies in Int A(B;_;..).
For each ae A(W(B;_), MB;_;..), there exists a unique are
a*e A(C}, C}.,), namely the arc an C}; and for each B € B(h(Bj_;1.),
h(B;_;)) there exists a unique arc g8*e B(C},, C}), which contains @&
as a subarc. There is an F-isotopy from the pair (a*, 8*) to the
pair («, B) (composed of two simple F-isotopies from (a*, g*) to (a*, B)
and then from (a*, B) to («, B)), so Ma*, 8*) = M«, B). In this case
(i), therefore, A(C},, C}) = A(MB;_;), M(B;_1:1))-

After consideration of the other cases, it follows that

A(EJ’-H) EJ) = A(Cj+1, CJ)
= A(C}, CF) = A(WBj-1), MBj1+:))
= A(Bj_i, Bj_111) »

and the sequences of local linking metrices are cofinal.

4. Some locally non-invertible exceptional arcs in R°. Let E
be a 8-cell in R® and a an arc whose endpoints lie on Bd E but
whose interior is disjoint from Bd E. If N is a suitable tame closed
regular neighborhood of «, we shall say that « is unknotted with
respect to E (or simply: « is unknotted) if either (i) Intac R* — F
and EU N is an unknotted solid torus, or (ii) IntacIntE and
Cl (E — N) is an unknotted solid torus.

Let « and y be two points in R:. When we say “we join « to
y by an oriented are «”, it is understood that x is the starting point
of the arc a, and y is the terminal point of a.

So let E, be a tame closed 3-cell in R?, ¢ a point in R* — E;, p
a point in Int E,, and V, an unknotted tame closed solid torus in
Int E, which contains p in its interior.

Let n =1 be fixed. Let D, and D, be discs on Bd E,, and
choose n + 1 points xy, Ty, *- -, %4, in Int Dy, and » points

To,nt2y ***y Lo,2m+1
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in Int Dy,. For each s <n, we join ,,,.,, to %,, by an unknotted
tame arc B, in R* — q U Ei, so that 8,, N By = @ if s# t. We join
q to %,,., by an arc v, in R® — E,.

Also, for each s such that 2 < s<n + 1, we join 2, t0 %o oniss
by an unknotted tame arc «,,CInt E, — V, such that a,, N a,, = @
if s+t, and \(o,, @,) = 1 (where g, is a longitude of V,). The set
so obtained when n = 2 is shown in Figure 1.

FIGURE 1

Let D,, and D,, be disjoint tame meridian discs of V,, which do
not contain p, and let E, be the closure of that component of

Vo - -Du U D12

which contains p. Let V, be an unknotted tame closed solid torus
neighborhood of p in Int £, and let o, be a longitude of V,. As
before, we choose n -+ 1 points z,, <+, #,,,4, lying in Int D,,, and »
points @40, ***, %ione in Int D,. For each s < n, we join %;,,.,, to
2,,, by an unknotted tame arc B,, in Int V, — F,, so that g,,NB.= @
if s#t; and for each s such that 2<s<n + 1, we join =z, to
2, am13—s DY an unknotted tame arc «,, in Int E, — V, so that

a,Na, =g

if s=t, and Mo, @) =1 for all s. We also join z, to #,,., by a
tame arc v, such that Intv,cInt £y, — E, and N(v, N Bd V) = 1.

We note that for the 3-cell pair F,> F,, A(E,, E)) = U «,, and
B(E,, E) = U, B, and that M«,,, B,) = 1 for all s and ¢. Therefore
none of the pairs (a,,, B.:) can be splittable.

We let D,;, D,, be meridian disecs of V, which do not contain p,
and we choose n + 1 points @, -+, 2, in Int D,, and #» points
Dy omrzy ** %y Bappyy i Int Dy. We let E, be the closure of that com-
ponent of V, — D,, U D,, which contains p in its interior, and let V,
be an unknotted tame closed solid torus neighborhood of » lying
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in Int E,. o0, is a longitude of V,. Then we may obtain the oriented
arcs By, t=1,2, ---, m of B(E,, E,) in a manner analogous to that
described above, and note that none of the pairs («,,, B:;) is splittable
because M, B,) = 1 for all s and ¢t. We join x,, to @,,., by a tame
arc v, whose interior lies in Int E, — E, and which meets Bd V, in
precisely one point.

Proceeding in this way, then, we obtain an oriented arc

n+1 n
b= U {ru(Ye) v (U8}
(k, is shown in Figure 2 and in Figure 8 of [5]; k, is example 1.2 of
[1]) and a sequence

q £y

'

FIGURE 2
EOSViDE DV, D

of tame closed 3-cell and solid torus neighborhoods of p, with the
following properties:

(i) N(k,NBdV,)=1and N(k,NBdE,) =2n + 1 for all 4,

(i) NVi=»=NE, and

(iii) the sequence E,D E, D E,D .-- has property .#.

By taking a tame closed regular neighborhood of each V,, we
obtain an unknotted tame closed solid torus which we shall also call
V;; judicious choice of these regular neighborhoods will ensure that
N(k,NBd V) =1 and that Bd E;,, lies in Int (V; — V..,).

Then (a) k, is wild by [3] and, if n = 2, a cut-and-paste argu-
ment will show that Py(k,, p) # 3; therefore P,(k,, p) = 5.

b)) EDV,>V,>V,> ... is a constructing sequence for %, in
FE,, by Theorem 1.

(¢) k, is therefore exceptional, and E, DV, D E,DV,D--- is a
special constructing sequence for k,; Theorem 2 of [6] shows that
Pyk,, p) = 2n + 1.

We have therefore proved the following theorem:

THEOREM 3. For each integer m = 2, there exists an exceptional
arc k, such that Pyk,, ») = 2n + 1 and P.(k,, p) = 1.

Notice that for k,, and the constructing sequence of (c) above,
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each of the matrices in the sequence {A(E,,,, E;)} is an % X n matrix
whose entry N, (1) = May, .1, Bssr,) = 1 for all s and ¢.

We will now obtain some locally noninvertible ares by varying
the construction of %, to obtain an arc k), as follows (we are only
concerned with % = 2; for n = 1 the existence of such arcs is guar-
anteed by Corollary 2 of [4]). kj is obtained from k, by replacing
the arc «;, with a tame unknotted arc «aj so that \(o;., aj) = 2 for
all ¢ = 0,1, 2, --- (where o;., is a longitude of V,.). Thus

ki =U {vi Uk U (O a> U (U Bu)} ;

Q=0

ki is shown in Figure 3.

; —
/®@jlt_}.p

FIGURE 3

Let us denote the special constructing sequence for k} obtained
this way by

Eof :)VO* DE;[: D‘le Doeee,

even though Ef = K, and V;* = V, for all 4.

If &, and %k had the same oriented local type, the sequences
{A(E;.,, E,))} and {A(E?,, E#)} would be cofinal, by Theorem 2. But
there are no 2’s occurring in the matrix A(K,,,, E,) for any 4, whereas
each matrix A(E7,, E¥) is an n X n matrix whose entries are all 1’s
except in the top row where they are all 2’s. So k¥ and k, repre-
sent different oriented local arc types.

Let k& be an exceptional arc and let A(E,,,, E;) be one of the
n X m local linking matrices associated with a special constructing
sequence K, DV, D E DV,D--- for k. Because we have ordered the
rows and columns of the matrix with the natural ordering that the
sets A(E,, E;.) and B(E;., E;) inherit from k, the entry X,, be-
comes the entry A\, ,..._,. of the local linking matrix obtained
when we reverse the orientation of k. Hence, if k is locally inver-
tible, Ny = Ny_riim_s: for all # and s; in particular, if k¥ is locally
invertible, \;, = N\,.. Kk cannot be locally invertible, therefore, be-
cause A, = 2 and »,, = 1.

THEOREM 4. For each integer m =2, there exist uncountably
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many locally noninvertible exceptional arcs, which have 3-cell pene-
tration index 2n + 1 and total penetration index 1.

Proof. Let m,m, --- be an ordering of the prime positive inte-
gers, let j(¢) be a sequence of positive integers, and let k,({7;:}) be
the arc

%_90 {'ﬂ' U & (T50) U (:Q ais) U (Q Bit)}

obtained by replacing the arc a; used above in the construction of
k, with an are a;(7;;) such that Mo,,,, @,(7T;s)) = T for all ¢ =
0,1,2 ---. The entries of the 4th local linking matrix of k,({w;u})
are all 1’s except in the top row, where the entries are all 7;;,; thus
k.({7;}) is locally noninvertible. (Note also that Py(k,({m;w)}), ») =
2n + 1 and P,(k.(7;)}), p) = 1.)

If the sequences {r;;} and {m;,} are not cofinal, then the arcs
k.({7;}) and k,({7,,}) represent different oriented local arc types, so
the number of different local arc types is at least as large as the
number of cofinality classes of sequences of primes. The number of
cofinality classes of such sequences is easily shown to be uncountable.

5. An example of the use of k-sequences. The aim of this
section is to show that (for n = 2) the constructing sequence
ESV, >V, > V> .-

obtained in §4 for k, is actually a k,-sequence in the sense of [5];
that is, that no k,-torus V < Int E, can be nontrivially knotted. This
shows that the uncountably many arcs of Theorem 4 cannot be dis-
tinguished by the k-sequence invariant of Theorem 2 of [5].

Let V be a k,torus. There exists an index H such that
V,cInt V, and there exist H — 1 k,-tori such that

EDoT, > oo >T,, >V > Th+1> e >Ty > Vy

is a containing sequence for V, in E,, by Theorem 1 of [5]. This
same theorem guarantees the existence of a containing sequence

BT > oo > T > Vi Ti > ooe > Ti > Vi

such that BA V*NBdV;, =@ (for all j =0, .-+, H—-1), V*is k,-
similar to V, and the knot type £(V) of V is a companion of x(V*).
There exists an index s(=% — 1 or h) such that Bd V'* lies in

Int (Vs - Vs+1) ’
so that either O(V*, V,) = 0 or O(V,,,, V*) # 0. If V (and therefore
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V'*) is nontrivially knotted, V.., must have zero order in V* because
V... is unknotted and the trivial knot has no companions other than
itself. Therefore O(V*, V,) # 0 (this implies, incidentally, that s = A).

Hence, to show that the sequence E, oV, >V, > V, .-+ is a k,-
sequence, it is sufficient to show that for each index j it is impos-
sible to find a knotted k,-torus V which lies in the interior of V;
and has nonzero order in V.

Suppose such a knotted k,-torus V does exist, and let D,.,, , and
D;.,, be the tame meridian discs of V; used in the construction of
k.. Let D be a meridian disc of V.

Then N(k,N D) =n = N(k, N D;.,,), so only one component D*
of VN D,,,, can be a meridian disec of V. Hence O(V, V;) =1 and
k,ND*=Fk,N Dji,e

Let «;,,,,.. and z;,,,,.; be points of k, in Int D;,,, (and therefore
in Int D*) and let g;, and «a;, be the subares of %, (in Int V) which
join ®;,,,., to %;,,, and run from there to 2., ,.;. We join ;1 .5
to 2;.,,., by an arc v lying in Int D*.

Then v U g;, U @, is a tame knot &£ Int V< Int V;, and since &
meets D,,,, in precisely one point, £ has order one in V;. Then
O(k, V) = 1 because

1=0(, V;) = O, V)-O(V, V;) = O, V) .

(V) is therefore a factor of £; but & is trivially knotted, so
£(V) is trivial. This contradicts the assumption that V was knotted.

Therefore, for each index 7, if V is a k,-torus lying in Int V;
with nonzero order, V must be unknotted. It follows that no %,-
torus in Int E, can be knotted, so the sequence

EQDVQ> V1>' V2>"‘

is a k,-sequence for the arc k,.

It follows that k, has different local arc type at p to the are
shown in Figure 1 (a) of [5], which can be constructed using the
method of §4 above, except that we use kotted solid torus neigh-
borhoods of p with £(V;) = the trefoil knot, for all ¢ (cf. Figure 1
(c) of [5]).

Added in proof. There are no locally invertible nearly polyhedral
arcs. The proof is an easy application of the Invariance of Domain
Theorem. The local noninvertibility results of [4], and Theorem 4
above, are therefore true but trite. Note however that the un-
countably many arcs k,({r;.}) are locally nonamphicheiral, because
the local linking matrices of the mirror image of an arc are obtained
from the local linking matrices for the arc itself by reversing the
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signs of all the entries. Note also that the arcs obtained by identi-
fying the tame endpoints of k,({w;;}) with that of the inverse of k,

(cf. Example 1.3 of [1]), for each n and sequence {r;}, are not inverti-
ble in R2.
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