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ON THE STRUCTURE OF FINITE RINGS II

ROBERT S. WILSON

In this paper we develop a structure theory for modules
and bimodules over complete matrix rings over Galois rings,
and we use this module theory to study the additive structure
of the components of a Peirce decomposition of a general finite
ring.

We recall that any finite ring is the direct sum of rings of prime
power characteristic. This follows from noticing that when one
decomposes the additive group of a finite ring into its primary com-
ponents, the components are ideals of prime power characteristic
(cf. [4]). We thus restrict ourselves to considering rings of prime
power characteristic without loss of generality up to direct sum
formation.

We next recall the definition of a Galois ring. Let k&, » be positive
integers and p be a prime integer. The Galois ring of characteristic
p* and order p*”is defined to be Z[x]/(v*, f(x)) [8], [1O] where Z denotes
the rational integers and f(x)e Z[x] is monic of degree » and irre-
ducible. A Galois ring is uniquely determined up to isomorphism by
the integers p, k, and », and we shall denote the Galois ring of
characteristic p* and order »*” by G(k, r). The prime p will generally
be clear from context. Note that G(1, ) = GF(p") and G(k, 1) = Z/(p").

If R is a finite ring of characteristic p* which contains a 1 then
R contains a Galois ring G(k, r) for some r which contains the 1 of
R. Indeed Z/(p*)-1 will always be such a ring. Therefore, any finite
ring of characteristic p* is thus a faithful left and right G(k, r)-module
for some 7.

We now seek to develop a module theory for matrix rings over
Galois rings. In a sense, the theory is already developed in that a
matrix ring over a Galois ring is Morita equivalent to a Galois ring
and hence the categories of modules will be category isomorphic, and
a module and bimodule theory already is known for modules over
Galois rings [11]. However, we seek slightly more information than
is given by the category isomorphism from Morita theory. In what
follows @ will denote the matrix ring M, (G(k, 7)).

PROPOSITION 1. Let M be a finitely generated left Q-module. Then
M is a direct sum of cyclic left Q-modules.

Proof. Every finitely generated left G(k, r)-module is a direct sum
of cyeclic left G(k, r)-modules by Corollary 2 to Proposition 1.1 of [11].
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Therefore, by Proposition 2.7 of [9] every finitely generated left
@-module is a direct sum of cyclic @-modules.

We have thus reduced the study of @-modules to the study of
cyclic @-modules. Let Qx be a cyclic left @-module. Consider the
map q¢+— qx from @ to Qx. This map is clearly a @-module homo-
morphism and thus has a kernel L which is a left ideal of Q. We
are thus led to consider the left ideals of quasi-simple rings.

PROPOSITION 2. For j =1, ---, n, let ¢; denote the matriz whose
only nonzero entry is a 1 in the jjth position. Let L be a left ideal in
Q. Then L is isomorphic to >.'-, p'iQe; for some choice of imtegers
014, -+, % <k and some t < n.

Proof. The proposition boils down to showing that L is isomorphic
to a sum of p‘th multiples of columns of M,(G(k, r)). Let M denote
the set of all top rows of matrices in L. M is then, in a natural way
a left G(k, r)-module and is thus isomorphic to a direct sum of cyclic
left G(k, r)-modules. Say M = >, G(k, r)z; where the x,’s are
n-tuples over G(k, r). In fact they are the top rows of certain matrices
in L. Note that, since M is contained in a G(k, r)-module which is
free on n generators, we must conclude that ¢ < »n. Let a; be the
smallest positive integer such that p%x; = 0. Note that 0 < a; <k
for all j =1, -..,t. Now any left ideal of M,(G(k, r)) is completely
determined by its set of top rows, because to multiply on the left
by elements of M,(G(k, r)) is to perform operations on the rows of
matrices in L. Thus it follows that L = 3i_, p* *iQe;, since the set
of top rows of the ideal on the right is isomorphic to the set of top
rows of L.

PROPOSITION 3. Any finitely generated left Q-module 1s isomorphic
to a direct sum of p'th multiples of colummns of M, (G(k, r)). Moreover,
any finitely generated indecomposable left Q-module 1s isomorphic to
a p’th multiple of a column of M, (G(k, r)).

Proof. From Proposition 1 it suffices to prove the result for cyclic
left modules. As noted above a cyclic module is isomorphic to Q/L
for some left ideal L. Apply Proposition 2 and let L = 3, p'iQe;
where ¢, is the element of @ corresponding to the matrix in M, (G(k, 7))
which has a 1 in the #:th position and 0’s elsewhere. Now 0 < j,,
coe, Jn =k so define M = 32, p*¥iQe,. It is easy to see that M = Q/L,
and Qe; is isomorphic to a column in M, (G(k, 7)).

To see that any finitely generated indecomposable left module is
isomorphic to a p’th multiple of a column of M, (G(k, 7)), let M be a
finitely generated indecomposable left @-module. Then being finitely



ON THE STRUCTURE OF FINITE RINGS II 319

generated it is the sum of a finite number of modules isomorphic to
p’th multiples of columns of M,(G(k, r)). But clearly any column of
M, (G(k, r)) is indecomposable. Therefore, applying the Krull-Schmidt
theorem we conclude that the decomposition of M as a sum of pith
multiples of columns of M,(G(k, r)) consists of one p'th column of
M, (G(k, r)) and we are done.

We next turn our attention to bimodules over matrix rings over
Galois rings. Let Q,, @, be two such rings. If M is a (Q,, @,)-module
then it is a left Q, @, Q:*-module where Q37 is a ring which has the
same additive group as @, but in which multiplication is defined by
a-b = ba, the product on the right being taken in @,. But @, is a
matrix ring over a commutative ring and matrix rings over commuta-
tive rings are anti-isomorphic to themselves via the transpose map.

We now consider the tensor product of matrix rings over Galois
rings.

PrOPOSITION 4. Let Q, = M, (G(k,, 1)), Q. = M,,(G(k,, 7,)). Let
d = ged {r, r,}, k = min {k, k,}, m = lem {r,, 7,}.
Then

d
Ql ®Z Qz = ;. Mnlnz(G(ky m)) .
Proof. In order to prune the hanging gardens of subscripts in
what follows we shall denote Z/(p*) by K. We first note that
M, (G(k,, 7)) @z M, (G(k,, 7)) = M, (G(k, 7)) @x M, (G(k, 1)) .
Thus

QQ:Q: = M, (G, 1)) @x M,,(G(k, 1))
= M, (K) Qx Gk, 1) @x G(k, 7)) @« M,(K)

= M,,(K) @x 3 Gk, m) @ M, (K)

(by Proposition 1.2 of [11])

n

Gk, m) @x M, (K) @« M, ,(K))

~

Il

S (65, m) @ M, n ()
= 5 M,,.(G(k, m) .

We are now able to obtain a description of (Q,, @,)-modules where
@, and @, are matrix rings over Galois rings.
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PROPOSITION 5. Let Q, = M, (G(k, 7)), Q. = M,,(G(k,, 72)) and
k =min {k, k,}, m = lem {r, r}. M 1is a (Q, Q.)-module. Then M is
of the form

M= 3, p' M, Gk, m))
where M, . (G(k, m)) denotes the set of n, X n, matrices over (G(k, m)).

Proof. It is instructive to first ask how M, (G(k, r,)) acts as a
ring of left operators on M, ,..(G(k, m)) and how M, (G(k, r;) acts as
a ring of right operators on M, , (G(k, m)). Well, since

1272

Gk, 1) @7 Gl ) = 3 G(k, m)

where d = ged {r,, r,} by Proposition 1.2 of [11] it follows that G(k,, )
acts as a ring of left operators and that G(k, r,) acts as a ring of
right operators on G(k, m). We can thus impose a (Q, @.)-module
structure on M, ,,.,(G(k, m)) by defining

[l = | 3 aubs |

it [a.)] € M, (G(ki, 7)), [bi]1 € M,,,n(G(k, m)) and

1272

[Ballea] = | 3 buces |

if [b;] € M, ,.(G(k, m)) and [c;;] € M, (G(k,, 7).

Now let M be a (@, @,)-module. Then M can be considered as
a @ Q®;Q-module and as Q) = @, it can be considered as a left
Q. @, Q,-module. Let e, .-+, ¢, be a complete set of orthogonal
primitive central idempotents for 3¢ M, ,(G(k, m)). Then since
e+ o +e=1L,M=1M=(e, + --- + e)M =e,M + --- + ¢,M and
this sum is direct since the ¢, are orthogonal idempotents. Moreover,
each ¢, M is a left M, ,,(G(k, m))-module. We then conclude that M
is isomorphic to a direct sum of p’th multiples of columns of the com-
ponent matrices 3¢ M, .,(G(k, m)).

It thus suffices to show that a column of a component matrix in
St M, .Gk, m)) = Q, ®, Q" is isomorphic to M, . (G(k, m)) as a
(@, @)-module. We first note the isomorphism from M, (G(k,, 7)) @
M, (G(k,, r,)) into

S Moo (GO, 1) = Mo (37 G, m)) = M, G, 7) @, (Gl 72)

is defined by [a:;] ® [b,,] —
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@ @by o a0, ® b'nzl Wyny &by - Oin, ® bnzl

ay & bmz’ ey ® bnznz ter Qg ® b1n2 s Qg ® bn2n2

(L2 ® bll 2! ® bn21 (129 ® bll R 2 ® bn21

a’nll ® bl'nl' A a"nll ® b'nz'nz a/nl'nl ® b1n2° M a/nl'nl ® bnznz

One can check by straightforward computation that a column in this
matrix ring, i.e., something of the form

a,; @ by,
alj ® b?’ﬂz

a"ﬂlj @ bpl

Uy & Dy,

is isomorphic to the matrix whose igth entry is a;; ® b,, as a (@, Q,)-
module. But

Q5 ® bm

@y 5 ® bﬂmz
a ;€ Gk, 1), b,y € Gky, 1)
a”lj ® bz)l

anlj ® bzmz

has a decomposition as a sum of indecomposable modules as a
direct sum of d columns of M, .(G(k, m)) and the (Q, Q,)-module
M, .Gk, r.)) @, (G(k, 7)) which is isomorphic to A has a decompo-
sition as a sum of indecomposable (Q,, @,)-modules as a direct sum of
d copies of M, .,(G(k, r)). The Krull-Schmidt theorem tells us then
that ¢ column of a component matrix in 3¢ M, .,(G(k, m)) is iso-
morphic as a (@, @,)-module to M, ., (G(k, m)).

We now apply these results to the study of the additive structure
of an arbitrary finite ring. But in order to do this we must first
obtain the existence of a subring of our ring, which is a direct sum
of matrix rings over Galois rings and which contains all of the
idempotents. The existence of such a subring and its uniqueness up
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to inner automorphism follows directly from Theorem 33 of [1] which
was viewed by Azumaya as a generalization of the Wedderburn-
Malcev theorem [3; §72.19]. In addition Clark [2] recently proved
the existence of such a subring of a finite ring using elementary
methods. However, in the case of a finite ring more can be said
about this subring than existence and uniqueness up to inner auto-
morphism. Specifically we have:

PROPOSITION 6. Let R be a finite ring with 1 of characteristic
»* and radical J. Then R contains a subring @ isomorphic to a
direct sum of matrixz rings over Galois rings such that Q/pQ = R/J
and a (Q, Q)-submodule M of J such that R = Q + M with Q N M = {0}.

REMARK. Once we have the existence of @ it is immediate that
Q is a direct summand of R when R is considered either as a left
or a right @-module because Q is quasi-Frobenius. However, it does
not seem immediately obvious that a complementary left @ direct
summand will be a right @-module or that any complementary module
can be chosen to be contained in J.

Proof of Proposition 6. Suppose R/J = >, M, (GF(p™)) and let
¢; be the multiplicative identity of the simple component of R/J
isomorphic to M, (GF(p™)). Thene, ---, e, is a finite set of orthogonal
idempotents in R/J. Let e, ---, ¢, be orthogonal idempotents of R
such that e¢; + J = ¢;, and such that ¢, + --- + ¢, = 1 (Proposition 5
on p. 54 of [7]). Consider the Peirce decomposition of R with respect
to this set of orthogonal idempotents.

R = ﬁ‘,eiRei + g&]etRej .
i=1 =y
As is easy to check each ¢, Re; is a left >,'™, ¢;Re,-module and a right
S, e;Re,-module so this is a (3, e, Re;,, >\, e,Re,)-module direct sum
decomposition of B. Now, as in the proof of Theorem 2 on p. 56 of
[7] the e¢,Re; are primary rings which annihilate each other in pairs
and for all 7 = j ¢,Re; cJ. Since each ¢,Re; is primary, again using
Theorem 1 of p. 56 of [7] we have that each e¢;Re; is isomorphic to
a complete matrix ring over a completely primary ring C,, ¢,Re,/e,Je; =
M, (GF(p™)) so by lifting idempotents again we conclude that ¢,Re, =
M,(C)). Let J; be the radical of C;, with C./J; = GF(p™), and the
characteristic of C; be p*. Then by Theorem 8 of [10] we have
that C; contains a subring isomorphic to G(k;, r;), we define
Q= > M,(G(k;, r)). Now by Proposition 2.2 of [11] each C; con-
tains a (G(k;, ), (G(k,, r;))-submodule N; with N;c J; such that C; =
G(k;, ) + N;.  Thus e;Re, = M, (C)) = M, (G, r:)) + M, (N;) with
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M, (N) a (M, Gk 7)), M, (G(k,, r;))-submodule of M, (C,). Since the
e,Re; annihilate each other in pairs we conclude that each M, (N)) is a
(Q,Q)-submodule. Now eache,Re;isa (3., e.Re,, >, e Re;)-submodule
so it is a fortiori a (Q, @)-submodule, and we have the following
(Q, Q)-module direct sum decomposition.

R =Q+ 3 M N)+ 3 eRe,

with M= 37, M, (N,) +X..;e.Re;  J. Moreover, @= 3%, M, (G(k, 1))
and pQ = >, Mni(pG(kiy 7"z'))- Hence

Q/pQ = 3 M, (G(k, 7)) | 3 M, (pG(E, 7))
= 3\ M, Gl 7)/pG Uk, 7))
= 3\ M, (GF(p) = RJJ .

In the classical Wedderburn-Malcev theorem we have R =S + J
where S is semi-simple and SN J = {0}. The question arises: in the
decomposition we obtained, B = Q + M can we take M = J? Well
McJ so surely R =@ + J. However, one can see that @ N J = pQ
and so if @ N J = (0) then the characteristic of @, hence of R is p,
since @ contains the multiplicative identity of R. So we ask instead,
can we assume that M is an ideal of R, or at least a subring? First
we note that since R =Q + M and M is a (@, Q)-submodule of R,
that M will be a two-sided ideal of R if and only if it is a subring
of R. If the characteristic of R is p then R is an algebra over the
field Z/(p), and since any finite extension of a finite field is a separable
extension, the hypotheses of the classical Wedderburn-Malcev theorem
are satisfied and the answer is yes. However, in general the answer
is no, as is shown by the following counterexample. Let

a b
R = {[ }; MJ(Z/4)|a, b, ¢, dc Z/(4)} .
2¢ d
One can check that R is a completely primary finite ring with radical

2a b
J = {[20 2dJ€ MAZ/(4) |a, b, ¢, d e Z/(4)} .

In this ring we can take

0
Q= {B‘ }e M(Z)4) | ae Z/(4>}
a

and for all invertible xe¢ R 27'Qv = @. So M is a direct complement
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of Q, McJ so every element of M is of the form

|:2a b:I
2 2d | "
01

R
[2 0}:

so there must be some element of M of the form

[Zal]
2 2a

for some ac Z/(4). But then

2a 1 7 20
[ 2 Zajl - [o 2}€Q
and we conclude that M is not a subring.

Finally, we conclude with remarks on the additive structure of
general finite rings of characteristic p*. Let R be a finite ring of
characteristic p*.

Let J be the radical of R. Lift the multiplicative identity of
R/J to an idempotent ec R. (If R = J then we take ¢ = 0.) Then
eRe is a finite ring of characteristic p’ for some j < k and with a
multiplicative identity. So we apply Proposition 6 to eRe and obtain
a subring Q and a (Q, Q)-submodule N ceJe which satisfy the proper-
ties of Proposition 6. We let M, = {ea — eacc R |ac R}, M, = {ae —
eaec RlacR} and R, ={a —ae —ea + eaec R|ac R}. Then R=
eRe + M, + M, + R, is an (eRe, eRe)-module direct sum decomposition
hence a fortior: a (@, Q)-module decomposition of R. We consider R,
as a (Z/(p"), Z/(p*))-module, M, as a right Z/(p*)-module and M, as a
left Z/(p*)-module via the module structures they inherit as additive
subgroups of a ring of characteristic p*. We then let @ = Q@ + Z/(»*)
and define a (Q, @)-module structure on R by (g, 2)(r, + m, + m, + 7,) =
qr, + qm, + z2m, + zr, and (r, + m, + m, + r,)(q, ) = .9 + M,z + M9 +
1,2 Where qe @, ze Z/(p*), r,c eRe, m, e M,, m,c M,, and r,€ E,. Then
the decomposition R = eRe + M, + M, + R, is a (@, @)-module direct
sum decomposition, M, is a (Q, Z/(p*))-module M, is a (Z/(p"), @)-module
and R, is a nilpotent subring which is also a (Z/(p"), Z/(p"))-submodule.
If ¢eRe = Q + N is the decomposition given by Proposition 6 then if
we define N = N + M, + M, + R, then R = Q + N is a (@, @)-module

di_regt sum decomposition of R into a quasi-semi-simple ring and a
(Q, Q)-submodule of J.

Now
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We thus have a Peirce decomposition of a general finite ring of
characteristic p*

R=3eRe + S eRe; + 3 (1~ oRe,

i#j

+ i:‘,e;R(l —o)+ (1 —eR1—e),

where ¢, -+, ¢, are a complete set of orthogonal idempotents which
are central modulo the radical, and where ¢, + --- + ¢, =e¢. The
¢,Re; are matrix rings over completely primary finite rings and com-
pletely primary finite rings were studied in § 3 of [11]. If the com-
pletely primary finite rings of e,Re, is C, and its radical is J, with
C./J; = GF(p™) and the characteristic of C; is p* and e,Re, = M, (C),
then e, Re; is a (M, (G)(k,, .)), M, (G(kj, r;))-module, and the structure
of such modules was studied in Propositions 1-5. Each (1 — ¢)Re, is
a right M, (G(k,, r,))-module and each e, R(1 — e) is a left M, (G(k,, .))-
module and a structure theory for such modules was also developed
in Propositions 1-5. Finally (1 — ¢)R(1 — ¢) is a nilpotent finite ring
and nilpotent finite rings were also studied in § 3 of [11].

NoTeE. I am deeply indebted to Prof. B. R. McDonald for his
many detailed suggestions in regard to these and other results.
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