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ON A PROBLEM OF COMPLETION IN BORNOLOGY

V. B. MOSCATELLI

In this note an example is given to show that the
bornological completion of a polar space need not be polar.
Also, a theorem of Grothendieck’s type is proved, from which
necessary and sufficient conditions for the completion of a
polar space to be again polar are derived.

1. Notation and terminology are as in [4]. In particular, b.c.s.
means a locally convex, bornological linear space over the scalar
field of real or complex numbers.

In [4, 5. p. 160] Hogbe-Nlend lists, among unsolved problems in
bornology, the following one, which was first raised by Buchwalter
in his thesis [1, Remarque, p. 26]:

Is the bormological completion of a polar b.c.s. again polar?

The purpose of this note is to exhibit an example that answers
this question in the negative. We also prove a theorem of Grothen-
dieck’s type for regular b.c.s. with weakly concordant norms, which
enables us to give necessary and sufficient conditions for the comple-
tion of a polar b.c.s. to be polar.

2. For each n let the double sequence a™ = (a};) be defined by
ay =7 for 1 < m and all j, af; =1 for 4> n and all j, and denote by
E, the normed space of scalar-valued double sequences (z;;) with
only finitely many nonzero terms, under the norm

(1) @) Il = sup 2]

Let E be the bornological induective limit of the spaces E,; thus
E = E, algebraically, and a set BC E is bounded for the inductive
limit bornology if and only if there exist positive integers =, k such
that || (x;;) |l. < k for all (x;) e B. It is easily seen that E is a polar

b.c.s. whose dual E'* consists of all scalar-valued double sequences (u;;)
such that

i af; | ug; | < oo for all n.

1,5=1

By [1 Théoréme (2.8.15)] the completion E of E is given by
E= hmE’ (bornological inductive limit), where E, is the completion

of the normed space K, i.e., the Banach space of scalar-valued double
sequences (z;;) such that lim, ;.. x;;/a’; = 0 under the norm (1). It also
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follows from [1, Théoréme (2.8.15)] that £* = E*. Thus, it remains
to_ show that the b.c.s. E is not polar with respect to the duality
(E, E*Y, i.e., that there is a bounded subset B of E whose bipolar
B® is unbounded. In fact, the set

B= {(xij) e B: sup v, |<1, lima, = 0}
is bounded in the Banach space E, and hence bounded in E; however,
since

B = {@.) e B: suplus| =1},
¥

the sequence {(z};)} with «7; = 0 for ¢+ » and all j,2};, =1 for i =n
and all j, is contained in B® and yet is unbounded, for

@) e B, ~ E,_, .
Therefore, B® is unbounded in E.

3. Let E be a regular b.c.s. with dual E*. For a bounded, ab-
solutely convex set BC E we set:

E, = the normed space spanned by B,
B = the completion of B in the Banach space EB,

E; = the dual of E,,

B’ = the unit ball of K,

B° = the polar of B in KX,

B® = the bipolar of B in E,

ps = the gauge of B° in E~,

E¥ = the normed space E*/p3'(0).
Moreover, we denote by E** the algebraic dual of E* and identify,
as usual, E; with a o(E}, E;)-dense subspace of Ej.

THEOREM 1. Let E be a regular b.c.s. with weakly concordant
norms. The completion E of E consists, up to isomorphism, of all
those linear functionals on E* whose restrictions to B° are bounded
and o(E*, Eg)-continuous for some bounded, absolutely convex set
Bc E. Moreover, for every base <& of the bornology of K, the family

.9/} = {E: Be Z} is a base of the bornology of E and we have
(2) B = {xe B & is o(E*, E,)-continuous on B°}
for every Be 7:7\

Proof. If ze E, then by [3, Théoréme 2, p. 221] there exists a
bounded, absolutely convex subset B of E such that x< £;; hence
there is a sequence {x,} C E; which converges to « in the Banach
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space E,. It is easily seen that {x,} converges to an element ye E**
for the topology o(E**, E*) and, therefore, y = x. Since {z,} is a
bounded sequence in E,, there is a positive number M such that
| {&n, up | = M for all n and all we B°. It follows that |<{z,u) < M
for all we B°. It remains to show that the restriction of = to B° is
o(E*, Ey)-continuous. By Grothendieck’s theorem =z is o(Ej, Ej)-
continuous on B’; hence 2 determines a unique bounded linear fune-
tional z on E} whose restriction to the unit ball of E is d(E¥, Ey)-
continuous. Let ¢ be the canonical map E* — EF. Since p3'(0) =
(Ep)°, ¢ is continuous from (E*, o(E*, E;) to (E},o(E%, Ep)) and,
therefore, the restriction of ® = z0¢ to B° is o(E*, Ey)-continuous.
We have also proved that

(3) Bc {zeB™: z is o(E*, E,)-continuous on B} .

Conversely, let x € E** and suppose that, for some bounded, ab-
solutely convex subset B of E, the restriction of x to B° is ¢(E*, E;)-
continuous and satisfies

(4) [, ud | = M for all ue B°,

with M > 0. By going through the mapping ¢ introduced above we
see that x determines a unique bounded linear functional z on
EX (2o ¢ = x) whose restriction to the unit ball B°/p3'(0) of Ef is
o(E}, Ey)-continuous. Now o(E}, E;) is the topology induced by
o(E}, Ey) on Ef, B'p3'(0) is a o(K}, Ej)-dense subset of B’ and B’
is a complete uniform space for the uniformity induced by that of
(E}, o(E}L, Ey)). It follows that z, being uniformly o(E}, E;)-continuous
on B%pz'(0), has a unique extension ye (E;)* which is uniformly
o(EY, E,)-continuous on B’. By Grothendieck’s theorem ye E, and,
by (4),

[y, uy| =M for all we B’.

This essentially proves the converse implication of (3). Thus (2)
holds and the proof is complete, in virtue of the fact that if <Z is

a base of the klornology of E, then Z = (B: Be &%} is a base of the
bornology of E by [3, Théoréme 2, p. 221].

COROLLARY. Let E be o regular b.c.s. with weakly concordant
norms. Then E s complete if and only if every linear functional
on E* which 1is bounded and o(E*, Eg)-continuous on B° for some
bounded, absolutely convex subset B of E, is o(E*, E)-continuous on
E*,

The referee has informed us of a Note [2] where Theorem 1 and
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its Corollary for polar b.c.s. are arrived at independently, and where
counter examples to the same effect as that given in Section 2 are
to be found. As every polar b.c.s. has weakly concordant norms (the
converse being clearly false), the results in [2] are a particular case
of the ones given here.

An immediate consequence of Theorem 1 is the following criterion
for the completion of a polar b.c.s. to be again polar.

THEOREM 2. Let E be a polar b.c.s. The completion E of E is
polar if and only if every bounded subset B of E is contained in a
bounded, absolutely convex set CC E such that the restriction of every
xe B to C° is a(E*, E,)-continuous.
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