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ON THE MAXIMUM AND MINIMUM OF PARTIAL
SUMS OF RANDOM VARIABLES

PEGGY TANG STRAIT

Let Xu X2, , Xn be independent identically distributed
random variable with Sk = Xt + X2 + + Xk and Si =
max [0, Sk]. We shall derive formulas for the computation of

inSί l , #ΓmaxSU, and JsTmin Sk\. The formulas

are then applied to the case of standard normal random
variables.

2* Notation, definitions, and preliminary lemmas* Let x =
(xl9 •••,#») be a vector with real components and —x = (—xl9 •••,
— α?»). In some instances we shall also assume that the components
xi9 i — 1, 2, , n are rationally independent. (For rational rif rλxx +
r2x2 + + rnxn = 0 if and only if each rt = 0.) Let xk+n = xkJ and
x(k) = (xk9 xk+1, , xk+»-i), k = 1, 2, ., w. Let sfc = ^ + a?8 + + xk.
Call the polygon connecting the points (0, 0), (1, sx), , (k, sk), ,
(n, sn) the sum polygon of the vector x, and the line connecting (0, 0)
with (n, sn) the chord of the sum polygon. The sum polygon for the
cyclically permuted vector x(k) is defined the same way.

F. Spitzer proved in [2] (see especially page 325, lines 8-12) the
following lemma.

LEMMA 1. Let x = (xl9 , xn) be a vector such that the components
xi9 i = 1, , n, are rationally independent. Consider the sum poly-
gons of the n cyclic permutations of x and prescribe an integer r
between 0 and n — 1. The sum polygon of exactly one of the cyclic
permutations of x has the property that exactly r of its vertices lie
strictly above its chord.

We adopt the following notations and definitions. For any real

a9

(2.1) α + = max [0, a] , a~ = min [0, a]

a is the permutation on n symbols, so that

/ 1 2 » \

(2.2) σx=[ a? = (xσι, xσ2, , xσj .

We write

585
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Sk(<7%) = Xa1 + Xa2 ' + %ok

(2.3) S(σx) = max sί(σα ) = max ( Σ *σ )
l̂ A f̂l. l^fc^π \ ί=l V

S*(σx) =

τ is the permutation on n symbols represented as a product of cycles,
including the one-cycles, and with each index contained in exactly
one cycle. For example, with n = 7, we could have

(2.4) τ = (14)(2)(3756) .

For each x and τ we define T(τx) as follows. Suppose τ is the example
given (2.4) above, then

(2.5) T(τx) = (x, + x,y + xi + (α?8 + x7 + xδ + xβ)
+ .

In formal notations we write

(2.6) r = (aι(τ))(a2(τ)) . . (α.(r)(r))

where the a^τ), i = 1,2, , tι.(r), are disjoint sets of integers whose
union is the set [1, 2, •••,»]. Then T(τx) is denned as

(2.7)

If X1( X2, ', Xn are random variables and we write X = (Xu ••-, Xn)
then it is understood t h a t

Sk = X, + X2 + + Xk

Si = max [0, Sk]

(2 8) S(σX) = max ( Σ X,.V

TiτX) = Σ ( Σ

The following lemma is also due to F. Spitzer [2].

LEMMA 2. Let Xlf X2, , Xn be independent identically dis-
tributed random variables. Then,

?l -i-ΣE[S(σX)]
J %\ a

where it is understood that the second sum is over equivalence classes
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of τ with the definition that if τ = (αi(τ))(αa(r)) (an{τ){τ)) and
τ' = {a[{τf))(a[{τf)) . (af

n{τΊ(τ')) then r - τ' if Λ(Γ) = Λ(Γ') and for each
i there is exactly one j and for each j there is exactly one i for
which <Xi(τ) is some cyclic permutation of a](τ').

F. Spitzer proved Lemma 2 by using Lemma 1 and the following
fundamental principle. Let X = (Xu , Xn) be an ^-dimensional
vector valued random variable, and let μ(x) = μ(xlf •••,&„) be its
probability measure (defined on Euclidean w-space En). Suppose that
X has the property that μ(x) = μ(#α?) for every element g of a group
G of order /& of transformations of En into itself. Let f(x) —
f(xL, , xn) be a //-integrable complex valued function on 2£n. Then
the expected value of f(X) is

(2.10) Ef{X) = j f(x)dμ(x) = \f(x)dμ(x)

where

To make use of this fundamental principle and Lemmas 1 and
2 in the proof of our main results we now define the permutation
μ (not the measure μ above) as follows. (It is similar but not
identical to the permutation τ defined above.) Let μ be represented
as a product of cycles, including the one cycle, with each index
1, , n contained in exactly one cycle, and beginning always with a
one cycle. For example, with n = 8, we could have

(2.11) μ = (2)(14)(8)(3756) .

For each x and μ we define U(μx) as follows. Suppose μ is the
example given in (2.11) above, then

(2.12) U(μx) = (x, + x4)
+ + (x8)

+ + (xs + x7 + xδ + xβ)
+ .

Observe that xif the single element in the beginning one cycle, is
not included in the sum. In formal notation, let

(2 1 3 ) J" = (/3i(μ))(/32(μ)) (βn{μ)(μ))

where the βi(μ), i = 1, , n(μ), are disjoint sets of integers whose
union is the set [1, 2, •••, n], and βt(μ)) consists of exactly one of
the integers 1, , n. Then,

(2.14)

We next define for each fixed vector x a map μx(σ) as follows.
Given
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(2.15) σ =
Ws V

consider the sum polygon through the points (1, xh), (2, xh + xh), ,
(k, xh + + xik), , (w, «Λ). Define the highest concave majorant
of the sum polygon as that unique concave polygon which goes
through (1, xh) and (n, sn) in such a way that all its vertices are also
vertices of the sum polygon and that it always lies below or coincides
with the sum polygon. Suppose now that the highest concave
majorant constructed for the permutation σ has the vertices (1, xh),
(kί9 x h + + x i h ) , , (K x h + • + x ί k ) , (n, sn) w h e r e l<k,<
• < kv < n. Then we define

(2.16) μx(σ) = (i^{iZf , ίk){ίkl+ι, , iki) (iκ+lf , in) .

Now observe that

S*(σx) =
(2.17)

or

(2.18) - U(μx(σ)x) = S*(σx) - S(σ(-x)) - sn .

Going in the other direction, we define for each fixed vector x
with rationally independent components, a map ox(μ) as follows.
Suppose that

μ = (βi{μ))(β*(μ))

(See the paragraph following equation (2.12) for the definition of μ,
and notice in particular that the leading cycle βx(μ) must be a one
cycle.) Rewrite each set βz(μ), β*(μ), , β«w(μ) as follows. Suppose
βk(μ) = (3, 6, 9, 2). Consider the sum polygon of the vector (α?8, x9,
xQf x2). By Lemma 1 there is a unique cyclic permutation of (x3, x6, xQ, χ2)
such that all of the vertices of the sum polygon lie strictly above
its chord. Suppose that unique permutation is (x9, x2, α?3, α?6) then rewrite
βk(μ) as (9, 2, 3, 6) and call it βk(μ). Define μ' as

(2 20) μ' =

Observe that

(2.21) U(μx) = U{μ'x) .
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Now consider the vector

(2.22) y = G/2, i/3, . ., yn) = ί Σ %, Σ %, , Σ %) -

There is a unique permutation of the components of y, say

(2.23) y' = (2/J, y;, . . . , ^ ) = ί Σ %, Σ ^ , - , Σ
\keβ-(μ) keβ^(μ) keβ'n{μ

so that

(2.24)

x> i Ί>]c 2Lx ^k 2-Λ &

Now define

(2.25) j«" = Ui)(β"iμ))(β'Λμ)) iβ"M) •

Observe that

(2.26) U(μ"x) = U(μ'x) = U(μx) .

Suppose μ" can be written as

(2.27) μ " = 0 \ ) ( i 2 , , 3h)(jk1+1, ••-, Ok) (jκ+u

we then define

(2.28) Λ μ )

\JU2 •- On

observe that with respect to the sum polygon through the points

(1, xh), (2, xh + xh), - - , (ft, αijL + + xάj), , (π, sΛ) the vertices of

the highest concave majorant are at the points (1, x^), (hlf Xj1 +

• + Xjh)> (K %h + + ί»iA2)» > (fei^ %L + + »iAv), (^, sΛ). Thus

(2.29) i",K(i")) - μ"

Now use equations (2.17), (2.29), and (2.26) to obtain

S*(σx(μ)x) = S(σx(μ)(~x)) + sn - U(μx(σx(μ))x)

(2.30) = S(σx(μ)(-x)) + sn- U(μ"x)

= S(σx(μ)(~x)) + sn- U(μx)

which is equivalent to

(2.31) - U{μx) = S*(σa(μ)x) - S(σ.(μ)(-x)) - sn .
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Now consider the sets [-U(μx)] and [S*(σx) — S(σ(—x)) — sn]
generated by letting σ and τ run through all permutations. We
have shown above that for vectors x with rationally independent
components, the maps σx(μ) and μx(σ) define a one-to-one map of the
set [-U(μx)] onto the set [S*(σx) — S(σ(—x) - sn). Furthermore,
since the set x of vectors in En with rationally independent compo-
nent is dense in En and the functions S(σx) and U(μx) are continuous
functions of x, we have proved the following lemma.

LEMMA 3. For an arbitrary fixed vector x = (xίf •••,#») the sets
[— U(μx)] and [S*(σx) — S(σ(—x)) — sn] which are generated by letting
σ and τ run through all permutations are identical sets.

3* The main theorems*

THEOREM 1. Let Xu X2, •••, Xn be independent, identically dis-
tributed random variables.

E\ min Si\ = E(Sn) + ± f E[(Sky] - Σ -f E(S^

= E(Sn) + 1 E(Si) - Σ y E(Sk) .
n k=ι k

Proof. Using the fundamental principle (2.10) we may write

(3.2) #Γ min S,+1 = — Σ E[S*(σX)]

and applying (2.17) to the term on the right we have

E\ min Sf] = 1 Σ ElS(σ{-X)) + Sn - U(μx(σ)X)]

(3.3) = A Σ E[S(σ(-X))] + E(Sn)
nl o

nl

Now apply Lemma 3 to obtain

(3.4) EΪ min sf] = i - Σ E[S(σ(~X))] + E(Sn) - A Σ E[U(μX)]
Us*** J w! a nl μ

where it is understood that the second sum is over equivalence classes
of μ with the definition that if

μ = <βι(μ)){β*(μ)) (£••
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and

then μ ~ μ' if n{μ) = n{μf), β,{μ) = β[{μ') and for each i there is
exactly one j and for each j there is exactly one i for which βt(μ) is
some cycle permutation of βr

ά{μf).
Let us consider the last term in equation (3.4). Define Xf = (X2, ,

Xn) and keep in mind that the random variables Xl9 X2, , Xn are
independent and identically distributed. It is then clear from our
definition of T(τx) and U(μx) that

(3.5) 1 Σ E[U(μX)\ = λ Σ E[T(τX')] .
nl μ nl τ

Now apply Lemma 2 to equations (3.4) and (3.5) to obtain

i?[mm Si] Σ(3.6) [ E[(-Sk)
+] + E(Sn) -

which is the first part of equation (3.1). Then, using the fact that
E[(-Sk)

+] - E(St) = -E(Sk), we obtain the second part of equation
(3.1) as follows.

1 E[(-Sky] -±λ

±
* = i A;

n Σ
* = i A;

THEOREM 2.

- S*)Ί + E(Sn)

+ EΪ max ( - ^ ) +

L

(3.7)

Proo/.

(3.8) max ^ = max Si + max Sr, and max Sk = -min

Therefore,
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(3.9) EΪm&x Sk~] = jgf max Sfc

+Ί - ^Γmin (-S f c)
+Ί

From Theorem 1, we have

— &\ — &n) ~Γ 2a •^Jl\^k) J — 2-U

From Lemma 2, we have

(3.11)

Therefore,

Jefmax SL

n 1

(3.12)

H

THEOREM 3.

(3.13) EΪmin St~\ = E(SΛ) - Σ-f ^(S*+) = E(S») ~ E\ m a x

[_l^k<!n J Λ=l fc Llgfc ί^-

Proo/.

(3.14) minSfc = mm Si + minS^, and minSΰ = -max(-SA ;)
+ .

l^fc^w l^k^n ^k^ l^k^ l^k^

Therefore,

SίSί

* = i A;

~ E\ m a x S^\ -
Uίtί -1 JA;

4. Application to standard normal random variables. If Xlf
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X2y •••, Xn are standard normal random variables, then

(4.1) #ΓmaxSί\ = -±== Σ -4r

(4.2) E\ min Sk

+~\ = }

(4.3) #Γman

(4.4) 4 min Sk] = -* Σ i
Lî fĉ w J T/27Γ fc=i V &

Statement (4.1) was proved by J. A. McFadden and J. L. Lewis
in [1]. They applied F. Spitzer's lemma (Lemma 2) to the fact that
for standard normal random variables,

(4.5) E(Sk+) = / J L .

To obtain (4.2), (4.3), and (4.4), apply (4.5) and the fact that for stand-
ard normal random variables, E(Sk

+) = E[(—Sk)
+], to Theorems 1, 2,

and 3 respectively.
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