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IDEALIZERS AND NONSINGULAR RINGS

K. R. GOODEARL

This paper deals with the relationship between a ring 7
and the idealizer R of a right ideal M of 7. [The ring R
is the largest subring of 7 which contains M as a two-sided
ideal.] Assuming M to be a finite intersection of maximal
right ideals of 7, the properties of 7 and K are shown to
be very similar. The main theorem of the first section shows
that under these hypotheses the right global dimensions of
T and R almost always coincide. In the second section,
where 7T is assumed to be a nonsingular ring, the major
theorem asserts that the singular submodule of every R-
module is a direct summand if and only if the correspond-
ing property holds for 7-modules.

We assume throughout the paper that all rings are associative
with identity, and that all modules are unitary. Unless otherwise
noted, all modules are right modules.

1. Idealizers. This section is concerned with idealizers in arbi-
trary rings, and is based on the work of J. C. Robson in [7].

Given a ring T and a right ideal M of T, the idealizer of M in
T is the set R={teT|tM < M}, which is easily seen to be the
largest subring of 7 which contains M as a two-sided ideal. The
aim of this investigation is to discover properties of T which carry
over to R (and vice versa).

We shall mainly consider the case when M is a finite intersection
of maximal right ideals of T; following [7], we say in this case that
M is a semimaximal right ideal of T. Equivalently, M is a semimaxi-
mal right ideal of 7 if T/M is a semisimple right 7T-module, i.e., a
module which is a sum of simple submodules. In accordance with
this terminology, we use the term “semisimple ring” to refer to a
ring which is semisimple as a module over itself, rather than a ring
whose Jacobson radical is zero.

The concept of the idealizer of M is of course not needed if M
is already a two-sided ideal of T, i.e., if TM = M. When M is
maximal, the only other possibility is TM = T, and in general this
condition seems to be required for some proofs. Fortunately, [7,
Proposition 1.7] allows us to assume it without loss of generality:
Assuming that M is a semimaximal right ideal of T, then there is
another semimaximal right ideal M’, containing M, such that TM' = T
and the idealizers of M and M’ coincide.
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Thus we assume throughout this section that M is a semimaximal
right ideal of T satisfying TM = T.

ProposITION 1. [Robson] (a) R/M is a semisimple ring.
(b) T/R s a semisimple right R-module.

(e) T is a finitely generated projective right R-module.
(d) The natural map T@T— T is an isomorphism.

Proof. (b), (¢), and (d) are contained in Corollary 1.5 and
Lemma 2.1 of [7], while (a) follows from the observation [7, Proposi-
tion 1.1] that R/M is isomorphic to the endomorphism ring of the
right T-module T/M.

A simple consequence of (d) is that for any modules A4, and ,B,
the natural map A ®. B— AQ®, B is an isomorphism, from which we
infer that the following maps are also isomorphisms: A Q.7 — A4,
T@Q:B—B, A A@:T, B—>TQ@:;B. Then for any modules A,
and C, we conclude using the isomorphisms A —AQ@,T and C—
CQ®:T that Hom, (4, C) = Hom, (4, C). Given these observations
and the projectivity of T,, a straightforward induction establishes
the following results:

ProrosiTiON 2. (a) Tor? (4, B) = Tor? (A4, B) for all A, ;B and
all n > 0.
(b) Extz(4,C) =Exty(4,C) for all A, Cr and all n > 0.

These results suggest comparing the global dimensions of R and
T, which is done in [7, Theorem 2.9] for the case when T is right
noetherian: Provided that R == T, then

r. gl. dim. (R) = max {1, r. gl. dim. (T} .

In Theorem 5 we shall remove the noetherian restriction on this
theorem, but first two intermediate results. are needed.

The key to the next two propositions is a consideration of the
module JT/J, where J is a right ideal of R. There is an epimorphism
f: F—JT/J for some direct sum F of copies of T/R, and we see from
Proposition 1 that F is a semisimple right R-module, hence ker f
must be a summand of F. Thus JT/J is isomorphic to a summand
of a direct sum of copies of T/R. For the proof of Theorem 10, we
must notice that this same conclusion follows when J is an R-sub-
module of a right T-module.

PropOSITION 8. T is a flat left R-module.
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Proof. The natural maps R@Q,T—-T@;T—T and TQ,T—T
are both isomorphisms; hence R@®;7T —T®:;7T is an isomorphism.
Inasmuch as T is projective, it follows that Tor? (T/R, T) = 0. Now
given any right ideal J of R, JT/J is isomorphic to a summand of a
direct sum of copies of T/R, from which we infer that Tor?(JT/J, T)=0.
According to Proposition 2 we also have Tor% (T/JT, T) = 0, whence
Tor? (T)J, T) = 0. Thus J®,T— T @:T is injective, hence J @, T —
R @:T must be injective.

We shall use the notation pd;(4) to stand for the projective
dimension of an R-module A.

ProposITION 4. If J is any vight ideal of R, them pdy(J) =
pd,(JT).

Proof. Since ,T is flat, the tensor product of 7" with any pro-
jective resolution of J, yields a projective resolution of (J@:T):;
thus pd,(J @z T) < pdr(J). The flatness of 7T also implies that
J@:T = JT; hence we get pd,(JT) < pdp(J]).

In view of the projectivity of T and R, pdz(T/R) < 1. Inasmuch
as JT/J is isomorphic to a summand of a direct sum of copies of
T/R, we obtain pd,(JT/J) < 1. Examining the long exact sequence
of Ext, we infer from this that pd,(J) < pd;(JT). Recalling again
that T, is projective, we see that any projective resolution of (JT'),
is also a projective resolution of (J7T'), from which we conclude that
pd,(JT) < pd,(JT). Thus pde(J) = pd,(JT).

[After the preparation of this paper, Professor Robson informed
the author that he too had obtained the following theorem, which
appears in [8, Theorem 2.8].]

THEOREM 5. If R+ T, then r.gl.dim. (R) = max {1, r.gl. dim. (T)}.

Proof. If r.gl.dim. (R) > 0, then from Proposition 4 we obtain
r.gl.dim. (R) =1 + sup{pd;(J) |J < Rz} =1 + sup{pd,(K) | K= T;} =
max {1, r. gl. dim. (T)}. On the other hand, it is immediate from
Proposition 2 that r. gl. dim. (T) <r. gl. dim. (R). Thus it only remains
to prove that r. gl. dim. (R) = 1.

In view of the assumption R = T, we see that M cannot be a
two-sided ideal of T; hence 1¢ M and M < R. Inasmuchas TM = T,
it follows that the map R ®: (R/M)— T ®: (R/M) is not injective,
from which we conclude that R(R/M) is not flat. Thus GWD(R) > 0;
hence r. gl. dim. (R) > 0.

For weak dimension, the proofs of Proposition 4 and Theorem 5



398 K. R. GOODEARL
can be used, mutatis mutandis, to prove the following theorem:

THEOREM 6. If R # T, then GWD(R) = max {1, GWD(T)}.

2. Nonsingular rings. In this section we shall assume that T
is a nonsingular ring and then investigate the relationship between
singular and nonsingular modules over T and R. First we recall the
relevant definitions: Letting .&7(T) denote the collection of essential
right ideals of 7, then the singular submodule of a right T-module
A is the set Z,(A) = {xc A|xl = 0 for some I € &”(T)}. We say that
A is stngular [nonsingular] provided Zy(4) = A [Z;(A) = 0]. The
singular submodule of T, is a two-sided ideal of 7, called the »right
singular ideal of T and denoted Z.(T); T is a right nonsingular ring
if Z.(T) = 0. Analogous definitions and notations hold for R and its
modules.

Throughout this section, we assume that 7 is a right nonsingular
ring and that M is an essential right ideal of 7, and we investigate
the idealizer R of M. For all but the next two propositions, we
make the additional assumptions that M is a semimaximal right ideal
of T and that TM = T.

ProposiTION 7. (a) A(T)={K < T,| KN Re & (R)}.
(b) FL(R)={J = Rz|IMe(T)}

(¢) Zy(A) = Zn(4A) for all A,.

(d) Z.R) = Zy(T) = 0.

Proof. (a) Suppose that Ke &(T) and A < R, such that
ANKNR)=0. Then AMNK =0, whence AM = 0 [because AM
is a right ideal of T and Ke.&#(T)]. Thus A < Z.(T) =0 and so
KN Re <(R).

Now let K < T, and assume that KN Re &“(R). If A< T,and
ANK =0, then from (ANRN(KNR)=0 we obtain ANR =0,
hence ANM =0. Thus A =0 and so Ke A(T).

(b) If J£R; and JMe .&#(T), then JMe S (R) by (a), whence
J e F(R).

Now consider any Je.S”(R). Inasmuch as MeS7(T) and
Z.(T) = 0, the left annihilator of M in T is zero. In particular, it
follows that every nonzero element of J has a nonzero right multiple
in JM. Thus JM is an essential R-submodule of J, hence JM ¢ .S7(R),
and then JMec .“(T) by (a).

(c) follows directly from (a) and (b).

(d) According to (¢), Zx(T)= Z.(T) =0, and then Z.R) =0
also.
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Let @ denote the maximal right quotient ring of 7. From [3,
Theorem 1+ 2, p. 69] we obtain the following information: @Q, is
an injective hull for 7,, @ is a von Neumann regular ring, and
Q, is injective. Note that TN Z,(Q) = Z(T) = 0, from which we
obtain Z,(Q) = 0.

PROPOSITION 8. @Q s also the maximal right quotient ring of R.

Proof. We first show that @ is a right quotient ring of R, i.e.,
that @, is a rational extension of R,. (See [3, pp. 58, 64] for the
definitions.) Inasmuch as Z.(R) = 0, [3, Proposition 5, p. 59] says
that it suffices to prove that @, is an essential extension of Rj.
Thus consider any A < @, such that AN R =0. Then AMNM=0.
Since M is an essential right ideal of T, it must be an essential
T-submodule of @, so that we obtain AM =0 and A < Z,(Q) = 0.
Therefore, @ is a right quotient ring of R; hence we may assume
that @ is a subring of the maximal right quotient ring P of B. The
injectivity of @, implies that P, = Q @ B for some B. Then from
RN B =0 we infer that B=0 and P = Q.

In view of Proposition 8, we may refer to [3, Theorem 1 + 2,
p. 69] again and conclude that @, is an injective hull for R,. Now
we obtain from [5, Proposition 1, p. 427] the following alternate
description of the singular submodule of a right R-module A: Z (A) =
N {ker f| fe Hom, (4, @)}. In particular, A is singular if and only if
Hom, (4, @) = 0, from which we conclude that any extension of a
singular module by a singular module is singular.

N.B.—From this point on, the assumption that M is a semimaxi-
mal right ideal of T satisfying TM = T will hold.

It follows from Proposition 7 that every nonsingular right 7-
module is also a nonsingular right R-module. A partial converse is
provided in the next proposition: Any nonsingular right R-module
can be canonically embedded in a nonsingular right 7T-module.

PropoSITION 9. If A, is mnonsingular, then the natural map
A—AQ@:T is injective and (AQrT)r is nonsingular.

Proof. In view of the discussion following Proposition 8, the
intersection of the kernels of the homomorphisms from A into Q,
must be zero. Thus we may assume that 4 is a submodule of some
direct product B of copies of Q.

Since @ is a nonsingular right T-module, so is B. We now get a
natural map A @, T'— B®, T — B, and the composition A — A4 ®,.T— B
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is just the inclusion map, whence A — A @, T must be injective.
Also, we see from the flatness of 7T that A ®: T — B @, T is injective.
Since BQ:;T — B is an isomorphism, we infer that A®,.T = AT;
hence (A @ T), is nonsingular.

We say that R is a splitting ring provided that for any right
R-module A4, Z.(A) is a direct summand of A. It is noted in [1,
Proposition 1.12] that R is a splitting ring if and only if Ext} (4, C) =0
for all nonsingular A, and all singular C;.

THEOREM 10. R s a splitting ring if and only if T is a split-
ting ring.

Proof. Suppose that R is a splitting ring. Given a nonsingular
right T-module A and a singular right T-module C, it follows from
Proposition 7 that A, is nonsingular and C; is singular. Thus
Ext} (4, C) = 0; hence from Proposition 2 we obtain Ext; (4, C) = 0.

Now assume that T is a splitting ring. Given a nonsingular
module 4, and a singular module C,, we must show that Ext} (4, C) =
0. It suffices to prove that Ext} (4, C/CM) = 0 and Ext}; (4, CM) = 0.
Inasmuch as M? = MTM = MT = M, we may thus assume without
loss of generality that either CM = 0 or CM = C.

Case I. CM = 0. We first show that Tor?(A, R/M) = 0.

According to Proposition 9, we may assume that A is an R-sub-
module of a nonsingular right T-module B. The natural map 7@, M —
T®: R— T is injective because T, is projective; hence in view of
the condition TM = T we see that T@z M — T is an isomorphism.
Thus ATQ@,T@.M—ATQ,T is an isomorphism; equivalently,
AT @z M — AT is an isomorphism.

Inasmuch as the natural map R@Q. M —>T @z M — T is injective,
R@®.M—T@:M must be injective. In light of the projectivity of
T:, we obtain from this that TorZ? (T/R, M) = 0. Now since AT/A is
isomorphic to a summand of a direct sum of copies of T/R, we must
have Tor?(AT/A, M) = 0. Therefore, the map AQ,M— ATQ.M— AT
is injective, hence A®Qr M— AQ; R is injective. Thus Tor? (4, R/M)=0.

Now consider any short exact sequence K:0—C—B—A—0.
Since Torf (4, R/M) = 0, we obtain another exact sequence E*: 0 —
C— B/BM — A/JAM — 0. The sequence E* splits because R/M is a
semisimple ring, hence E splits.

Case 1I. CM = C. Here C = P/J for some direct sum P of copies
of M and some R-submodule J of P. To prove that Ext} (4, C) = 0,
it suffices to show that Ext}; (4, P/JM) = 0 and Ext} (4, J/JM) = 0.
Inasmuch as M e &“(R), J/JM is a singular right R-module. Choos-
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ing an exact sequence 0 — K — F — A — 0 with F, free, we have
Exts (A, J/JM) = Ext, (K, J/JM). Since Z,.(R) =0, F and thus K
are nonsingular; hence Ext (K,J/JM) =0 by Case 1. Therefore,
Ext% (4, J/JM) = 0.

All that remains is to show that Ext} (4, D) =0, where D =
P/JM. Inasmuch as P is a right T-module and JM is a T-submodule
of P, D is a right T-module. Since P/J and J/JM are both singular
R-modules, it follows from the discussion after Proposition 8 that D
must be singular. Thus from Propositions 7 and 9 we obtain that
D, is singular and (A @ T), is nonsingular.

Given any exact sequence 0 — D-—B-— A —0, we get a com-
mutative diagram with exact rows as follows:

0 D B A 0

= 1

0—>D@pT—> BT — A®,T— 0.

The bottom row splits because T is a splitting ring; hence the top
row splits. Therefore, Ext} (4, D) = 0.

One special case of Theorem 10 has been proved in [4]. The
authors start with a left and right principal ideal domain C such
that C is a simple ring but not a division ring, and such that every
simple right C-module is injective. (Examples of such rings are con-
structed in [2].) Then they choose a maximal right ideal M of C and
prove that the idealizer I of M in C is a splitting ring [Lemma 2].

It is not hard to prove that every singular right C-module is
semisimple, and hence that every singular right C-module is injective.
(Details may be found in [6, Chapter 3].) Thus C is certainly a
splitting ring. The right ideal M is nonzero because C is not a divi-
sion ring; hence from the simplicity of C we obtain CM = C. Also,
C is a right Ore domain, from which it follows easily that M is an
essential right ideal of C. Thus it now also follows from Theorem
10 that I is a splitting ring.
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