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O-2-TRANSITIVE ORDERED PERMUTATION GROUPS

STEPHEN H. MCCLEARY

The group of all automorphisms of a chain Ω forms a
lattice-ordered group A(Ω) under the pointwise order. Let G
be an Z-subgroup of A(Ω) which is o-2-transitive, i.e., for any
β < γ and σ < τ, there exists g 6 G such that βg = σ and γg = τ.
It is shown that G is a complete subgroup of A(Ω) if and
only if G is completely distributive if and only if G contains
an element Φ 1 of bounded support. There is a discussion of
the pathological groups in which these conditions are absent.

I* The dichotomy among O'2-transitive groups• The group
A(Ω) or order-preserving permutations (automorphisms) of a chain Ω
becomes a lattice-ordered group (i-group) when ordered pointwise, i.e.,
f<Zgif and only if and only if βf <; βg for all βeΩ. We assume
throughout this paper that (G, Ω) is an Z-permutation group, i.e., that G
is an ^-subgroup of A(Ω) (simultaneously a subgroup and a sublattice).

Let Ω be the completion by Dedekind cuts (without end points)
of Ω. Each g e G can be extended uniquely to an order-preserving
permutation (o-permutation) of Ω, which will also be denoted by g.
For ώeΩ, let Gz be the stabilizer subgroup {g e G \ ώg = ώ}. G- is
a prime subgroup of G (i.e., a convex Z-subgroup of G such that
9i Λ g2 = h with gl9 g2 G G, implies gx e Grz or g2 e Gz) If G is transi-
tive on Ω, then of course all (?α's (a e Ω) are conjugate in G.

The author showed in [5, Theorem 7] that for a transitive i-sub-
group G of A(Ω), the following are equivalent:

(1) Ga is a closed subgroup of G for one (hence every) a e Ω,
i.e., if 0 = VieiQi with each ^ e (?α, then ge Ga.

(2) G is a complete subgroup of A(Ω), i.e., if in G, g = Vίeî *>
then also in 4̂.(42), # = yieIgi9

( 3) Sups m G are pointwise, i.e., if # = y ί e / ί̂ with each ^ e G,
then for each βeΩ, βg is the sup in Ω of {/9̂  | ΐ e /}.

Moreover, it was shown in [5, Corollary 15] that in the presence
of these conditions, we have

(4) G is a completely distributive l-group, i.e., AieiVkeKQik =
V/ex' Aiei flfi/{4) for any collection {gik \ i e I, k e K} of G for which the
indicated sups and infs exist.

The distributive radical D(G) is the intersection of the closed
prime subgroups of G [1, Theorem 3.4]. D(G) — {1} iff G is completely
distributive [1, Corollary 3.8]; and at the opposite extreme, D(G) = G
iff G has no closed prime subgroups Φ G.
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The support Supp (k) of & e G means {ω eΩ \ ωk Φ ω}; it is bounded
if there exist β,ΊeΩ such that β < Supp (k) < 7 (i.e., β < σ < 7 f or
all σeSupp(fe)). It is well known (see, for example, the proof of [2,
Theorem 6]) that the elements of bounded support in an o-2-transitive
Z-permutation group G form an Z-ideal L of G which is contained in
all Z-ideals Φ {1}. If G contains no element Φ 1 of bounded support,
so that L — {1}, then with an eye on the next theorem, we shall say
that G is a pathologically o-2-transitive group.

MAIN THEOREM 1. Suppose that (G, Ω) is an o-2-transitive l-per-
mutation group. Then conditions (1), (2), (3), and (4) are all equiva-
lent, and they fail if and only if G is pathological. Moreover, in
the pathological case, G has no proper closed prime subgroups, so
that the distributive radical D(G) — G.

Proof. First, assume that G has an element Φ 1 of bounded
support. Then since G is o-2-transitive, given any nondegenerate
interval A of Ω, G has an element Φ 1 with support a subset of Δ.
Now suppose g = yi&Igi, with l<geG\Ga and each g{eGa. Pick
1 > he G such that Supp (h) S (otg*1, cc), where the usual notation is
used for intervals of Ω. Then for each i e /, gt ^ hg < g (since when
η e Supp (h), ηgi < a < ahg), a contradiction. Therefore, Ga is closed,
and the other conditions follow.

Now assume that G lacks elements Φ 1 of bounded support. We
can express an arbitrary l<geG as \fieigi with each ^ e G α , as
follows: For each β£ [ag~\ a], we have either a < β <̂  βg, or else
β ^ βg < <%> so we may use o-2-transitivity to pick gβ e Ga such that
βΰβ = βg Now g = V (9β A g), for if gβ A g ^ h < g for each β, then
Supp {h~ιg) g [ag~\ a], violating the hypothesis, since for β& [ag~\ a],
we have βg = β(gβ A g) ^ βh ^ βg. Since each gβ A ge Ga, Ga is not
closed in G.

It remains only to show that in the pathological case, G contains
no proper closed prime subgroup, for then D(G) = G and G is not
completely distributive. Suppose P is such a subgroup. In [6, Corol-
lary 4], it is shown that every closed convex Z-subgroup of an Z-per-
mutation group (G, Ω) must be f\{G^\ώe, Δ) for some J g β . (In
[6], it is assumed that G is a complete subgroup of A(Ω), so that
the G ĵ's will be closed, but no other use is made of completeness.)
But in fact the G '̂s are closed, for P is closed, and in any Z-group,
a prime subgroup containing a closed prime is itself closed [1, Lemma
3.3]. But it was shown above that no Ga,aeΩ, is closed; and in
view of the following lemma, the proof also applies to Gz, <δ e Ω.

LEMMA 2. Let (G, Ω) be an o-2-transίtive l-permutation group.
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Let ώeΩ, and let β, ye Ω with either ώ < β < 7, or β < 7 < ώ.
Then there exists g e G- such that βg — 7.

Proof. Suppose that ώ < β < 7, and pick α e ί2 such that ά> <
a < /S < 7. Use o-2-transitivity to pick k e G such that ak < ώ and
βfc = 7, and take g to be k V 1. The other case is similar. This
concludes the proofs of the lemma and the theorem.

Incidentally, conditions (1), (2), (3), and (4) still make sense when
G is any subgroup (not necessarily an Z-subgroup) of A(Ω); and if G
is o-2-transitive and contains an element Φ 1 of bounded support,
these conditions hold. (The first paragraph of the proof of Theorem
1 can easily be adapted to show that sups are pointwise. From this
(2) and (1) follow as in [5], and (2) implies (4).)

If ωg Φ ω, {7 e Ω \ ωg~n < 7 < ωgn for some integer n) is called
an interval of support of g; and in [5], G is said to be depressible
if for every g e G and every interval of support Δ of g, there exists
k e G such that ωk = ωg if ω e Δ, but cok — ω if ω £ Δ. Convex
Z-subgroups of A(Ω) are automatically depressible.

PROPOSITION 3. Depressible o-2-transitive l-permutation groups
are never pathological.

Proof. The following lemma establishes the existence of an ele-
ment having a bounded interval of support, and depressibility does
the rest.

LEMMA 4. Let (G, Ω) be an o-2-transitive l-permutation group.
Then, for every positive integer n, (G, Ω) is o-n-transitive, i.e., if
βγ < < βn and r)\ < < 7W, there exists g e G such that β{g = j i 9

i = 1, . . . , n.

Proof. Given βλ < < βn and 7L < < 7Λ, we may suppose
by induction that there exists he G such that βji — 7$, i ~ 1, , n — 1.
If βnh J> 7W, we use o-2-transitivity to pick k e G such that βjc — 7%_1

and βjτ = 7n. Now β^h Λ k) = Ίh i = 1, , n. If βji < 7Λ, a similar
argument works.

2* Pathologically o-2-transitive groups* The following example
of a pathological group was given by Holland in [3, p. 433]. Let Ω
be the reals and let G be the Z-subgroup of A(Ω) consisting of those
o-permutations g of Ω for which there exists a positive integer n — ng

such that (ω + n)g ~ ωg + n for all ω e Ω. Lloyd [4, p. 399] used
very special properties of this example to show that G is not com-
pletely distributive (cf. Theorem 1), but is ί-simple (has no proper
Z-ideals). Are all pathological groups ί-simple? The author has been
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unable to settle this question, but attempts to construct additional
examples of pathological groups seem to lead inevitably to some sort
of periodicity sufficient to guarantee ί-simplicity, as in the following
modification of Holland's example.1

As in that example, let Ω be the reals. Now let H be the l-
subgroup of A(Ω) consisting of those o-permutations h of Ω having
the property that for all ω e Ω, there exists a positive integer n = nht(ΰ

such that (ω + qn)h = ωh + qn for all integers q. (For definiteness,
let nhi(ύ be the least positive integer having this property.) H con-
tains the previous group G and is also pathologically o-2-transitive.
H and G are not isomorphic as ^-groups, for there exists 1 < zeG
(defined by ωz — ω + 1) such that every g e G commutes with some
zp, p > 0, whereas it can be shown that H contains no such element z.

Of course, still other examples can be obtained by letting Ω be
the rationals (or other appropriate subgroup of the reals) and proceed-
ing in either of the two ways already mentioned.

Lloyd's proof of the ^-simplicity of the first example does not
apply to the modification. However, all of the above examples can
be shown to be ϊ-simple by the following fairly similar argument,
which will be phrased in terms of the modified group H. Let {1} Φ L
be an Z-ideal of H. Since for every 1 < h e H, {coh — a) | ω e Ω) has
an upper bound, namely Oh — 0 + nh}09 we shall have L — H provided
there exists ε > 0 such that the translation ω —> ω + ε is exceeded
by some g e L. Now pick 1 < k e L and a e Ω such that ak > a. Let
t be the translation ω —> ω + (ak — a), and let p be an integer such
that p(ak — a) > nkfCX. Let kx — k, let fc< = ^k^t (ί = 2, , p), and
let g = fcx kp € L. The reader can verify that (a + qnk>a)g = ag +
qnkiU for all integers q, so that ng,a ^ nk>a. Now a + ng>a ^ a + nk>a <
ag. Hence g exceeds the translation ω —> ω + ε, where ε = ag —
(a + ngj.

As mentioned above, it may be the case that all pathologically
o-2-transitive groups are ί-simple. At any rate, any proper Z-ideal must
itself be a pathologically o-2-transitive group, as we proceed to prove.

An o-block of a transitive ί-permutation group {G, Ω) is a nonempty
convex subset Δ of Ω having the property that for any g e G, either
Ag = Δ or Δg does not meet Δ. The o-block system Δ determined by
Δ is the set of translates Δg (g e (?), a partition of Ω. If Δ contains
more than one point and Δ Φ Ω, I is proper. G is o-prίmitive if it
has no proper o-block systems.

LEMMA 5. Let (G, Ω) be a transitive l-permutation group, and
let L be a proper l-ίdeal of G which is intransitive on Ω. Then the

1 Andrew Glass has recently shown that pathological groups need not be Z-simple,
and need not be periodic in any sense.
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orbits of L form a proper o-block system of G.

Proof. The analogous statement for nonordered permutation
groups is precisely Proposition 7.1 of [7]. Here the fact that L is
an Z-ideal forces the blocks to be convex.

THEOREM 6. Let (G, Ω) be a {pathologically) o-2-transitive l-per-
mutation group, and let {1} Φ L be an l-ideal of G. Then (L, Ω) is
also (pathologically) o-2-transitive.

Proof, o-2-transitive groups are certainly o-primitive, so by the
lemma, L must be transitive on Ω. Let a < β < 7, all in Ω. Pick
1 S 9 e Ga such that βg = 7, and pick I <L ke L such that βk ̂  7.
Then l^kAg^keL, so k Λ g £ La, and β(k /\ g) = y. Hence
{β e Ω I β > a} is all one orbit of Ga, from which it follows easily
that L is o-2-transitive. Certainly if G contains no element Φ 1 of
bounded support, neither does L.
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