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A PROOF OF THE LOWER BOUND CONJECTURE
FOR CONVEX POLYTOPES

DAVID BARNETTE

A d polytope is defined to be a cZ-dimensional set that is
the convex hull of a finite number of points. A d-polytope
is said to be simplicial if each facet is a simplex. Dually,
a d-polytope is simple if each vertex has valence d. It has
been conjectured that the following inequalities hold for any
simplicial d-polytope p.

(2) fd-1^(d-l)fo-(d
Here, /* is the number of ^-dimensional faces of P. This
conjecture is known as the Lower Bound Conjecture, hereafter
to be abbreviated LBC. The LBC has been known to be true
for d ^ 3 for quite some time. In 1969, D. Walkup proved
the LBC for d = 4 and 5. In 1970, the author proved (2) for
all simplicial d-polytopes. In this paper (1) is proved for all
simplicial d-polytopes.

1* Definitions and preliminary results* If v is a vertex of
a d-polytope P then the antistar of v in P, denoted ast(v, P), is the
set of all ά-faces of P that miss v, 0 <Ξ k ̂  d — 1. If H is a hyper-
plane that separates v from the other vertices of P, then P Π H is
called the vertex figure of v. If P is simplicial, then the vertex
figure of v will be a simplicial (d — 1)-polytope and each &-face of the
vertex figure is the intersection of H with a (k + l)-face of P.

Let X be a collection of facets of a simple d-polytope P. We say
that X is a strong set of facets provided that given any two facets
^ 7 and ̂ n in X there is a sequence ^7, , ̂  of facets in X such
that ^ Π ̂ 7+i is a subfacet of P for all 1 ̂  £ <̂  w — 1. A vertex v
of X is said to be an exterior vertex of X provided that v belongs
to exactly one facet in X.

The graph of a polytope is the graph formed by its vertices and
edges. A graph is said to be n-connected provided that between any
two vertices there are n independent paths (that is, paths that meet
only at their endpoints). A theorem of Balinski [1] states that the
graph of a d-polytope is ^-connected. The following also follows from
Balinski's work.

LEMMA 1. The set of vertices of any facet of a d-polytope does
not separate the graph of the polytope.
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2* The main result* We begin with a theorem of M. Perles
(private communication).

THEOREM 1. If the LBC is true for edges of simplicial polytopes
then it is true for faces of all dimensions.

Proof. For simplicity we shall define φk(v, d) = (f\v - {ί\ ])k.

We shall prove this theorem for fc-faces of simplicial d-polytopes
2 <£ k ^ d — 2. The proof for k = d — 1 is similar. Our proof is by
induction on d. It is well known that the LBC is true for d = 3. Suppose
the LBC is true for edges of simplicial polytopes of all dimensions
and for fc-faces 2 <* k ^ d — 3 for simplicial (d — l)-polytopes. Let P
be a simplicial ώ-polytope with v vertices, pl9 , pυ. Let Vi be the
valence of p{.

By induction, the number of (k — l)-faces in the vertex figure of
Pi is at least φk-i(Vi> d — 1) thus pt is incident to at least φk^i(vif d — 1)
fc-faces of P.

The number of incidences of vertices and fe-faces in P is at least

But

ίllf-UK*-*

Σ ^ = 2E .

By the LBC for edges

( 4 ) Σ ^ ^ 2dv - d2 - d .

Thus using (3) and (4) we have

Σ Φk-ι{Vi, d — 1) ^ I )[2dv — d2 — d] — vi \{k — 1)

' +
+

We also know that the number of incidences of vertices and Λ-faces

is (k + 1)Λ, thus
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(k + )Λ ̂  Q( + ) ^

and the lower bound inequality follows.
We shall also use the following:

LEMMA 2. If fx^ dv — K holds for all simplicial d-polytopes,
where K is a constant depending only on d, then the LBC is true for
edges of simplicial d-polytopes.

Proof. Suppose P is a simplicial ώ-polytope for which the LBC
does not hold for edges. Then we have

for some positive integer r.
Let ^ b e a facet of P and let H be the affine hull of &. Let

P' be the union of P and the reflection P through H. The set Pf

may not be convex, however, if a suitable projective transformation
is applied to P first, then Pf will be a simplicial d-polytope. The
number of edges of P' is

2dv - d2 - d - 2r - §LzA = (2v - d)d - d% + d - 2r .
2 v ; 2

But 2v — d is the number of vertices of X, thus Pf fails to satisfy
the LBC by twice as many edges as does P. By reflecting P' about
the affine hull of a facet we can get a simplicial d-polytope P" that
fails to satisfy the LBC by at least 4r edges. Continuing this process
eventually produces a poly tope for which fι<.dv — K which is a con-
tradiction.

In proving the LBC we shall work in the duals of simplicial
polytopes—the simple d-polytopes. We will need the following lemma
about the boundaries of simple d-polytypes.

LEMMA 3. Let X be a strong set of facets in the boundary of
a simple d-polytype P such that X misses at least one vertex of P.
Then there is an exterior vertex of v of X belonging to a facet df of
X such that ast (v, &~) separates X into exactly two strong components
(one of which is the facet

Proof. Since the graph of P is connected there is a path from
X to some vertex of P not in X. The first edge of this path belongs
to d — 1 facets of P that are not in X, while one vertex v of the
edge is in X thus v is an exterior vertex of X.
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Among all exterior vertices of X choose v such that some com-
ponent ^ of 1 ^ ast (v, J^) has a maximum number of facets.
Suppose there is some component ^ of X ~ ast (v9 ά^) other than
the maximal component and J?~. If ^ has no exterior vertices other
than those on &~ then we could separate the graph of P by removing
the vertices of ^ which contradicts Lemma 1. Thus <& has an
exterior vertex v1 not on J^. This implies that vι is an exterior
vertex of X. Let v2e^1 such that J?x is a facet in X. Now we
reach a contradiction because ^ U ̂  determines a component of
X ~ ast (vl9 ^ 1 ) with more facets than ^ We are now ready to
prove our main theorem.

THEOREM 2. If P is a simple d-polytope with F facets and S
subfaeets then S ^ dF — d2 — d.

Proof. Let v be a vertex of P and let X — ast (v9 P). Let v1

be an exterior vertex of X such that separating X by removing
ast (vί9 ά? i) yields two components, {J?1 is the facet of X containing
Vi). Let Xx be the closure of the component that misses JΓ and let
S^χ = Xi Π ̂ T We shall call *$f a separating set. In XL we choose
an exterior vertex v2 belonging to a facet ^ 2 of X19 such that
ast (v29 ̂ ~2) separates Xλ into two components one of which is ^ 2 .
The closure of the component that misses ^ 2 we shall call Xz. We
let J5f b e the separating set ^\ Π X2 Continuing in this way we
get a sequence X, Xlf , Xn of strong sets of facets, a sequence of
separating sets Sl9 ' *,Sn, and a sequence ^l9 •• , t ^ of facets in

Consider any facet ^ 1 in the sequence ά?u , &«. Let v[, , v\
be the vertices in the dual ^ t of ^7 , corresponding to the facets
of ^ 7 in ,5f. Let ω be a point that is joined to each vertex of the
facet / of . ^ Ί * corresponding to Vi in ^ > Thus, the graph that is
the union of the graph of ^ * , ω and the edges from ω to / is the
graph of the (d — l)-polytope obtained by taking the convex hull of J*^
and a point near the centroid of /. There exist d — 1 independent
paths Γί9 , TV.,, from ω to v[. On each path Γt let v" be the last
vertex encountered before first encountering any vertex in {v[y , <}
as we traverse Γi from ω to v[. The vertices v" are distinct and
correspond to d — 1 subfaeets of P that lie on ^ 7 and meet S* on
(d - 3)-faces of P.

This gives us d — 1 subfaeets on each of the facets ^T, , &~+
This gives us at least (d — 1)(F — d — 1) subfaeets in P. These
subfaeets will be called facial subfaeets.

Next we show that we can find some subfaeets in the separating
sets that are not facial subfaeets. Clearly there are many subfaeets
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on the separating sets; however, in choosing a subfacet on a separat-
ing set S?i we must be sure that later on it is not a facial subfacet
on some ^ , j > i. A subfacet in a separating set S* will be a facial
subfacet only if it meets some other separating set on a (d — 3)-face
Thus we must consider separating sets that meet S^ on a (d — 3)-face.
Furthermore, we need only worry about such separating sets Sή for

j > i
Suppose S^j meets 5 t o n a ( d - 3)-face H. The (d - 3)-face H

belongs to exactly three facets, ^ f , J?5 and one other facet which
we shall call ^ ^ , and to three subfacets This implies that ^ k Π ^
is not empty and thus is a subfacet. Thus when £f$ separates X5 it
also separates SΊ, and we may choose a component <W of this separated
separating set that contains a subfacet that does not become a facial
subfacet when we remove <^>

We need to show that we can continue in this way, that is, if
some other separating set Sfx meets & then ^ is separated by 3/ί
(not merely that <_$? is separated by S^Ί). As in the above argument
if S^i meets <g* then there are three facets ^ , J?ι and a third facet
^ m meeting on a (d — 3)-face i ϊ ' of <K It is clear that ^ m Π ̂ 7 is
a subfacet in <$f. If it is not also a subfacet in ^ then we have
that the subfacet J ^ Π ̂ 7 in ^ meets a subfacet ^ Γi ̂ m not in
W, and thus W would belong to the previous separating set meeting
^t , namely £fj9 Since clearly the separating sets are subfacet disjoint
we now have at least four subfacets containing H', two on £* and
one each on S* and S^9 which is a contradiction.

Since ^ Π ̂ m is in ^ we see that S^, separates ^ and at least
one component contains a subfacet that does not become a facial
subfacet when we remove _ ^ . With repetition of the above argument
we may eventually arrive at a subfacet in j?f that is not a facial
subfacet; we now choose one such subfacet from each separating
subset.

Now, we have found (d — 1)(F - d — 1) + F — d — 1 subfacets,
thus S^dF - d2 - d.

THEOREM 3. If P is a simplίcial d-polytope with fk Jc-faces then

jd\ Id + 1\
fk ^ ί l/o - ί Λk for all l ^ k ^ d - 2 .

Proof. The proof follows by taking the dual of Theorem 3 apply-
ing Lemma 2 and then applying Theorem 1.

3. Remarks* 1. The proof of the LBC for facets in [2] can be
simplified by using Lemma 3.
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2. Using some unpublished theorems of Walkup dealing with
graph of more general structures one can prove that the lower bound
inequalities hold for all triangulated manifolds. See also [3] for
similar results.

3. Let P be a simplicial polytope obtained by starting with the
d-simplex and repeatedly adding simplicial caps to the facets. Such
a polytope is called a stacked polytope. It has been conjectured that
equality in (1) or (2) holds only for stacked polytopes. In [2] it is
shown to be true for (1) but for inequality (2) the question is still
open.

4. Theorem 1 seems to be a part of the folklore of convex poly-
topes. To the best of the author's knowledge it was first proved by
M. Perles in 1966 and communicated to G. T. Sallee by telephone.
The author is indebted to Professor Sallee for his accurate note taking
which has enabled the author to reconstruct Perles' proof.
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