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ON DEFINING A SPACE BY A WEAK BASE

FRANK SIWIEC

ArhangeΓskii has defined the concepts of a weak base
and a ^-first countable space (= #/-axiom of countability =
weak first axiom of countability). Here a (/-second countable
space and a gr-metrizable space are defined and discussed, in
particular in relation to metrizability.

We wish to discuss a means of defining topological spaces which
may deserve to be better known. We begin with a slight modification
of a definition due to ArhangeΓskii [4, p. 129].

DEFINITION 1.1. For a topological space X and a point x of X,
a collection Tx of subsets of X is called a collection of weak neigh-
borhoods of x if each member of Tx contains x, for any two members
of Tx their intersection is also a member of Tx, and the following
is true: Letting & — (J {Tx \ xe X}, & is a weak base for X if a
set U is open in X if and only if for every point x in U there exists
a B 6 Tx such that B c U.

1.2. It is clear that any set I m a y be topologized by this natural
method. To illustrate, we consider three known examples of spaces
in which the topology is defined in this manner. Let X be the plane,
and for each point x of X, we now define the collection Tx for each
of these three examples:

(a) Tx consists of all sets which form a "plus at x", namely,
sets which are the union of a horizontal open interval and a vertical
open interval each of which contains the point x. (This example of
J. Novak [27] may have its topology defined in some interesting
alternative manners. See [1, Example 2], [3, p. 30], and [22].)

(b) Tx consists of all sets "radial at x", namely, sets which contain
a line segment through x in every direction. (This is an example
of Williams in [13].)

(c) Tx = {Vn(x) I n = 1, 2, •}, where Vn(x) is the translation of
VJO) by x, and Vn(0) is that subset of the open 1/n disc with center
at the origin which is obtained by removing all points of the open
second and fourth quadrants. (This is an example of Meyer in [21,
3.10].)

Example (c) is immediately seen to be a #-first countable space
in the sense of the following definition also due to ArhangeΓskii [4,
p. 129]. The reader may also notice that example (a) is a #-first
countable space, while example (b) is not.
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DEFINITION 1.3. A space X is g-first countable (this is our
terminology; ArhangeFskii's is the weak first axiom of countability
and the #/-axiom of countability) if its topology can be given by a
weak base ^ = \J {Tx\xe X} where each Tx is a countable collec-
tion.

1.4. A first countable space is indeed a <?-first countable space.
We now show that every (/-first countable space is a sequential space
in the sense of Franklin [11]. By definition, a space X is sequential
if every sequentially open set is open, where a set U is said to be
sequentially open if every sequence converging to a point in U is
eventually in U. Now let X be a #-first countable space and let U
be a sequentially open set in X. Suppose C/is a nonopen set. Then
there exists a point x in U such that no member of Tx is contained
in U. We may assume that Tx = {Bn \ n = 1, 2, } is a decreasing
sequence of sets and for each positive integer i we may choose a
point xύ in Bt — U. Then the sequence {xt} converges to x. For if
G is a neighborhood of x, then there exists a Bte Tx such that
BiCzG. So Xj£ BiCzG for all j *zi. We then have the contradic-
tion that {csj converges to a point in Z7 and the sequence is not
eventually in U.

Now we define two related concepts.

DEFINITION 1.5. A space X is gsecond countable if for each
positive integer n there exists a subset Bn of X and corresponding
to this subset there also exists a collection &n of (not necessarily
all) pairs {Bnj x) with x being a point of Bn, such that a set 17 is open
in X if and only if for each point x in U there exists a pair (JBW, E)
for which Bn is a subset of £7. A regular space X is g-metrizable
if for each positive integer w there exists a collection ^ of pairs
(B, x) where B is a subset of X and a? is a point of B, such that
(i) each collection {B \ (B, x) e ^n} is locally finite, and (ii) a set U
is open in X if and only if for each point x in £7, there exists a
pair {B, x) in JJ { ^ | n = 1, 2, } for which B (zU.

REMARKS 1.6. ( a ) Of course if one wishes to define a ^-second
countable topology on a set X, two additional properties must be
satisfied: (i) For each point x of X, there must be an n such that
(Bn, x) e &n9 and (ii) if x e X and (Bnι, x) e ^ and (Bn2, x) e ^ 2 , then
there exists n3 such that (Bnii, x) e ^ 3 and B%3 c £%1 Π Bn2. Below,
we will see more ways of forming g-seeond countable and (/-metrizable
spaces.

(b) It may also be of interest to point out that for a regular
space, in particular for a ^-metrizable space, the weak neighborhoods
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of a point may be chosen to be closed sets.
( c ) Example 2.8 which will follow, shows that the words

"locally finite" may not be replaced by the words "closure preserving"
in the definition of a ^-metrizable space without altering the concept.
We do not know whether a (/-metrizable space may be equivalently
defined by using the word "discrete" in place of "locally finite".

1.7. Next we discuss some relations among the concepts. The
Hausdorίf axiom will be assumed in all that follows. Recall that a
space X is symmetrizable (respectively, semi-metrizable) if there
exists a real-valued "distance" function d for X such that (i) for
each x and y in X, d(x, y) = d(y, x) ^ 0 and d(x, y) = 0 if and only
if x = y, and (ii) a set F is closed in X if and only if d(x, F) > 0 for
every x in X — F (respectively, (ii) x e cl F if and only if d(x, F) = 0.)
We may note that condition (ii) for a symmetrizable space may be
restated as follows: For every point x of an open set U there exists
a ball centered at x which is contained in U, and for every nonempty
nonclosed set A there exists a point x in X — A for which d{x, A) = 0.
(It is known that in a symmetrizable space a ball centered at x need
not be a neighborhood of x. For a semi-metrizable space a ball
centered at x is a neighborhood of x, but need not be open.) With
this restatement, one can see that a symmetrizable space is g-ήrst
countable.

1.8. Next we show that a g-metrizable space is symmetrizable.
First, it is clear that a (/-metrizable space is (/-first countable. Second
it is also clear that a <7-metrizable space is a σ-space (namely, a space
with a σ-locally finite network, where a network is a collection &
of sets such that whenever a point x is in an open set G there exists
a ί e £%f such that x e B c G). By Siwiec and Nagata [31], a regular

Frechet > sequential

ί I
first countable > gr-first countable

ί
semi-metrizable • symmetrizable

I 1
metrizable • (/-metrizable • σ-space

!
separable ^ regular and >posmic
metrizable ~~* ̂ -second countable " " * c o s m i c
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σ-space has a cr-discrete network. Then by ArhangeΓskii [4, p. 130,
Theorem 2.8], a g-fίτst countable space with a σ-discrete network is
symmetrizable. (However, we do not know whether a #-metrizable
space satisfies the weak condition of Cauchy. See Proposition 1.18
and Problem 1.19.) We may also note that a regular ^-second
countable space is a cosmic space (namely, a regular space with a
countable network). A space is Frechet [11] if every accumulation
point of a set is the limit of a sequence in the set. As a result, we
have the relations shown in the diagram above.

PROPOSITION 1.9. Each of the classes of spaces listed in the second
column above is closed-hereditary (namely, a closed subspace of a
space having the property also has the property).

THEOREM 1.10. If a space X satisfies
( a ) one of the properties in the second column and is also

Frechet, or
(b) one of the properties in the second column hereditarily,

then X satisfies the corresponding property in the first column.

Proof. We prove that a #-first countable Frechet space is first
countable. This result is stated by ArhangeΓskii [4, p. 129] without
proof. Let B be a weak neighborhood of a point x of a #-first
countable Frechet space X. We will show that B is a neighborhood
of x. Suppose it is not. Then by the Frechet assumption, there is
a sequence {xn} in X — B which converges to x. Then the set U =
X — {x, xlf xz, •••} is open, so that for each p in U, there exists a
Bp in Tp which is contained in U. Letting U' = U U {x}, for each p
in Ur there is then a Bpe Tp such that Bp c U', since if p = x then
Bp = Ba Ur. By the #-first countable assumption, Uf is open in X.
But x is in U', so that we have the contradiction that {xn} does not
converge to x. Thus x is in the interior of B.

It is easily seen, as stated by ArhangeΓskii in [4, p. 131] that
a symmetrizable space is semi-metrizable if it is first countable (or
Frechet).

Finally, if assumption (b) is made, then the space X is heredi-
tarily a sequential space, thus hereditarily a &~space, and thusFrechet
by ArhangeΓskii [5], so that assumption (a) holds. Our proofs are
now complete.

Since the definition of a g-second countable space and especially
that of a #-metrizable space are complicated, it may be difficult in
a particular instance to determine whether a space satisfies these
conditions. Theorem 1.10 has already presented two means of deter-
mining this, and we now present some additional and more useful
means.



ON DEFINING A SPACE BY A WEAK BASE 237

Observation 1.11. A countable space which is ^-first countable
is ^-second countable. Thus, a countable regular space which is (7-first
countable is ^-metrizable.

For the following results we will need several concepts which
generalize first countability (see [29] for a survey of these concepts).
An accessibility space has been characterized as a space X for which
every quotient mapping onto X is a pseudo-open (equivalently,
hereditarily quotient) mapping. A space Xis said to be accumulation
complete if whenever a point x is a cluster point of a sequence in
Xj there is a subsequence which converges to x, or equivalently,
every countable subspace of X is Frechet. A space X has countable
tightness provided that whenever a point x is an accumulation point
of a set F there exists a countable set C in F such that x is an
accumulation point of C. A space X is a k'-space if whenever a
point x is an accumulation point of a set A in X, there exists a
compact set K such that x is an accumulation point of A Π K. A
space X is a q-space if for every point x of X there exists a sequence
{Un{x) \ne N} of neighborhoods of x such that if xn is in Un for each
n, then the sequence {xn} has a cluster point xf. A space X is singly
bi-quasi-k if whenever a point # is an accumulation point of a set F
there exists a g-sequence {An \ n e ΛΓ} in X such that # e cl (JF7 Π A%)
for all n. Here a q-sequence {An \ n e N} of sets is defined as a
decreasing sequence of sets for which there exists a countably compact
set A contained in all An and such that every neighborhood of A
contains some An.

LEMMA 1.12. If a space X has countable tightness and every
countable subspace is singly bi-quasi-k, then X itself is singly bi-
quasi-k.

Proof. Let x be an accumulation point of a set F in X. Then
there exists a countable set C in F such that x is an accumulation
point of C. Let D = C U {x}. Then D is singly bi-quasi-/b. Thus
there exists a g-sequence {An \ne N} in D such that x is a D-accumu-
lation point of C f] An for every n. Thus {An \ne N} is a g-sequence
in X, and & is an accumulation point of C fl 4 , in I for every n.

THEOREM 1.13. A g-metrizable space X is metrizable if X is
also:

( a) Frechet,
( b) accumulation complete,
(c ) every countable subspace of X is Frechet,
( d) every countable subspace of X is a kf-space,
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(e) every countable subspace of X is singly bi-quasi-k,
(f ) q-space,
(g) accessibility space.

Proof. Consider case (g) first. If X is a #-metrizable space then
X is sequential and thus as is well-known, a quotient image of a
metric space under a mapping /. Assuming X to be an accessibility
space, the mapping / is then pseudo-open, so that X is a Frechet
space (being, a pseudo-open image of a metric space). Thus we have
case (a), which was proved in Theorem 1.10. All other cases of this
theorem imply case (e) as may be seen by the reader by checking
this directly or by recalling known results (see [29]). Thus we now
prove case (e). Notice that a #-metrizable space has countable tight-
ness since this concept is weaker than the concept of a sequential
space. By Lemma 1.12, X is then singly bi-quasi-&. But a regular
α-space, in particular a #-metrizable space, is known to have the
property that every point is a countable intersection of closed neigh-
borhoods. The space X having this property and being single bi-
quasi-&, is then necessarily a Frechet space, so that case (a) applies
again.

REMARK 1.14. Clearly Theorem 1.13 holds in a similar version
for other concepts in the second column of the diagram given above.
In particular, a regular (/-second countable space is second countable
if the space satisfies any of the seven conditions of Theorem 1.13.
With some additional assumptions, a like result holds for symmetri-
zability.

We may characterize a (/-metrizable space by using some concepts
of Guthrie, Michael, and O'Meara related to networks. Let us define
these. A k-network & for a space X is a family of subsets of X
such that if U is an open neighborhood of a compact set C, then
there is a finite union R of members of & such that CcRa U.
A collection & of subsets of X is a cs-network for X if whenever
U is an open set which contains a convergent sequence {zn} and also
contains the limit z of the convergent sequence {zn}> then {z, zn,
zn+1, " } c P c U for some n and for some P in &*. A space X is
an ^-space if it is regular and has a ^-locally finite ^-network [28].
A space X is an #Q-space if it is regular and has a countable
^-network [23]. A space X is a cs-o'space if it is regular and has
a ^-locally finite cs-network [16].

The writer is grateful to Dennis Burke for some considerably
useful remarks in the following.
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THEOREM 1.15. The following are equivalent for a space X:
( a ) X is a g-metrizable space,
(b) X is g-first countable and a cs-σ-space.

The following are equivalent for a regular space X: (D. Burke and
J. Guthrie [15]),

( a ) X is g-second countable^
(b) X is g-first countable and an #0-space,
(c ) X is g-first countable and has a countable cs-network.

Proof. We will prove the equivalence of (a) and (b) of the first
statement. The equivalence of the latter three conditions may be
proved in a like manner. We already known that a #-metrizable
space is (/-first countable. We will show that a (/-metrizable space
is a cs-σ-space. Let {zn} be a sequence converging to a point z in
the #-metrizable space X. Let G be an open set containing both the
convergent sequence {zn} and also the limit z. Since Z = {z, zu z2- •}
is a compact metrizable space, Theorem 1.10 shows that every weak
neighborhood of a point in Z is then a neighborhood (in Z) of the
point. Let B be a weak neighborhood of the limit point z, such that
BczG. Then zelnt ZB. Thus there exists an n such that {zn, zn+1,
" } c S . Now let X be a space which is (/-first countable and a
cs-σ-space. Let \J {^n \ n e N} be the σ-locally finite cs-network for
X} and suppose that ^ n c ^ Λ + 1 for every n. Let {Sn(x)\ne N} be
the weak neighborhood base at a point x in X. Let

^ = {(B, x) I Sn(x) c ΰ e ^ } .

We wish to show that the collections ^ n are collections of pairs as
in the definition of a (/-metrizable space. Let U be a set such that
for each point x in U there exists a pair (B, x) e \J {^n \ne N} such
that B c U. Then for each x in U, there exists an n such that
Sn(x) e U. By the definition of a g-first countable space, U is then
an open set. Conversely, let U be an open neighborhood of a point
x in X We wish to show that there exists an integer n and a pair
(J5, x) e &n such that B czU. If not, then for all n, Sn(x) <£ B for all
B in ^ n such that xe B cz U. Thus for each n and for each Be ^
such that xe Bc E7, there exists a point α(?&, B) e Sn(x) - B. The
collection of such x{n, B) is countable and upon being enumerated
converges to x. Since x is in V, there exists an integer j such that
x(l, B) is in U for all x(l, B) chosen above with I ̂ >j. Because X
is a cs-σ-space, there exists an integer k ^ j such that all x(l, B)
chosen above are in some Br of 3^k for I ̂  k, and x is also in B''.
We then have the contradiction that x(k, Bf) is in Br. Thus there
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exists a pair (B, x) as desired, and X is #-metrizable.

Problems 1.16. (a) Is every ^-metrizable space, a normal space?
(b) Is every normal, #-metrizable space also paracompact? (c) Is every
separable, (/-metrizable space, a (/-second countable space? (d) May
a (/-metrizable space be characterized by means of a distance func-
tion? It might be noted that one natural way of attempting to give
such a characterization actually yields a metrizable space. Specifi-
cally, it may be easily seen that if X is a set with a metric d defined
on X x X, then each of the following define a topology on X and the
topologies so defined are equivalent: (i) The collection of all 1/n
balls forms a base, (ii) A point x is in the closure of a set F if and
only if d(x, F) = 0. (iii) A set F is closed if and only if d(x, F)>0
for every x in X - F. (e) ArhangeΓskii in [4, p. 133] has referred
to a symmetric of a symmetrizable space as satisfying condition (K)
if the distance between any two disjoint compact sets is positive.
We have not been able to determine whether the following conditions
for a regular space Xare equivalent: (i) X is a ^-metrizable space,
(ii) X is #-first countable and a es-σ-space, (iii) Xis ^-first countable
and an y^-space, (iv) X is symmetrizable by a symmetric which satisfies
condition (K). Notice that Guthrie in [16] has shown that every
cs-σ-spaces is an ŷ

Regarding mappings, all of which are assumed to be continuous,
we also have some results. A mapping / : X—> Y is a π-mapping if
for each y in Y and each open neighborhood U of y, the distance of
f~ι{y) from X— f~ι(U) is positive. A mapping / : X—> Y is compact
if f~ι{v) is compact for each y s Y.

PROPOSITION 1.17.

(a) (ArhangeΓskii [2]) A quotient π-image of a metric space
is symmetrizable. (See some related results given below.)

(b) A quotient compact image of a second countable space is
g-second countable.

(c ) (D. Burke) A quotient π-image of a separable metric space
is gsecond countable.

Proof. Proof of (b): Let / be a quotient mapping of a second
countable space X onto Y. Let ^ b e a countable base for X which
is closed under finite unions (that is, all finite unions of members of
& are also members of &). For each Bn e ^ let

Then it is easily seen that this is the desired collection in Y. Proof
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of (c): The image is symmetrizable by (a) and an ^0-space by Michael
[23, Prop. 2.1], thus ^-second countable by Theorem 1.15.

PROPOSITION 1.18. (ArhangeFskii, Burke and Stoltenberg, Coban,
Kofner). The following are equivalent:

( a) Y is symmetrizable with a symmetric satisfying the weak
condition of Cauchy (namely, every convergent sequence has a Cauchy
subsequence, equivalently, for each nonclosed set A and for each
ε > 0 there exist points x and y in A such that d(x, y) < ε)1.

(b) Y has a semi-refinement (namely, a sequence { Tn) of (not
necessarily open) covers satisfying the condition that for each point
y in Y and each neighborhood U of y there exists an n such that
St (y, %) c U)2 satisfying the weak condition of Cauchy1.

( c) Y is a quotient π-image of a metric space.

Credits. ArhangeΓskii in [2] showed that (c) implies (a). Kofner
stated the converse in [19, Theorem 11], with his proof being given
in [20, Theorem 4]. Burke and Stoltenberg in [8, Theorem 3.2] proved
the equivalence of a symmetrizable space and a space which has a
semi-refinement3, thus proving the equivalence of (a) and (b). Coban
in [10] claimed to have proved the equivalence of (b') and (c), where
(b') is: Fhas a semi-refinement. Burke and Stoltenberg (in the above
mentioned paper) noticed Coban's claim to be false and gave a
counterexample of a symmetrizable space which does not satisfy (a).
(The same example was also discussed by Kofner in [19].) However,
if one modifies Coban's statement to include the weak condition of
Cauchy, and if one modifies his proof accordingly, then his proof is
correct as given.

Problem 1.19. Is every #-metrizable space a quotient τr-image
(or quotient compact image) of a metric space? Burke has pointed
out that an open compact image of a metric space need not be
0-metrizable. For let Fbe the space of Example B of Bing [6]. Yis
metacompact, developable, and not metrizable, so not gr-metrizable.
But Y is an open compact image of a metric space, being a meta-
compact developable space.

1.20. Now let us consider another application of mappings.

1 The weak condition of Cauchy has been considered by writers in numerous differ-
ent forms. Two formulations are given in statement (a), another, suitable for statement
(b) is: if D is a set for which there exists an n such that St(#, 5^n) Π D = {x} for all
x in D, then D is closed. See Burke [7], Kofner [20, Proposition 3].

2 This is a slight modification of, but equivalent to, Coban's definition [10].
3 They also have another characterization of such a space (Theorem 3.1).
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ArhangePskii in [4, p. 129] has stated the interesting result that
the Morita and Hanai, and Stone theorem is true for a g-first countable
range space, that is, a closed image of a metric space which is #-first
countable is itself metrizable. Though this result may be proved
more directly, we do so by showing that a ^-first countable space
has the following property: If {Fn} is a decreasing sequence of closed
sets, each of which has a point a; as a common accumulation point,
then for each n, there exists a subset An of Fn, closed in X, such
that the union of all of the An is not a closed set. We denote the
weak base at the point x by Tx = {BJx)}, and we fix the index n.
Since Fn — {x} is a nonclosed set, there exists a point p in the comple-
ment of Fn — {x} such that no member of Tp is contained in X —
(Fn — {x}). So for all i, there exists a point xt in Bt(p) Π (Fn — {x}).
Then the sequence of xt converges to p. But since this sequence
is contained in Fn, p e Fn, and p = x. Thus for all n, there exists
a point xn in BJx) n (Fn — {x}). The sequence {xn} converges to x
and xn Φ x for all n. For each n, let itΛ be the singleton {xn}. Then
each An is a closed set contained in Fn, but (J {An \ n = 1, 2, •} =
{#!, a?.,, •••} is not closed.

The property stated above is a slight weakening of a property
of Michael in [25], in particular, it is property 9Λ(b) stated for closed
sets Fn. Michael uses this property to prove a generalization of the
Morita and Hanai, and Stone theorem, but in actuality, this property
for closed sets suffices in Michael's proof. Thus by his Theorem 9.9
and Corollary 9.10, we have the desired result stated below.

PROPOSITION 1.21. Let Y be a closed image of a metric space.
Then Y is metrizable if Y is g-first countable, or more generally,
if the following property is satisfied in Y: if {FJ is a decreasing
sequence of closed subsets of Y each of which has a point y as a
common accumulation point, then for each n, there exists a closed
set An contained in Fn such that the union of all of the An is not
a closed set.

For a somewhat better result and more background on this topic,
see [30] and a forthcoming paper of Michael, Olson, and the writer.

2* In this section we present some examples*

2.1. A space which is regular, countable (thus cosmic), and as
is easily verified, ^-second countable, but is not Frechet, thus not
metrizable: Example 5.1 of Franklin in [12].

2.2. A space which is second countable and thus satisfies the
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condition for a #-metrizable space except for not being regular: Any
nonregular, second countable space.

2.3. A space which is regular and countable (thus cosmic), but
is not sequential, thus not ^-second countable: The example of Arens
given in [18, p. 77 #2E].

2.4. A cosmic, Frechet space which is not first countable, thus
not #-first countable: The space of rational numbers with the integers
identified to a point and the quotient (or identification) topology.

2.5. A space which is compact and Frechet, but not #-first
countable, since it is not first countable: The one-point compactifi-
cation of an uncountable discrete space.

2.6. A regular, hereditarily Lindelof, first countable space which
is not symmetrizable: The half-open interval topology of Sorgenfrey
on the real line.

2.7. A space which is regular, hereditarily Lindelof, and semi-
metrizable, but not a σ-space, thus not (/-metrizable: An example
of Michael (concerning normality of products) [24, the space Y of
Example 1.3].

2.8. A regular space which has a ^-closure preserving base
(namely, an ik^-space in the terminology of Ceder [9]), which is also
cosmic, and semi-metrizable, but not g-metrizable (since it is not
metrizable). Though this space is not ^-metrizable, it does satisfy
the definition of (/-metrizability if the words "locally finite" of the
definition are replaced by the words "closure-preserving": An example
of Nagata in [26]. (The example may also be found in Ceder's paper
[9, 9.2].)

2.9. A space which is completely regular, developable (thus semi-
metrizable), a σ-space, separable, and connected, but not g-metrizable
(since it is not metrizable): The tangent disc space of Niemytzki
(see for example [14, Problem 3K]).

2.10. A metrizable space which is not cosmic: A discrete space
of uncountable cardinality.

2.11. A regular, ^-metrizable space which is not metrizable and
not ^-second countable: The discrete union of Examples 2.1 and 2.10.

2.12. A regular, M19 g-second countable space Xsuch that Xx X
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is not ^-second countable, in fact, not even a ft-spaee: An example
of Kofner [19, Example 3].
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