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KRULL-SCHMIDT AND CANCELLATION
OVER LOCAL RINGS

E. GRAHAM EVANS, JR.

This paper proves a partial converse to the Krull-Schmidt
theorem for Hensel local rings and a cancellation result for
modules in terms of the endomorphism ring of the module.
The second result is then used to prove the cancellation
theorem for finitely generated modules over local rings.

All rings in this paper have units. A module M is indecom-
posable if M = A 0 B implies A = 0 or B — 0. A ring R satisfies
the Krull-Schmidt Theorem if every finitely generated R module is
uniquely a direct sum of indecomposable modules. A module M can
be cancelled if i l ί φ i is isomorphic t o i l ί φ ΰ implies A is isomorphic
to B. Usually one only considers cancellation when all the modules
M, A, and B are finitely generated although this paper does not need
these hypotheses. Local ring includes the noetherian property while
quasi-local is used for a ring with only one maximal ideal.

This investigation began when the author noticed that Swan's
proof of the Krull-Schmidt Theorem for complete local rings passes
unchanged to Hensel local rings. Swan kindly supplied the author
with an example of failure of Krull-Schmidt which generalizes to all
not Hensel local rings. Finally we prove that the type of failure of
Krull-Schmidt given by Swan's example is the only type possible by
proving a cancellation theorem strong enough to prove that any
finitely generated module over a local ring can be cancelled. I wish
to thank Professors Artin, Kaplansky, and Swan whose lectures and
discussions introduced me to much of this material.

The outline of this paper is as follows: Section 1 presents Swan's
example of the failure of Krull-Schmidt, § 2 shows how for a given
not Hensel local ring R we can find a local ring T which is a finite
R algebra for which the Krull-Schmidt Theorem fails, and § 3 ex-
amines cancellation properties of modules in terms of their endomor-
phism rings.

1* Example of R*G. Swan. Let R be a local domain which is
not a field. Assume R/m — k has characteristic not equal to 2. Let
A = (R[x, y]/(x* - x2 + y2)){x,y). Then the Krull-Schmidt theorem fails
for A. Let z — y/x in the quotient field of A and let B = A[z\.
Then B has just 2 maximal ideals, M, = (M, z - 1) and M2 = (M, z + 1)
where M is the maximal ideal of A. Since Mλ + M2 = B we have an
exact sequence of B modules
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0 -> M, Π M2 -> Mx 0 M2 — J5 -> 0

which splits over j?. Therefore, ilίi 0 M2 ~ B 0 (ilίi Π Mz) over j? and
hence over A. All four modules here are torsion free rank 1 over A
and so are indecomposable. If B = Mι over A, then B ~ Mι over B
since i? and M1 are torsion free rank 1 modules and A and B have
the same quotient field (any isomorphism would look like multiplica-
tion by an element of the quotient field). But this is impossible since
BM. is local of dimension Ξ> 2 so Mi needs at least 2 generators as
a B module.

2* Swan's example generalized* To begin this section we first
need some definitions. A quasi-local ring R with unique maximal
ideal m is called Hensel if for every monic polynomial f(x) over R
such that f(x) = go(x)ho(x) mod mί![#] where gQ(x) and ho{x) are monic
and such that g0R[x] + h0R[x] + mϋ![#] = R[x], then there exist monic
polynomials g(x) and h(x) such that f(x) = g(x)k(x), g(x) = go(x) mod mϋJ[#]
and Λ(a?) = Λ0(ίc) mod mi£[$] This is equivalent to being able to lift
idempotents from A/mA to A for all finite R algebras A. The defini-
tion and basic properties are due to Azumaya [1]. Note that Azumaya
allowed (and in fact required) A to be noncommutative. Several
current treatments only consider commutative A's. This does not
change the class of Hensel rings but does deaden the ability to see
noncommutative applications such as the one in this section.

The integers localized at (5) is a local ring which is not Hensel
for x2 + 1 = (x + 2)(x + 3) mod 5 is a factorization which cannot be
lifted. But the integers localized at (5) satisfies the Krull-Schmidt
theorem since it is a principal ideal domain. The following theorem
shows that there is a strong connection between Hensel and Krull-
Schmidt properties of local rings.

THEOREM 1. Let R be a local ring. Then every Rf which is a
local ring and a finite R algebra satisfies the Krull-Schmidt theorem
if and only if R is Hensel.

Proof. If R is Hensel, then any commutative ring which is a
finite R algebra is a direct sum of Hensel rings (see, for example
[7, 43.1 and 43.16]). Hence for one half we only need to prove that
Hensel rings satisfy Krull-Schmidt. Swan's proof of Krull-Schmidt
for complete local rings R [10, Remark on page 566] only needs the
ability to lift idempotents in finite algebras A over B from A/mA to
A. But this ability characterizes Hensel rings. For more details in
Hensel case see [9].

To prove the other half we need to mimic Swan's example of
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failure of Krull-Schmidt We first reduce to the case of domains.

LEMMA 1. If R is a local ring which is not Hensel, then there
exists a domain image of R which is not Hensel.

Proof. R is Hensel if and only if i?red = i?/nilpotent is Hensel.
[8, page 5]. So we can assume R is reduced. Then 0 = Pγ Π Π Pn

with the Pi prime. Hence to prove the lemma it is enough to prove
the following:

LEMMA 2. If R is a local ring with ideals a and b such that
a π b — 0 such that R/a and R/b are Hensel, then R is Hensel.

Proof. Following Nagata's description of Henselization [7, pp.
179-188] we pick T an integrally closed domain with only one maximal
ideal M such that T maps onto R with Kernel K. Let A and B be
the complete inverse images of α and b. Let T' be the integral closure
of T in the algebraic closure L of the quotient field of T, H. Let M'
be some maximal ideal of T. Let G be the elements of the Galois
group of L over H which send Mf to itself. Let T" be the fixed
ring of G. Then R, the Henselization of R, is T"{M,ΓiT,,)/KT'\M,nT,,).
But since R/a and R/b are Hensel we have R/a = Γ ( r n r ) and
R/b = T"{M,nτ')IBT"{M,nτ')- But since T\M,nT) is faithfully flat over T
we have

(AΓVΠT-)) n ( ΰ r ( F n n ) = {A n B)T'\M.m = κrf

[M,nτn.

Hence R, is a submodule of R/a 0 R/b. Thus R is finitely generated.
But if m is the maximal ideal of R, then R/mR ~ R/m [7, 43.3].
Hence, by Nakayama's lemma R is cyclic and hence equals R and R
is Hensel as desired.

Hence to prove our result we can pass to R being a local domain
which is not Hensel. Now we can apply Nagata's criteria that a
quasi-local domain is Hensel if and only if every domain integral over
it is quasi-local. [7, 43.12]. Hence we can find a domain Rf integral
over R which has at least two maximal ideals M1 and M2.

By picking xλ e M1 — M2 and x2 e M2 — M1 and passing to Rf =
R[xlf x2) we can assume Rf is finitely generated as an R module.
Let A equal the intersection of the maximal ideals of R'. Then A is
a finitely generated R module and so is R[A]. But R[A] is local.

Except for minor pathology R[A] and Rf can be used as the A
and B in Swan's example (respectively). That is, if Mx and M2 both
needed 2 generators as Rf modules we would be done. This would
be true if the dimension of R'M. were at least 2.
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In general we pass to S = R[x]/(x2) and T = R'[x]/(x2) and look at
the maximal ideals (Ml9 x) = ilfί and (ikf2, α?) = M'2. Then

0 — M\ Π M'2-> Mi φ Mr

2 — Γ — 0

is exact and split. The modules are isomorphic over T if and only
if they are isomorphic over S since it is enough to know what an
isomorphism does on the part annihilated by x to know what it does
on everything.

Finally we check that M[ are not principal over T.

LEMMA 3. If R is a domain and M is a proper ideal of R, then
the ideal generated by M and x in R[x]/(x2) is not principal.

Proof. Pick me M - {0}. Let ax Λ- be R[x]/(x2) generate (M, α).
Then there exist r< e R such that

( 1 ) Ovτ + r2)(ax + b) = m and
( 2 ) (r3x + r4)(ax + b) = x

Expanding (1) we get
( i ) rj> + r2a = 0 and
( i i ) r2b = m.

Expanding (2) we get
(iii) r2b = 0
(iv) r3δ + r4α = 1
From (iii) we get r4 = 0 or b = 0. But if b = 0 then the ideal

(ax) could not contain m Φ 0 by (ii). Hence r4 = 0. Then from (iv)
we get r3b = 1. But then b — (1 — rzax)(ax + 6). Hence the ideal
(ax + 6) contains b which is a unit whereas (M, x) is clearly proper.

Hence (M, x) is not principal.

REMARK. This is a simplification of a result suggested to me by
Swan. His result which is proved by the same methods is that if
an ideal (M, x) in R[x] is principal then M is generated by an idem-
potent. On the other hand if M is generated by an idempotent e
then (M, x) = (e + (1 — e)x) as an ideal in R[x].

This completes the proof of Theorem 1. One might ask for stronger
results of this type. In particular you could ask if the dimension of
R were big enough and R not Hensel then the Krull-Schmidt theorem
fails for R itself. A difficulty involved is that R could be very close
to being Hensel. Say, for example, if R = k[[xlf x2, ,

3. The failure of Krull-Schmidt in the above section was always
of the type 4 φ 5 ^ C © ΰ all distinct and indecomposable. On the
other hand we have
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PROPOSITION 1. Let R be a local ring and let A, B, and C be
finitely generated R modules such that Aφ B is isomorphic to A 0 C,
then B is isomorphic to C.

Proof. After completing and applying the Krull-Schmidt theorem
over R we can conclude that B is isomorphic to C. But then a theorem
of Grothendeick [5, 2.5.8] asserts that B is isomorphic to C. The
details are carried out in Vasconcelos's paper [12].

Of course, the above proof makes rather heavy use of finite
generation of A, B, and C. For example R and R have isomorphic
completions but are not isomorphic unless R is complete.

The next theorem strengthens the above cancellation result fol-
lowing ideas of Bass [2] and Dress [3].

If A is the endomorphism ring of a finitely generated module
over a local ring, then A is itself finitely generated over R (since R
is noetherian). Hence a theorem of Bass [2, Corollary 6.5] assures us
that 1 is in the stable range for A, That is, if a and b are elements
of A such that Aa + Ab = A, then there exists a te A such that
α + tb is a unit of A.

The following theorem is a natural generalization of a remark of
Kaplansky that if 1 is in the stable range of R and R 0 A is isomor-
phic to Rφ B, then A and B are isomorphic. See also Swan [11, Pro-
position 11.7] for an earlier result of this type.

THEOREM 2. Let R be any ring and A, B, and C any modules such
that A 0 B is isomorphic to Aφ C and such that the endomorphism
ring, T, of A has 1 in the stable range, then B is isomorphic to C.

Proof. Let fMiN denote an R homomorphism from N to M.
We are presumed to have maps fΛ®c,A$B a n d 9A®B>AGC whose com-

position in each direction are the identities. Thinking of / and g as
2 x 2 matrices we have

9A,A 9A,c\(fA,A fA,B\ (IA 0

9B,A gBJ\fc,A fcJ \o ii

where IM is the identity on M. Multiplying out the left hand side
we get

9A,A JA,A + 9A,CJC,A 9A,AJA,B H~ 9A,CJC,B\ _ / J-A U

(I 75 A I A A C7 r> Π I Γ1 A ί / 73 A I A Z? W 7? Γ1 I Γ* 7? \ Vf -L 7

Hence TfA)A + TgA>cfc,A = T. Hence there exist t e T with fA>A +
tgA,cfcu = w a unit.

Hence if we use the map
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g, = lh tgA,c

\9B,A 9B,C

in place of g we get

lu vA)B

9" =

g'f is clearly an isomorphism since we can make u be the identity
by multiplying by u~ι and then use elementary row operations to
remove what is left over. But g'f an isomorphism and / an isomor-
phism implies g' is. But then

B,A IB\IIA tgAΛ/IA -tgA,c

A 0 )\gBtA gB,c )\0 Ic

is an isomorphism.

° )
\0 gB,c - gB,AtgA>c)

and hence gB)C — gBfAtgA,c is an isomorphism from C to B.

COROLLARY 1. Let R be a local ring, A a finitely generated R
module, and B and C any R modules such that A 0 B is isomorphic
to A 0 C. Then B is isomorphic to C.

Proof. Immediate from Theorem 2 and the proceeding remarks.

REMARKS. We note that Theorem 2 applies even for non-noether-
ian rings. Estes and Ohm in [4] give examples of commutative rings
R of any finite Krull dimension with 1 in the stable range. Heinzer
in [6] gives such examples where the maximal spectrum is a noether-
ian space. Since any commutative ring equals its endomorphism ring,
Theorem 2 shows that these rings are cancellable from any modules
over them. I conjecture that these examples behave like the examples
in Theorem 1 of discrete valuation rings which were not Hensel.
More specifically, the conjecture is if R is ring with noetherian maxi-
mal spectrum such that every finite R algebra, T, has d + 1 in the
stable range, then the dimension of the maximal spectrum is less
than or equal to d.
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