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ON THE SPECTRA OF MULTIPLIERS

MISHA ZAFRAN

In this note, some results concerning the spectral theory
and Banach algebra properties of multipliers on compact
Abelian groups are obtained. The study concentrates on
multipliers whose spectra are, in a sense, natural, and whose
transforms vanish at oo. The results are shown to be of
particular interest in the case of the measure algebra M(G).
Moreover, a necessary and sufficient condition is found for
the spectrum of a Riesz product to equal the closure of the
range of its Fourier-Stieltjes transform.

Let G be a locally compact Abelian group (or LCA group) with
dual group Γ. For 1 ^ p ^ ©o, LP(G) will denote the usual Lp space
with respect to the Haar measure of G. Let M(G) designate the
space of regular Borel measures on G, and let M0(G) = {μeM(G) \μ"
vanishes at oo}, where μs denotes the Fourier-Stieltjes transform of μ.

In this note, we will investigate some properties of those multi-
pliers on LP(G) whose spectra are, in a sense, natural. Our major
result is Theorem 3.1. We shall see that this theorem is of particular
interest for p — 1. In this case, we are able to obtain new results
concerning the spectral theory and Banach algebra properties of certain
subalgebras of M0(G)—see Theorems 3-2, 3.6, 3.12, 3.13, 3.14, and 3.15.
Moreover, using the techniques developed here, we are able to deter-
mine the spectra of certain measures in M0(G). In particular, we
find a necessary and sufficient condition for the spectrum of a Riesz
product to equal the closure of the range of its Fourier-Stieltjes
transform—see Theorems 3.6, 3.9, and Remark 3.10.

We begin our discussion with some basic notations used throughout
this paper.

1* Notations and definitions* For any Banach space X, we let
O(X) denote the algebra of bounded linear operators on X;\\ T\\0{x)

will denote the norm of an operator TeO(X). If x is an element of
a Banach algebra A, we denote the spectrum of x in A by sp(α?, A),
and the spectral radius of x by rA(x). R(X, x) will denote the resolvent
of a. If / is a function analytic in a neighborhood of sp(a?, A), we

let fix) be the element (l/2πi) \ f(X)R(X, x)dx, where C is an envelope
Jc

of sp (x, A) contained in the domain of /. If A is any commutative
Banach algebra, Δ{A) will designate the maximal ideal space of A. If
TeO(X), we denote by σp(T),σr(T), and σe(T) the point, residual,
and continuous spectra of Γ, respectively. The symbol * will always
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denote convolution; the symbol/Λ is the Fourier transform of/.
If A and B are any sets, A\B will designate the set theoretic

difference between A and B. Ac will be the complement of A. Finally,
if E is any subset of a topologieal space, E will denote the closure
of E, int E will denote the interior of E, and C(E) will denote all
continuous, complex-valued functions on E.

If G is an LCA group and 1 ^ p ^ °o 9 MP(G) will denote the
subalgebra of O(LP(G)) consisting of those operators which commute
with all translations on LP(G). The following properties of MP{G)
are well known; see [6]

(1) If 1 ^ p < oo and Te MP(G), or if Te M^G) and T is con-
tinuous with respect to the weak* topology of L^{G), then there
exists a unique function T^eL^Γ) such that T(/)A — Tκfκ a.e. on
Γ, for all integrable simple functions on G. TA will be called the
transform of T.

We denote by CMP(G) those multipliers TeMp{G) for which TA

is continuous on Γ, 1 ^ j> < oo. We write Coilf̂ G) = {Te CMP(G) | TΛ

vanishes at oo}.
(2) If 1 5g p < co, then MP(G) is a commutative Banach algebra

which is isometric and isomorphic to M{G) if p = 1, and to L^Γ) if
p = 2. Also, COMP(G) is a Banach algebra.

(3) If 1 ^ p, ? < oo and 11/g - 1/2 I ̂  11/p - 1/2 |, then MP(G) £
Jtff(G), and for all Te M,(G), \\ T | | w n - || Γ||0 ( I l ) ^ || Γ | | 0 ( V ^ I! Γ | | 0 ( V .
Also, if 1 < p < oo and Up + 1/p' = 1, then MP(G) and ik ,̂(G) are
isometric and isomorphic.

(4) Let 1 ^ p < oo. Then
(a) sp(Γ,O(Lp)) = sp(Γ,ilί,(G))f for all ΓeJlί,(G).
(b) sp (Γ, O(L,)) - sp (Γ, CoMp(G)), for all Te COMP(G).

We remark that 4(a) holds since if S is any bounded operator
commuting with translations, and if S"1 exists, then S"1 commutes
with translations. Moreover, 4(b) follows from 4(a) as may be seen
by adjoining an identity to COMP(G), and noting that (S^1)* = 1/SA,
whenever S"1 exists.

2* In this section, we prove a series of lemmas needed in the
proof of our basic result. Some of these are quite elementary; others
may have certain intrinsic interest.

Before we begin, let us make the following observation. If
feL^G), and if we define

for all geLp(G), then TfeC*Mp(G), and sp (Tf, O(LP)) - f{Γ) U {0},
1 ^ p < °°. This is well known and is simple to prove.

However, if G is a nondiscrete LCA group, then M0(G) is not
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a symmetric Banach algebra. This may be seen by combining Theorem
R of [9], Corollary 5.6.9(a) of [8], and the argument used in the
proof of Theorem 5.3.4 of [8]. It follows that there exists μ e MQ(G)
such that sp(μ, M(G)) Φ μ\Γ) (J {0}. Hence by (2) and (4) of the
previous section, sp (Tμ, O(L$) Φ t**iΓ) U {0}, where Tμ(g) = μ*g for
all g e L^G).

Corresponding results seem to be unknown for the Banach algebra
COMP(G), l<p<ooypφ2. If p = 2, it is a simple consequence of
the Plancherel theorem that sp (T, O(L2)) = TΛ(Γ) U {0}, for all
TeC0M2(G).

We will study those elements Te CQMP(G) for which sp (Γ, O(LP)) =
Γ{Γ) U {0}.

If φ is an essentially bounded, complex-valued function on a
measure space (fl, Σ, μ), we define the essential range of φ (or ess
range φ) as the set of all complex numbers z such that

μ{ωeΩ\\f(ω) - z\ < ε} > 0

for every ε > 0.

LEMMA 2.1. Le£ <? be an LCA group, let 1 ^ p < °°, and let
TeMp(G). Then ess range TΛ £ sp (T,

Proo/. Suppose λφ sp(Γ, O(LP)). Then since sp (Γ, O(L,,)) =
sp(Γ, Λf,(G)), we see S = R(\ T) e MP(G). We then note / =
So(\I - T), and hence

(1) 1 = SΛ(λ - Tκ) a.e. on Γ ,

where SA is the transform of S. But SA eL^Γ), and so by (1), λφ
ess range T\ This concludes the proof.

We remark that if TeC0Mp(G), then ess range TΛ = TA(Γ) =

r (r) u {0}.

LEMMA 2.2. Letf 1 g p < c>o, and let TeCMp(G). If λ is an
isolated point of sp (Γ, O(Lj,)), £&ew λ e TS{Γ). Moreover, X is a simple
pole of the vector-valued analytic function R{z, T).

Proo/. Choose ε > 0 such t h a t if D = {z\\z - X\ < e}, then

15 Π sp (T, O(LP)) = {λ}. We expand R{z, T) in a L a u r e n t series about λ:

#(z, T) = Σ ^-(^ ~ λ Γ f o r I « - λ | < ε ,Σ

where ilΛ = (2πί)~1 I R(z, T)(z — X)"n~ιdz for all integers n, and 9?

denotes the curve | z — X \ = ε.
Let / be a function analytic in a neighborhood of sp(T, O{LP)) for
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which / = 1 on D and / = 0 on sp(T, O(LP))\{X}. Then for n ^ - 1,

A* = Λ
where C is an envelope of sp (Γ, O(LP)) contained in the domain of / .
Hence we see

(1) An = f(T)(T - Xl)-*~ι for n £ - l .

By (4) of § 1, it is evident that both An and f(T) are in CMP(G)

and

(2) f(Ty - / o r on Γ.

Since JB(2, Γ) is not analytic at λ, there exists a positive integer
m for which A_m Φ 0. Therefore, by (1), f(T) Φ 0. Hence by (2),
there exists Ί e Γ such that

(3) f(Γ(Ύ))Φ0.

Recalling that ess range Tκ <ϋ sp (Γ, O(LP)), an application of (3)
and the definition of / yield that TA(T) = λ. This implies the first
assertion of our theorem.

In order to obtain the second assertion, we suppose, to the con-
trary, that there exists a positive integer j ^ 2 for which A_o- Φ 0.

Hence there exists τL e Γ for which (A^^y,) φ 0. By (1) and (2),

(4) o Φ (A^yw = / ( r (roxr (70 - λ)' -*.

Thus by (4), f(TA(Ύd) Φ 0 so again we see rA(7x) = λ. But since
^ ^ 2, this contradicts (4). This concludes the proof of Lemma 2.2.

The following theorem will not be needed in the sequel; however,
it may be of some interest.

THEOREM 2.3. Let 1 ^ p < oo, and let TeCMp(G). If X is an
isolated point of sp (T, O(LP)), then Xethe point spectrum of T.

Proof. By Lemma 2.2, we see λ is also an isolated point of

T*(Γ). Let V be an open subset of Γ such that V is compact and
ΓΛ(F) = {λ}. Let U be an open subset of Γ, with compact closure,
such that UQUSV. By [8], Theorem 2.6.2, there exists feL^G)
with /A = 1 on U and / Λ = 0 on Vc.

Since V is compact, /A e L^Γ). Hence by the inversion theorem,

f(x) -

for almost all xeG. In particular, feL^(G). Thus, since / is also
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in L1(G)f we see feLp(G).
Finally we note (Xl - T){fY = 0 on Γ. This equality follows

since ΓA(F) = {λ} and by the choice of /. Hence (λl - T)(f) = 0, and
/ Φ 0. Our assertion follows immediately.

Before proceeding, we make the following observations: If
1 <; p ^ 2, and if TeMp(G), then the point spectrum of Γ is con-
tained in TS{Γ). Secondly, we remark that for 1 S P < °° and for
compact G, we actually obtain T*(Γ) = σp(T), since for all

T G Γ , ( T Λ ( T ) I - T){i) = 0 .

LEMMA 2.4. Le£ G be a compact LCA group. Let 1 ^ p < ©o,
αtiώ ίet ΓeAf^G)- Tfeew σr(Γ) = 0 .

Proof. Let λ e sp (T, O(LP)), with λ$ ^(Γ) . It is then simple to
verify that range (λJ — T) contains the class & of all trigonometric
polynomials on G. Since G is compact, & is dense in LP(G). Hence
range (λI — T) is dense in LP(G), and so Xeσo(T). Our conclusion
is immediate.

Combining Lemma 2.4 and the comments preceding it, we obtain:

LEMMA 2.5. Let G be a compact LCA group, and let 1 ^ p < oo.
Let TeC0Mp(G). Then oc(T) contains a nonzero point if and only

Φ r(r)u{0}.

We note that if G is compact, Γ is discrete. Hence if
TeC0Mp(G), TA(Γ) is countable. We will need the following lemma.

LEMMA 2.6. Let G be a compact LCA group, and let 1 ^ p < oo.
Let Te C0MP(G). Suppose sp (Γ, O(LP)) Φ T*(Γ) U {0}. Then σc(T)\{0}
is a nonempty perfect set; in particular, σc(T)\{0} is uncountable.

Proof. By Lemma 2.5, σc(T)\{0} is nonempty. Let ze σc(T)\{0}.
By the remarks preceding Lemma 2.4, and the lemma itself,
sp (T, 0{Lp)) is the union of the disjoint sets T*(Γ) U {0} and σc(T)\{0}.
Thus 2 ί f ( Γ ) U { 0 ) .

By Lemma 2.2, z is not an isolated point of sp (Γ, O(LP)). Hence
there exists a sequence {zn} of distinct points in sp (T, 0{Lp)) such
that zn —> z as w —• ©o.

Since ΓΛ(Γ) U {0} is compact and 2$ T(Γ) (J {0}, we see that at
most finitely many of the points zn can be in T*(Γ) (J {0}. We may
thus assume zneσc(T)\{0} for all n.

We have shown that every point of the nonempty set σc(T)\{0} is
a limit point of the set σc(T)\{0}. Thus σe(T)\{0} is a perfect set.
From this, it follows easily that σc(T)\{0} is uncountable, since
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sp (T, O(LP)) is the union of σc(T)\{0} and the countable set T{Γ) (J {0}.
The proof of the lemma is complete.

We will also require the following two lemmas.

LEMMA 2.7. Let G be a compact LCA group, and let 1 ^ p < co.
Let S, Te CQMP(G), and suppose sp (S, O(LP)) = SΛ(Γ) (J {0} and
sp (T, O(LP)) = Γ(Γ) U {0}. Then sp (S + Γ, O(LP)) = (S + Γ)A(Γ) U {0}.

Proo/. By 4(b) of § 1, we note sp(S+ T, O(LP)) = sp (S+ T, COMP(G)).
Hence, by the Gelfand theory,

s p (S + T, O(LP)) = {h(S + T)\he ΔC,MP{G)} U {0}

( 1 ) £ [{h(S) I h 6 JC0M,(G)} U {0}] + \{h(T) I h e ACOMP(G)} U {0}]

where for any subsets L̂ and J5 of the complex numbers, A + B =
{a + b\aeA,beB}.

However, by hypothesis, both sp (S, O{LP)) and sp (T, O(LP)) are
countable sets. Thus by (1), sp (S + T, O{LP)) is countable. By
Lemma 2.6, sp (S + T, O(LP)) = (S + T)A(Γ) U {0}. This completes
the proof.

LEMMA 2.8. Let G be a compact LCA group, and let 1 ^ p < co.
Let mp(G) denote the closure of {TflfeL^G)} in the norm of O(LP)
(see the beginning of § 2 for notations). Let S^ be any closed sub-
algebra of COMP(G) containing mp(G). Suppose heJ<9*\Γ. Then
h(T) = 0 for all Te mp(G).

Proof. Assume, to the contrary, that h(T) Φ 0. Then h e Δmp(G).
However, it is easy to see that Δmp{G) — Γ. Thus there exists j e Γ
such that

(1) h(U) - CΓ(7)

for all Uemp(G).
We show that (1) is actually valid for all UeS^. Let / be

a trigonometric polynomial on G with /A(7) = 1. Then for all Ue^,
we have by (1) that

h(U) = h(U)Γ(7) = h(U)h(Tf)

= h(UoTf) - UoT/(7) = £Γ(7) .

But h e Δ6^\Γ. This contradiction proves the lemma.
We conclude this section with some comments concerning the

algebra mp{G), defined in the statement of 2.8. Let G be any LCA
group, and let l ^ p < oo, We define mp(G) as the closure of
{Tf | /6 Li(G)} in O(LP). Then mp(G) becomes a Banach algebra with
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maximal ideal space Γ. (See [5], Theorem 1.17.) Figa-Talamanca
and Gaudry [3] have shown that if G is the w-torus or Euclidean
w-space, then mp(G) is a proper subalgebra of COMP(G) for 1 < p < oo,
p Φ 2. In fact, more is true. We have the following:

PROPOSITION 2.9. Let 1 ̂  p < co with p Φ 2. Then, in general,
mp(G) is a proper subset of <ar = {Te COMP(G) | sp (T, 0{Lp)) =
TΛ(Γ)

Proof. We note first that mp(G) S ΐ f by Lemma 2.8, 1 ̂  p < oo.
If p = 1, we let G be any nondiscrete LCA group. In [4], Theorem
5.6, an example is given of a singular measure μ e M0(G) such that
μ*μ = μ2 e Lλ(G). Using an argument as in 2.8, it is simple to verify
that sp (μ, M{G)) = μA{Γ) (J {0}. Defining the operator Tμ by Tμ{f) =
μ*/ for all feL^G), we see T^m^G), but T Λ G ^ .

Now let 1 < p < 2. Let G be the circle group. We choose T as
the multiplier of Figa-Talamanca and Gaudry corresponding to p, as
defined in [3]. Then T$ mp(G). Moreover, if r = 2p/2 - p, T{m) -
± l/2%/r, for 2n ^ m g2% + 1 - 1, w - 0,1, 2 , and T{m) = 0 for m ̂  0.
Hence T2Λ is of uniformly bounded variation on all dyadic "intervals"
of integers. By the classical Marcinkiewicz multiplier theorem (see
[11], Chapter 15, Theorem 4.14), T2 e C0Mq(G), 1 < q < oo. Thus by
16.6.2 of [2], T2emq(G)91 < q < oo. By Lemma 2.8, sp(Γ, O(LP)) =
T{Γ) U {0}, where Γ = the integers.

Finally if 2 < p < oo, we let 1/p + Ijp' = 1. Again we let G =
the circle group. Let T be the multiplier of Figa-Talamanca cor-
responding to p\ The above result, combined with a simple duality
argument, shows T$ mp(G) and sp (Γ, O(LP)) = ΓΛ(Γ) U {0}. The proof
of the proposition is complete.

Of course, if p = 2, it is clear that ^ = m2(G), for any LCA
group G.

3* In this section we prove our principal theorems, and give
some applications. We also give some examples showing that our
results cannot be significantly improved. The following theorem is
our principal result.

THEOREM 3.1. Let G be a compact LCA group, and let 1 ̂  p < oo.
Define <& = {Te COMP(G) | sp (Γ, O{LP)) = T{Γ) (j {0}}.

( a ) If heΛC0Mp(G)\Γ, then h{T) = 0 for all
(b) ^ is a closed ideal in COMP(G).
( c ) Δ<& = Γ.

Proof. We first prove (a). Let Te<if, and let he ACQMP(G)\Γ.
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Choose ε > 0. Then there exists a compact set K S Γ such that
I Tκ (7) I < ε for 7 $ iΓ Let / be a trigonometric polynomial such that
Γ = 1 on if, and 0 ^ / Λ ^ 1. Define Tί = To T, and T2 = Γ - To Tf.
It is clear that T = TΊ + Γ2. By Lemma 2.8,

= 0 for all ?> e

In particular, sp (7\, O(LP)) - ΓΓ(Γ) U {0}. By Lemma 2.7,

sp (Γ2> O(LP)) = Γ2

Λ(Γ)U{0}.

We now show

( 2 )

Note h(T2) e sp (T2, O(LP)) = T2{Γ) U {0}. If h(T2) = 0, there is nothing
to prove. Otherwise, there exists ΎβΓ such t h a t h(T2) = Γ2

Λ(7). If
7 e i Γ , the definition of T2 implies 2V(τ) = 0. If 7 $ J5Γ,

I MT2) 1 - 1 r;(7) 1 - ι r (7)(i -/A(7)) | < e.

Hence (2) obtains.
Combining (1) and (2) we see

( 3 ) \h(T)\ < e .

Since ε > 0 was arbitrarily chosen, part (a) follows by (3).
Part (b) follows immediately by (a). We now show (c). We begin

by noting

(4) s p ( Γ , ^ ) = sp(Γ, COMP(G))

for all Te ^ To see this, we adjoin the identity I to the Banach
algebras c<^ and COMP(G), and denote the corresponding algebras by
ίT+ and C+MP(G) respectively. Then if Te <af, and λ $ sp (Γ, CQMP(G)),
S = (xl - T)~ι exists and is in C+MP(G). Moreover, SA has limit 1/λ
at co. It is now a simple consequence of the spectral mapping theorem
that s p ( S - (l/λ)J, O(LP)) = (S- (l/λ)7)Λ(Γ) U {0}, and so S- (l/λ)Je <&.
Thus S is in the Banach algebra 9^ . Therefore, λ g s p ( Γ , ^ ) . We
have shown

sp(Γ, ^ ) S s p ( Γ , COMP(G)).

The reverse inclusion is elementary. Hence (4) is valid.
In order to complete the proof of (c), we assume there exists

heAc^\Γ. Let ε > 0, choose Te^, and decompose T into the sum
7\ + T2 as in part (a). As before, we have Tt, T ^ e ^ By Lemma
2.8 (with Sf = <£f), h{Tλ) = 0. By (4), h(T2) e sp (Γ2, COMP(G)). Hence
there exists 7G.Γ such that h(T2) — T2(Ύ). The argument of (a)
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implies \h(T)\ < ε. Since this holds for all ε > 0, h(T) = 0. Since
Te^ was arbitrarily chosen, h = 0 on ^ , and this contradiction
completes the proof of (c). Our theorem is completely proved.

In the case p = 1, COMP(G) — M0(G), and ^ is then a proper
subalgebra of the asymmetric Banach algebra M0(G). In case p = 2,
<ĝ  = COMP(G), and our theorem becomes trivial. If 1 < p < co, p φ 2, it
appears to be unknown whether or not ^ is a proper subset of COMP(G).

In the remainder of this note, we restrict our attention primarily
to the case p = 1, that is, to M0(G) and M(G). Applied to measures,
Theorem 3.1 becomes:

THEOREM 3.2. Let G be a compact LCA group. Let

<& = {μ 6 M0(G) I sp (μ, M(G)) = μA(Γ) (J {0}} .

( a ) If he JM0(G)\Γ, then h(μ) = 0 /or αW μ e C6\

( b ) 9f ΐs α closed ideal in M0(G)
= Γ.

We now give some examples to show that 3.2 cannot be signifi-
cantly strengthened.

EXAMPLE 3.3. We show assertion (a) of 3.2 becomes false if we
no longer assume that the measures involved vanish at ©o.

Let x e G, and let δx be the unit mass measure at x. Then
sp (δx, M(G)) = {z I \z\ = 1}, if the order of α; is infinite, and
sp (δx, M(G)) = the ^ th roots of unity, if the order of x is n. This is
known, and is not difficult to prove. Thus if h e ΔM(G)\Γ, h(δx) e
{z I I z I = 1}. Hence (a) of Theorem 3.2 fails.

EXAMPLE 3.4. Let G be an /-group (see p. 46 of [8]). We show
that there exist measures μ and v in M(G) such that

(1) sp (μ, M{G)) = Vψ)
(2) sp (y, M{G)) = v^{Γ)
( 3 ) sp (μ + v, M(G)) properly contains (μ + v)Λ(Γ) .

(Here, neither μ* nor vs vanish at oo on Γ.) By Theorem 5.2.2 of
[8], there exists a Cantor set P^G which is also a Kronecker set.
Let μ be a positive continuous measure of total variation 1 concen-
trated on P. Then by Theorem 5.5.2 of [8],

Since μ has norm 1, we obtain sp (μ, M{G)) = μ*{Γ). We now define
v{E) = μ(-E), where -E = {-α lα Gί;}, for all Borel sets # £ G.
The preceding argument also shows sp (v, M(G)) — v*(Γ).
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However, an examination of the proof of Theorem 5.3.4 of [8]
shows that (μ + ι*Y(Γ) is a subset of the real numbers, whereas
sp (μ + v, M{G)) contains an imaginary number. Thus sp (μ + v, M{G))
properly contains (μ + i>Y(Γ).

We will now obtain some consequences of Theorem 3.2. The fol-
lowing result is an immediate corollary of 3.2(c)

COROLLARY 3.5. Let G be a compact LCA group. Let ^ =
{μ 6 M0(G) I sp (μ, M(G)) = μ\Γ) U {0}}. Then the quotient algebra

has empty maximal ideal space.

This corollary enables us to obtain a new method for showing that
a measure in M0(G) does not have a "natural" spectrum. Let μλ — μ
and μn = μn~λ*μ for n ^ 2. We have the following result.

THEOREM 3.6. Let G be a compact LCA group, and let
μ e M0(G)\{0}. Suppose that for all positive integers n, μn is singular
with respect to the Haar measure of G. Then sp (μ, M(G)) Φ μA(Γ) U {0}.

Proof. Suppose, to the contrary, that sp (μ, M(G)) = μ*(Γ) U {0}.
Then μ e ^. By the above corollary and the spectral radius formula
we obtain

Using the definition of the quotient norm we see

(1)

where for any measure v, \\v\\ denotes the total variation norm of v.
Since μn is a singular measure, we see \\μn +f\\ = \\μn\\ + | ) / | | ^

| | μ w | | for all feLι(G)9 and for all n^ί.
By (1) we thus obtain

l i m | | ^ | | 1 / w = 0 .
fl-+oo

Hence sp(μ, M{G)) = {0}, so by Lemma 2.1, μA(Γ) = {0}. It follows
μ = 0, and this contradiction implies the desired result.

EXAMPLE 3.7. Let G be an /-group. We show that there exists
a continuous measure μ e M(G) such that μn is singular with respect
to the Haar measure of G for all n ^ 1, but such that sp (μ, M(G)) =
μ*(Γ). As in Example 3.4, we let P <Ξ G be a Cantor set which is
also a Kronecker set, and let μ be a positive continuous measure
concentrated on P. By 3.4, sp(μ, M(G)) = μA(Γ). Let P^P and Pn =
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Pn_! + P for n Ξ> 2. Let m denote the Haar measure of G. By [8],
Theorem 5.3.6, m(Pn) — 0 for w^ 1. But μw is concentrated on Pn, so
/€* is singular with respect to m, for all n ^ 1. We note that μA

does not vanish at ©o.

Comment. The above example can be simplified if we no longer
require that μ be a continuous measure. In this case, we let v be
any discrete measure on G. Then clearly vn is singular with respect
to the Haar measure of G for all n Ξ> 1. But it is known that
sp (v, M(G)) = F(Γ) .

REMARK 3.8. Let G be any LCA group. We note that for
μ e M0(G), sp (Tμ, O(LP)) = μΛ(Γ) U {0}, where Tμ(f) = μ*f for all
feLp(G),l <p< co. This follows by Theorem 1.16 of [5]. (That
theorem is stated for G — Rn. The proof for arbitrary LCA groups
requires no new ideas.)

We will now use Theorem 3.6 to determine the spectrum of a
certain class of measures on the circle group.

Let {ak} be a sequence with ak Φ 0, and — 1 ^ ak ^ 1 for all k.
Let {nk} be a sequence of positive integers such that nk+1/nk ^ q for
all k, where q is a fixed real number greater than 3. It is shown
in [11], Chapter 5, §7, that the infinite product

Π (1 + dk c o s nk%)
fc = l

represents a positive continuous measure μ on the circle group called
a Riesz product. By the assumption nk+1/nk >̂ q > 3, it is not difficult
to show that

where εy — 0,1 or —1 for all j , and

•= 0 ,

for all m not of the form Σi=i ε i% (See [11], Chapter 5, §7, and
[10], §2.)

We thus obtain
(a) If ak—»0 as k—> oo, then μA vanishes at co.
(b) μn is represented by the Riesz product

π(1 + 2(^Y cos nhχ] ,
.2/

for all w ^ 1.
In the following theorem only, G will denote the circle group,
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and Γ will denote the integers.

THEOREM 3.9 Let {ak} be a sequence of real numbers such that for
all k, ak Φ 0, — 1 ^ ak ^ 1, and ak~+0 as k —> oo. Let {nk} be a
sequence of positive integers with nk+1/nk ^ q, where q is a fixed
real number greater than 3. Let μ be represented by the Riesz product
ΠΓ=i (1 + ak cos nkx). Then sp (μ, M(G)) = μA(Γ) (J {0} if and only if
there exists a positive integer n such that Σ?=i \ak\n < °°

Proof. We first prove the sufficiency. Choose a positive integer
n such that

(1) Σ | α * l n < -

By (b) of the preceding paragraph, the measure μn is represented by
the Riesz product

It is evident by (1) that ΣϊU 12(^/2)* i2 < °°, so by [11], Chapter
5, Exercise 20, we see μn is absolutely continuous with respect to
Lebesgue measure, that is μneL1(G). It follows easily by Lemma
2.8 that sp(μ, M{G)) = ^A(Γ) U {0}, as desired.

We now prove the necessity of our condition. Suppose for all
positive integers m we have

( 2 ) v

Since ak —• 0 as k—+°o9 (a) of the preceding paragraph implies that
μ 6 MQ(G). Let n be any positive integer. By (b) of the preceding para-
graph, μn is represented by the Riesz product Π?=i(l + 2(^/2)* cos nkx).
Moreover, by (2), we see

fc = l

Hence by [11], Chapter 5, Theorem 7.6, μn is singular with respect
to Lebesgue measure. By Theorem 3.6, sp (μ, M{G)) Φ μA{Γ) U {0}.
This concludes the proof.

Comment. A special case of the necessity part of this theorem,
with more restrictive assumptions on the sequences {ak} and {nk} is
implicit in [10], §2. However, it is not explicitly stated. Our proof
is completely different, and much more simple.

REMARK 3.10. The analogue of Theorem 3.9 is valid for more
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general Riesz products on a wider class of compact LCA groups.
Explicitly, we let G be one of the three types of groups considered
in Theorem 4.4 of [4], and let {7k} be a dissociate set of characters
of G as considered in this theorem (for definitions, see [4]). Let {bk}
be a sequence of nonzero complex numbers such that | bk | <£ 1/2, if the
order of yk > 2, and such that bk is real with | bk | ^ 1, if the order of
Ίk = 2. Let μ e M(G) satisfy

where ε, = 0, 1 or — 1 for all j , and

μA(Ύ) = 0 ,

for all 7 not of the form Σ i = ι δ / ^ . (See [4], Theorem 3.2.) (Here
δ(£) = 6 if e = 1, b{ε) = 5 if s = - 1 , and ύ(ε) == 1 if ε = 0, for all com-
plex numbers 6.) This may be considered as a generalization of the
previously considered Riesz product on the circle group. Suppose
also bk->0 as k~+ oo. We then have sp (μ, M(G)) = μ*{Γ) U {0} if
and only if there exists a positive integer n such that Σ~=i I && Γ < °°
The proof is identical to the one given in 3.9. We need only replace
the results of [11], Chapter 5 used in the proof of 3.9 by Theorem
4.4 of [4].

We now give some further applications of Theorem 3.2. We will
adhere to the following notation. If μ e M(G) and fe Lλ{μ)y we define
v = fμ as the unique regular Borel measure satisfying dv — fdμ. If
μ, ζ e M{G) with μ Ξ> 0, and if ζ is absolutely continuous with respect
to μ, we write ξ < μ. Finally, if μeM(G), we let \μ\ denote the
total variation of μ, and denote by || μ \\ the total variation norm of μ.

We provide a proof of the following lemma for the convenience
of the reader.

LEMMA 3.11. Let G be a compact LCA group, and let μ e MQ(G).
If ve M{G)> and if v <\μ\, then v e M0(G).

Proof. Since v is absolutely continuous with respect to | μ \,
there exists a function feL^μ) such that v — fμ. We show vA

vanishes at co. Let ε > 0. Then there is a function g e C(G) such
that

( 1 ) ί \f-g\d\μ\<ε/4.
JG

Since G is compact, we can choose a trigonometric polynomial

P — Σ*=i α Λ> where Ίk e Γ, 1 ^ k ^ n, for which
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( 2 )
4(||A*||+1)

Combining (1) and (2) we obtain

(3) ( \f-P\d\μ\ < e / 2 .

Let vP = Pμ. Then vP

A(τ) = Σ*=i ak^(y — yk)
 f o r all 7 e /\ Since

μA vanishes at °o, there exists a compact set KQΓ such that

(4) I V ( 7 ) | <e/2

for all 7 ί if.
Hence by (3) and (4), we see that for 7 § K,

~ P(x))dμ(x)

< ε/2 + e/2 = ε .

Thus vs vanishes at oo, and our proof is complete.

THEOREM 3.12. Let G be a compact LCA group, and let ^ =
{μ e M0(G) I sp (μ, M{G)) = μA(Γ) U {0}}. Let μe^. If ve M(G), and
if v < I μ I, then y e ^ .

Proof. By Lemma 3.11, veM0(G). We need only show

Let 7 e / \ Then since 7 is a character of G, a simple computa-
tion shows that

( l ) (frμi)*(rrμj = y(βι*μύ

for all μl9 μ2 e M(G). In fact, the mapping rj -* ΊΎJ for η e M(G) defines
an isometric algebra isomorphism of M(G) onto itself.

Define μγ = jμ, and let Rr(X) = 7JB(\, μ), for λ ί sp (μ, M(G)).
By (1), it follows that if λφ sp (μ, M(G))9 JB(λ, /̂ r) exists and equals
J?r(λ). Thus λ e sp (^r, M(G)) and so sp (μr, M(G)) £ sp (μ, M(G)). Since
μ = 7μr, an analogous argument yields sp (μ, M(G)) £ sp (μr, M(G)).

We thus obtain sp (μr, M{G)) = sp (//, Λf(G)) = μs{Γ) U {0}. Since
^ r

A(Γ) = μ*(Γ), it follows

Hence μγe^ for all 7 e Γ.
Now let P — Σ3Ui akΊk be a trigonometric polynomial on G, and
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let vP = Pμ = Σfc=i UkPru' Then since vP is a linear combination of
elements of ^ and since, by Theorem 3.2(b), ^ is a linear space,
we obtain

(2) sv(v

Since {Pμ \ P is a trigonometric polynomial on G} is dense in
(2) shows that

( 3 ) S

for all feL^μ). The theorem now follows by (3), and the fact that
v< \μ\.

By combining Theorems 3.6 and 3.12, we can obtain an extension
of 3.6. For notational convenience, we write μ l v if the measures
μ and v are mutually singular. If Jf is any family of measures, we
write μ L ^ if μ 1 v, for all v in ^ .

THEOREM 3.13. Let G be a compact LCA group with Haar measure
m. Define <& = {v e Mΰ(G) | sp (v, M(G)) = vA(Γ) u {0}}. Let μ e M(G)
be a positive measure such that μn ± m for all positive integers n.
Then μ _L <gf.

Proof. Suppose, to the contrary, that there exists v € ^ which is
not singular with respect to μ. By Theorem 3.12, | v \ e ^, and it is
evident that | v \ is not singular with respect to μ. We write

(1) \»\ = »! + »*,

where v1 and v2 are positive measures, and

(2) vL < μ and v2 ± μ .

By the choice of v, we see vί Φ 0. Moreover, by (1) and Theorem
3.12, vx 6 ^ Now (2) implies that vl < μn for n ^ 1, and so since
μ% 1 m, we see

ι>Γ 1 m ,

for w ^ 1. But then 3.6 asserts that sp (vlf M(G)) Φ v[{Γ) U {0}, and
this contradiction proves the theorem.

We conclude this paper with some results concerning ^ as a
Banach algebra. Our discussion shows that the behavior of ^ is
more closely related to that of L,(G) than to that of M0(G).

Let G be a compact, infinite, LCA group, and denote by B{Γ) the
set {μ* \μeM(G)}. Let A be a closed subalgebra of M(G). S will
signify a subset of the complex plane. A complex function F with
domain S is said to operate on A if and only if for all μeA with
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/?XΓ) £ S, we have JP (μΛ) G £(Γ). Let 9fA = {μΛ | μ e
A theorem of Katznelson [8], Chapter 6, asserts that if F operates

on LX{G), then F is analytic in a neighborhood of the origin. A
theorem of Varopoulos [10] asserts that for G compact, only entir<
functions operate on B0(Γ).

We obtain:

THEOREM 3.14. Let G be a compact LCA group.
( a ) If F operates on &, then F is analytic in a neighborhood

of the origin.
(b) If F is analytic in a neighborhood of 0, then F operates on

<&. Moreover, if F(0) = 0, then F{μ*)e<tf* for all μe<tf with
μA(Γ) Q domain F.

This theorem follows by the aforementioned result of Katznelson,
Theorem 3.2(c), and the elementary operational calculus of Banach
algebras. The details are left to the reader.

Finally, we characterize the homomorphisms of ^ into M(G).
For all notations used in the following theorem, see [8], Chapter 4.

THEOREM 3.15. Let G be a compact LCA group, and let Ψ be
a homomorphism from <& into M{G). Then Ψ{μ)s = μAoa, where a is
a piecewise affine map of Y into Γ, and Y is in the coset ring of Γ.
Conversely, if Y belongs to the coset ring of Γ, and if a is a piece-
wise affine map of Y into Γ, then μ*oae B(Γ) for all μe^.

Stated more simply, Ψ is a nontrivial homomorphism of ^ into
M(G) if and only if ¥ is a nontrivial homomorphism from LX{G) into
M(G). This is in sharp contrast to the case of homomorphisms from
M0(G) into M(G); there is an example of a nonzero homomorphism π
from M0(G) into M(G) for which π\Ll(G) = 0 (see [8], p. 78).

The proof of Theorem 3.15 follows immediately by Theorem 4.1.3
of [8], Theorem 3.2(c), and the argument on p. 77 of [8].

We now have the following corollary.

COROLLARY 3.16. Assume the notations of Theorem 3.15. More-
over, suppose that for every finite set K £ Γ, ccι{K) is also finite.
Then Ψ maps & into itself.

Proof. We show first that if μeM0(G), then Ψ(μ) e M0(G). Let
ε > 0. Then there exists a finite set K^Γ such that |μA(7)| < ε
wherever 7 0 K. Let / = orι{K). Then J is finite and | μA(a(y)) \ < ε
whenever γ g J . It follows that | Ψ{μY{i) \ < e for 7 ί J , and so
Ψ{μ) e MQ(G).
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It now suffices to prove

( 1 ) sp (¥(μ), M{G)) = Ψ{μY{Γ) U {0} ,

for all μe^. Let h e ΛM(G). Then h°¥ is a complex homomorphism
on ^ By Theorem 3.2(c), we see that either

ho¥ = 0 on ΐ f ,

or there exists a 7 e f such that

for all jMe^. In either case, h(Ψ(μ)) e μA(Γ) U {0}, and so by the
Gelfand theory we obtain

( 2 ) sp (?r(//), M(G)) ^μA(Γ)U {0} ,

for all μe^. Since μΛ(F) U {0} is a countable set, (2) and Lemma
2.6 imply (1) This concludes the proof.

We note that our corollary is analogous to Theorem 4.6.2 of [8].
Moreover, if a~ί(F) is infinite for some finite set F £ Γ, it is not
difficult to see that ¥ does not even map ^ into M0(G) (see the
proof of Theorem 4.6.2 of [8]). Thus the condition of our corollary
is both necessary and sufficient to insure that ¥ maps ^ into itself.
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