PACIFIC JOURNAL OF MATHEMATICS
Vol. 52, No. 2, 1974

PRECOMPACT AND COLLECTIVELY SEMI-PRECOMPACT
SETS OF SEMI-PRECOMPACT CONTINUOUS
LINEAR OPERATORS

ANDREW S. GEUE

A mapping f from a set B into a uniform space (Y,?)
is said to be precompact if and only if its range f(B)=
{f(b):be B} is a precompact subset of Y. The precompact
subsets of (B, Y), the set of all precompact mappings from
B into Y with its natural topology of uniform convergence,
are characterized by an Ascoli-Arzela theorem using the no-
tion of equal variation.

A linear operator 7: X — Y, where X and Y are topolo-
gical vector spaces, is said to be semi-precompact if 7(B) is
precompact for every bounded subset B of X. Let <&[X, Y]
denote the set of all continuous linear operators from X
into Y with the topology of uniform convergence on bounded
subsets of X. Let “%3[X, Y] denote the subspace of Z5[X, Y]
consisting of the semi-precompact continuous linear operators
with the induced topology. The precompact subsets of
4 X, Y] are characterized. A generalized Schauder’s theorem
for locally convex Hausdorff spaces is obtained. A subset 57
of Z[X,Y] is said to be collectively semi-precompact if
2 (B) = {H(b):He 5Z,be B} is precompact for every bounded
subset B of X. Let X and Y be locally convex Hausdorff
spaces with Y infrabarrelled. In §5 the precompact sets of
semi-precompact linear operators in -£5[X, Y] are character-
ized in terms of the concept of collective semi-precompactness
of the sets and certain properties of the set of adjoint
operators.

1. Introduction. Let X and Y be topological vector spaces
over the field of complex numbers C and &[X, Y] the set of con-
tinuous linear operators from X into Y. For a subset 5~ ¢ &[X, Y]
and a subset B of X, let >#(B) = {H(b): He 5 be B}.

DEFINITION 1.1. A linear operator 7. X — Y is said to be pre-
compact (compact) if there exists a neighborhood V of zero in X
such that T(V) is precompact (relatively compact). A linear operator
T: X— Y is said to be semi-precompact (semi-compact) if T(B) is
precompact (relatively compact) for every bounded subset B of X.

The latter terminology is that of Deshpande and Joshi [14] and
coincides with the term “boundedly precompact” used by Ringrose
[27]. Clearly, precompactness of an operator is a much stronger
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condition than semi-precompactness, unless X has a bounded neigh-
borhood of zero. A precompact operator is always continuous, but
this is not the situation for a semi-precompact operator unless we
assume X bornological and Y locally convex [18, Proposition 1(a), p.
220]. However, we shall always work with continuous semi-precom-
pact operators in this paper and thus avoid the problems otherwise
encountered.

DEFINITION 1.2. A subset 57 c.<2[X, Y] is said to be collectively
precompact (collectively compact) if there exists a neighborhood V
of zero in X such that 5#°(V) is precompact (relatively compact).
A subset &7 c ~[X, Y] is said to be collectively semi-precompact
(collectively semi-compact) if 57 (B) is precompact (relatively compact)
for every bounded subset B of X.

The latter concept is again due to Deshpande and Joshi [14].

Anselone and Moore [5] introduced the concept of collectively
compact sets of linear operators on normed linear spaces in connec-
tion with approximate solutions of integral and operator equations
and this material, together with much other work in this area,
appears in Anselone [4]. Anselone and Palmer [6, 7, 8] studied the
general properties of such sets of operators, again in normed linear
spaces. DePree and Higgins [11] and Deshpande and Joshi [14]
generalized some of the theorems of Anselone and Palmer to the
topological vector space situation. More insight into the idea of
collectively compact sets of linear operators is given in the charac-
terizations of DePree and Klein [12] (or Klein [22, Chapter I]), where
the set is factored through a Banach space via an equicontinuous
collection and a compact operator. DePree and Klein [13] (or Klein
[22, Chapter II]) have applied the concept of collectively compact
sets of linear operators to semi-groups of compact linear operators.
However, a characterization of precompact sets of precompact linear
operators via the adjoint operators has not yet been obtained beyond
the Banach space case. Palmer [25] proved that for Banach spaces
X and Y, a collectively compact subset 57 < &[X, Y] is precompact
in the uniform operator topology if and onmly if 57, the set of
adjoint operators, is collectively compact. Anselone conjectured this
in [2] and also proved it for special Banach spaces X and Y. In
[3], Anselone also gave a different proof of the general result of
Palmer [25]. We notice that Schauder’s theorem for compact op-
erators is implicit in this result.

The problem in dealing with general precompact operators is
that no corresponding Schauder theorem holds even when X and Y
are locally convex spaces. This result was stated in Kothe [23],
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where he says that Grothendieck exhibited an example of a Fréchet
space for which Schauder’s theorem does not hold. However, when
dealing with semi-precompact operators a corresponding Schauder
theorem does hold provided X and Y are locally convex Hausdorff
spaces with Y infrabarrelled [21, Problem 21D, p. 208] and easily
proved using Grothendieck [17, Lemma 2, p. 132]. The theorem also
follows easily from a more general theorem in §4 of this paper.
The condition that Y be infrabarrelled is very essential for it turns
out that it is a necessary and sufficient condition for the adjoint
mapping to be continuous (§ 5, Lemma 5.3). To obtain results similar
to Palmer [25] we must be able to say that a precompact set of
precompact operators is collectively precompact. This is true in
general Banach spaces [6, Theorem 2.5, p. 419], but it is not true
for general locally convex spaces as shown by the counterexample
of DePree and Higgins [11, Example 3.8, p. 369]. However, when
we consider locally convex Hausdorff spaces and the concepts of
semi-precompactness and collective semi-precompactness of operators,
Palmer’s results carry over as shown in §5.

The problem of proving that a set of precompact operators is
collectively precompact is that in general each operator is defined to
be precompact only on a particular neighborhood of zero in X. To
find a single neighborhood V of zero in X such that every operator
in the set is precompact on this neighborhood is a very difficult
task without even proving the set collectively precompact on this
neighborhood. The problem is avoided if X is a normed space as
we only need speak of a single neighborhood of zero, namely the
unit ball. It is also avoided when X has a bounded neighborhood
of zero [11, Theorem 3.6, p. 368], as any precompact operator will
be precompact on this neighborhood. Anyway, if X is also locally
convex Hausdorff, then it is normed [28, Theorem 1, p. 45]. The
problems above no longer arise when considering collective semi-

precompactness, as we look at what the operators do to each bounded
subset of X.

Most of the results of DePree and Higgins [11] and Deshpande
and Joshi [14], which generalize §2 of Anselone and Palmer [6],

carry over quite easily to the collectively semi-precompact case and
will not be considered here.

The proofs of most of the theorems are based on generalizations
of results in Vala [32]. The idea of equal variation, as it is called
by Vala [32] (and inherent in the works of Kakutani [19], Bartle
[9], Dunford and Schwartz [15, Theorem 6, p. 260] and Poppe [26]),
plays a most important role in the characterizations via an Ascoli-
Arzela type theorem. The generalized Schauder theorem for Banach
spaces [32, Theorem 3, p. 6] is proved for locally convex Hausdorff
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spaces and the proof employs the ideas of §§2 and 3. Part of this
Schauder type theorem was also proved for the Banach space case
by Alexander [1] and Bonsall [10] in a Banach algebra setting.

2. Preliminaries. Let B be an arbitrary set and (Y, 7") a
uniform space.

DEFINITION 2.1. A mapping f: B— Y is said to be precompact
(compact) if the set f(B) = {f(b):bec B} is precompact (relatively
compact) in Y. Let 2#°(B, Y) denote the set of all precompact
mappings from B into Y.

Obviously every compact mapping is precompact and the converse
holds if Y is complete, as then every precompact set is relatively
compact. If Y is a topological vector space, quasi-completeness is a
sufficient condition for the converse to hold.

When Y is a metric space with metric d, there is a natural
metric we can define on 9% (B, Y) [32, p. 3], namely p, where

o(f, 9) = sup a(f(d), 9(b))

for f,9e 2 (B, Y). Using this idea we can form a natural uni-
formity for 2°(B, Y), for (Y, 7°) a uniform space, by taking all
subsets of 77 (B, Y) x 2#°(B, Y) of the form

K, = {(f, 9): (f(0), 9(d)) e V for all be B},

where V runs over the elements of 77 It is easy to prove that the
nonempty family 27 = {K,: Ve 7"} of subsets of 27 (B,Y) x 2#(B,Y)
forms a base for a uniformity for %7(B, Y). The topology induced
on .22°(B, Y) is commonly called the topology of uniform convergence.
We note that if < is a base for the uniformity ¥; then .27 =
{K,: Ve Z} generates the same uniformity for 22°(B, Y) as does 7.

The following definition is due to Vala [32], although its con-
tents arise in other works.

DEFINITION 2.2. A subset 57 < . 9%°(B, Y) is said to have equal
variation on B if, for every Ve 7; there is a finite covering B, ---,
B, of B such that a,beB;, 1 =1, ---, n, implies

(f(a), F(O))eV

for every fe 5#. We write this as (f(B), f((B))cViori=1,---,n
where (f(B), f(B)) = {(f(a), f(b)): a, be Bj}.

We could define equal variation for sets of arbitrary functions
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from B into Y although we have assumed them in 2¢7(B, Y) for the
purposes of Definition 2.2. The following lemma, however, says that
these functions must be precompact, as obviously a subset of a set
having equal variation also has equal variation.

LEMMA 2.1. An arbitrary function f: B— Y has equal varia-
tion if and only if fe 92 (B, Y).

Proof. Let f have equal variation. Then, if Ve 7; there exists
a finite cover B, .-+, B, of B such that (f(B;), f(B))cV for ¢ =
1, ..., n. Let b,c B;,, where we assume that any empty B,’s have
been discarded. Thus (f(b,), f(b))e V for all be B,. Hence f(b)e
VIf(®)], for all be B,. As Ui, B, = B, we have that

FB U Ve,

which says that f(B) is precompact.

Conversely, assume f is precompact and let Ve . Then, as 7~
is a uniformity, there exists a symmetric Ue 7" (that is, U= U™)
such that UoUc V. Since f is precompact, there exists a finite
subset {b,, ---, b,} € B such that

FBcYUIFG .-

Hence BC f~ (U= ULf ()] = Ui f (UL (B)]). Let B, = f~(ULf(b)])
and let a, be B, Then, obviously, f(a), f(b)e U[f(b;)] and hence
(f(.), f(@)), (f (b)), f(B))e U. But U= U~ and hence (f(a), f(b))e
Uo Uc V which implies that (f(B,), f(B))cVfort =1, ... n. Thus
f has equal variation.

The next Lemma is very useful as it allows the proof of Theorem
2.1 to flow more elegantly, being used for both directions of the
proof. It is essentially a generalization of Lemma 2.1 and in fact
generalizes a lemma of Goldberg [16, Lemma II1.2.2, p. 84].

LEMMA 2.2. Let 57, ---, 57, be subsets of 27 (B, Y) having
equal variation. Then Ui, 57, has equal variation.

Proof. Let Ve 7: By hypothesis, for each ke {1, ---, n} there
exists a finite covering {B{¥}, ., of B such that (f(B{), f(B&¥)cV
for all fe 57, 4i,eI,. Obviously the sets

() (n)
{Bil NenN Bi: }(il,"-,i,,,,)ellx-nxl

n

form a finite covering of B, although some may be empty. Let
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feUik. 24 and a, be B{’N---NB{. Then fe 5% for some je{l, .-,
n} and a, be B{?. Accordingly, (f(a), f(b))e V. Hence Ui-. 527 has
equal variation on B.

It is immediately obvious from Lemmas 2.1 and 2.2 that every
finite subset of 227°(B, Y) has equal variation on B.

We shall now characterize the precompact subsets of .227(B, Y)
under the topology of uniform convergence. This is essentially an
Ascoli-Arzeld theorem and the statement and proof follow the same
lines as the metric space case of Vala [32]. The proof is included
here as it is typical of so many of the arguments used in later theo-
rems and it also uses Lemma 2.2 to give a slightly more efficient
proof than that of Vala. As Vala [32] states, the theorem is not
essentially a generalization of the Ascoli-Arzeld theorem but is only
another form of it, adapted for certain applications. A result of
Poppe [26] also comes out as a direct corollary.

THEOREM 2.1. Let 57 be a subset of 9¢°(B, Y). Then 57 1is
precompact in 27 (B, Y), under the topology of uniform convergence,
of and only if

(1) the set 57(b) is precompact for every be B,

(2) &# has equal variation on B.

Proof. Suppose 57 is precompact in .2¢°(B, Y). Let b,€ B and
Ve 7. As 57 is precompact, there exist functions f,, ---, foe &
such that

%chvlﬁ] )

Thus, if fe 5% there exists an f, such that (f;, f)< K, and hence, by
definition, (f;(b), f(d))e V for all be B. In particular, (fi(by), f(b))e V
or f(by)e V[fi(by)] and henqe

2260 < U VLG,

proving that £#°(b,) is precompact for all b, B. Thus condition (1)
is satisfied. We now prove condition (2), namely that 57 has equal
variation on B. Let Ve . Then there exists a symmetric Ue 7
such that UcU-Uc V. It is an immediate consequence of the defi-
nitions that K,o K, K, c K,. Since 5# is precompact, there exist
fi, ¢, Ju€ & such that

%CQKU[fi] .
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As each f; is precompact, the set {f,, ---, f,} has equal variation on
B by Lemma 2.2. Thus there exists a finite cover B, ---, B, of B
such that (fy(B), fi(By) c U forall ke{l, ---, m}, te{l, .-+, n}. Let
feso# and b,b,eB, for some ke{l, ..., m}. There exists an
1€{l, ---, n} such that fe K [f;] and hence (f;(b), f(b))e U for all
be B. Now, as b, b,€ B,cBand U=U"", we have that (f(b,), f.(b))) € U,
(fi(b), fi(bo)) € U, (filbo), f(b))e U.  Thus (f(b), f(b))e UeUoUCV
and it follows that (f(B,), f(By))c V for all ke{l, ---, m}, fe o~
We have now proved that 57 has equal variation on B and (2) is
satisfied.

Conversely, suppose now that (1) and (2) are satisfied. Let
K, e 97,. Then there exists a symmetric Ue 7" such that Uo U U C
V. As 57 has equal variation, there exists a finite cover B, -+, B,
of B such that (f(B,), f(B,) < U for all kefl, ---, p}, fe & As-
suming, without loss of generality, that each B, is nonempty, let
b.e B, for ke{l, ---, p}. By hypothesis (1), 5#(b,) is precompact in
Y for all ke{l, ---, p}. We define the mappings 6,: 5~ — Y by
0,(f) = f(b) for each be B, fe 22 Then 6,(5#) = 5#(b) and hence
0, is a precompact mapping for all be B. By Lemma 2.2, {6,, - --, @,,p}
has equal variation on 52 Hence there exists a finite cover 57, ---,
oz, of 27 such that (0,(57), 6,(2%) c U for all ke{l, ---, p},
jef{l, ---, I} or (2%(by), 54;(b,) c U forall ke{l, ---, p},je(1, --+, I}.
Let f;e 24 for je{l, ---, 1}, assuming that each 27} is nonempty.
Then we claim that

o7 < UKIf,

proving 5# is precompact. For, if fe 57 then fe 27 for some
Jjef{l, -+, 1}. We prove that fe K.[f;] or (f;(b), f(b))c V for all be B.
If be B, be B, for some ke {1, ---, p}. But, as fe 274, (fi(b,), fb)e U
by the above work and, as £# has equal variation on B and by
construction of B,’s (f;(by), fi(b))e U and (f(b,), f(b))e U. As U is
symmetric, (f;(b), f(b))e UocUoUc V. This completes the proof.

Let &7 be a collection of subsets of B which is directed under
set-theoretic inclusion .

DEFINITION 2.3. A mapping f: B— Y is said to be .&-precompact
(&-compact) if f(A) is precompact (relatively compact) in Y for all
Ae &% Let ¥ (B, Y) denote the set of all .&”-precompact mappings
from B into Y.

The subsets K,, = {(f, 9): (f(a), g(a))e V for all aec A} of
% (B, Y)x 2.(B, Y) form a base for a uniformity for 2%22(B, Y).
The topology induced on 27-(B, Y) is commonly called the topology
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of uniform convergence on elements of &%
The following corollary to Theorem 2.1 is a result due to Poppe
[26].

COROLLARY. A subset 57 < . 2%.(B, Y) is precompact under the
topology defined above if and only if

(1) 2A(x) is precompact for all x€ Uses 4,

(2) &7 |4 has equal variation on A for all Ae

Equivalently, 57 is precompact in 5.(B, Y) iof and only if
SF |4y comsidered as o subset of (A, Y), is precompact for all
Ae &

Proof. Let S# be precompactin 22.(B, Y)and let Ac &~ The
mapping

Py 25 (B, Y)—> % (4, Y)

defined by Z,(f) = f|. is easily shown to be uniformly continuous.
Since a uniformly continuous image of a precompact set is precompact,
B(SF) = 57 |, is a precompact subset of ZZ7(4, Y). Hence, by
Theorem 2.1, 57 |, has equal variation on A for all A€ . implying
that (2) is satisfied. Also, if xe U . A, then xzc A for some Ae.&”
and again, as 57|, is precompact in ¥ (4, Y), &~ (x) is precompact
in Y by Theorem 2.1. Thus conditions (1) and (2) are satisfied.

Conversely, suppose conditions (1) and (2) hold. Then, by Theorem
2.1, 27|, is precompact in 977 (4, Y) for every Ac.&Z We must
prove that 57 is a precompact subset of 277 (B, Y). Let K, ,bea
basic member of the uniformity for 2%.(B, Y), where Ac &, Ve 72
Now K(A), = {(f, 9):f, 9 27 (4, Y), (f(a), 9(a))e V for all ac A} is
a member of the uniformity for 977(4, Y). As 57|, is precompact
in .27°(4, Y), there exist f,, ---, fn€ 5# such that

27 .= U K(AWIfil) -

If fe 27 there exists an f;, 1€ {1, - --, n}, such that f|, € K(A),[f;|.].
Hence (fi(a), f(a))e V for all a € A, which means (f;, /)€ K, . Thus

2 < U Kuilfl,

which implies that 57 is precompact in .927(B, Y). This completes
the proof.

The following definition is well known [20, Problem 7.G, p. 239].

DEFINITION 2.4. A family 57 of functions from a uniform space
(X, ) into a uniform space (Y, 77) is uniformly equicontinuous iff
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for each Ve there is a Ue % such that (f(z), f(y))e V for all
fesz (v, y)eU.

For the remainder of this section, we let (B, %) be a precompact
uniform space and (Y, 7°) a uniform space. We have

PROPOSITION 2.1. Let 57 be a uniformly equicontinuous set of
mappings from B into Y. Then 57 has equal variation on B.

Proof. Let Ve? and let We? such that WoWcV and
W = W™. As 5 is uniformly equicontinuous, there exists a Ue %
such that (f(z), f(y))e W for all fe 2Z (x y)e U. Now, as B is

precompact, there exists a finite subset {b,, ---, b,} B such that
B = U] .
=1

Thus U[b,] is a finite cover of B and we claim that
(fULD, FAUDBD) YV fesz, i=1 -, n.

For, if a, be U[b,], then (b,, a)e U, (b, b)e U. Hence (f(b,), fla)c W
and (f(b,), f(b))e W for all fe 2~ But this means that (f(a), f(b)) €
WoWcV,as W= W. Accordingly, 5 has equal variation on B.

Setting 57 to be a singleton set in Definition 2.4 gives us the
definition of a uniformly continuous function.

COROLLARY. Let 57 be a uniformly equicontinuous set of mapp-
ings from B into Y. Then, if 57 (b) is precompact in Y for all
be B, 57 1is a precompact subset of (B, Y) with the topology
defined previously.

Proof. Firstly, 5# < 27 (B, Y) by the fact that each fe 27 is
uniformly continuous and B is precompact. By Proposition 2.1, 57
has equal variation. Hence conditions (1) and (2) of Theorem 2.1 are
satisfied by the added hypothesis. This proves that 57 is precompact.

3. Precompact sets of semi-precompact operators. Throughout
this section we let X and Y be topological vector spaces over the
complex numbers C; these are indeed uniform spaces and hence the
results of §2 carry over. We interpret the definition of equal varia-
tion in this case as: A subset 52 . 9°(B, Y) (where B is an arbi-
trary set) has equal variation on B if, for any neighborhood V of
zero in Y, there exists a finite cover B, ..., B, of B such that

f(B) — f(B) ={f(a) — f(b):a,be B}V
forall fes# i=1,.-., n.
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We use the notation and results of Treves [31, Chapter 32] in
what follows. Let . be a family of bounded subsets of X satisfy-
ing the conditions:

(&%) if A, Be & then there is a Ce.&” such that AU BcC,

(&%) if Ae C and A€ .& then there is a Be . such that AACB.
The S”-topology on #[X, Y] is called the topology of uniform con-
vergence on elements of . and when carrying the .&”-topology we
write it as £ [X, Y]. £ [X, Y] is a topological vector space [31,
p. 336] and when .&° is a fundamental system of bounded sets in X
(that is, any bounded subset of X is contained in some member of
&) we denote .[X, Y] by AKX, Y].

We let 272[X, Y] denote the set of all continuous &’ -precompact
linear operators from X into Y with the topology induced by [ X, Y.
Obviously #.[X, Y] is a linear subspace of <~,[X, Y] by [28, Lemma
3, p. 49] and it is easy to prove that the topology on ¥.[X, Y]
coincides with the induced topology on .22.[X, Y] considered as a
subset of Z.(X, Y).

The following is a generalization of Vala’s characterization of a
precompact set of precompact operators from a normed linear space
X into a normed linear space Y [32, §6, p. 6].

THEOREM 3.1. Let X and Y be topological wvector spaces and
& some collection of bounded subsets of X satisfying conditions
(&) and (5%). Then a subset 5% < 97.[X, Y] s precompact if
ard only if

(1) =A(=) is precompact for all x€ Uz B,

(2) &Z|z has equal variation on B for all Be .

Equivalently, 57 is precompact in F.[X, Y] if and only if
SF |g comsidered as a subset of 9¢°(B, Y), is precompact for every
Be A

Proof. This is obvious from the Corollary to Theorem 2.1, since
a subset 57 < 9% [X, Y] is precompact if and only if 5# is pre-
compact when considered as a subset of 27 (X, Y).

This general theorem gives, as a trivial consequence, a charac-
terization of the precompact subsets of 2#;[X, Y], the set of all
semi-precompact continuous linear operators with the topology of
uniform convergence on bounded subsets of X.

4. A generalization of Schauder’s theorem. Let W, X, Y, and
Z be four locally convex Hausdorff spaces. Given three continuous
linear operators Re [Y, Z], Te ~[X, Y], and Se L[W, X], we
can form the composition operator RTS:
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wS,x Ly B,

which is a continuous linear operator in &~[W, Z]. Keeping R and
S fixed and allowing T to vary over ~[X, Y], we have a mapping

0. ZIX, Y] — <[W, Z],
defined by &(T) = RTS.

LemmaA 4.1. Let W, X, Y, and Z be locally convex Hausdor(f
spaces and let Re ~1Y, Z] and Se Z[W, X]. Then the mapping
O: FX, Y= AW, Z], defined by O(T) = RTS, is a continuous
linear operator.

Proof. It is obvious that @ is linear. Let ¢ be a continuous
seminorm on Z, ¢ > 0 and B a bounded subset of W. Then 77°(B;q; ¢)
is an arbitrary neighborhood of zero in <4[W, Z], where

7(B; ¢;¢) = {Pe W, Z]: q4(P) = ¢}

(q3(P) = sup,.; ¢(P(b))). As S is continuous, S(B) is a bounded subset
of X [28, Proposition 1, p. 45]. Also, as ¢ is a continuous seminorm
and R is a continuous linear mapping, ¢o R is a continuous seminorm
on Y. The set '

7 (S(B); go Ry ¢) = {Te <[X, Y] (go R)sin(T) = ¢}
is 2 neighborhood of zero in £[X, Y]. Now
(7 (S(B); qo R; ¢)) c 7°(B; g; ) -

In fact, if Te % (S(B); qgoR;¢), then (qoR)s(T) <e. However,
(qoR)si5(T)=supsc5(q o B)(TS(b)) =sup;c s (R TS(b)) =sup;. s ¢(P(T)(b)) =
g,(@(T)), which implies ¢4(@(T)) = e. Thus O&(T)e 7°(B; ¢; ¢). Hence
@ is continuous and the proof is complete.

The mapping @ depends on the mappings R and S, so we would
expect their qualities to be somehow linked with those of @. This
is shown, in one respect, in Theorem 4.1 below.

Firstly, we give a property of infrabarrelled spaces. A locally
convex space X is infrabarrelled [18, Definition 2, p. 217} if every
bornivorous (absorbs bounded sets) barrel in X is a neighborhood
of zero, where a barrel is an absorbing, balanced, convex and closed
subset of X. Let B(X’, X) be the strong topology on X’, the con-
tinuous dual of X. This means that X’ with the topology B(X’, X)
is just the space <4[X, C]. By [21, Theorem 20.3, p. 191], X is in-
frabarrelled if and only if every AB(X’, X)-bounded set in X' is
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equicontinuous. Another equivalent characterization is given in [21,
Theorem 20.3, p. 191] and states that X is infrabarrelled if and only
if the evaluation map I: X — X", given by I(x)(f) = f(x), is con-
tinuous, where X" is the continuous dual of X’ when it has the
B(X'’, X) topology and X" has the 8(X”, X’) topology. The follow-
ing is a slightly stronger characterization and is included here because
of the lack of a reference although [29, Theorem 4.2, p. 83] is a
close result for X barrelled.

LEMMA 4.2. Let X and Y be locally convex spaces. Then X is
infrabarrelled if and only if every bounded subset of H[X, Y] is
eqUICONTINUOUS.

Proof. By [29, Proposition 3.3, p. 81], a subset & c #[X, Y]
is bounded if and only if, for every neighborhood V of zero in Y,
Nzes T7Y(V) absorbs every bounded set in X, that is Nres T4(V)
is bornivorous in X. (It is easily deduced from this that every equi-
continuous set is bounded.)

Suppose Z < A[X, Y]is bounded and X is infrabarrelled. Let
V be a convex, balanced, closed neighborhood of zero in Y. Then
Nrez T7%(V) is a bornivorous barrel in X, as & is bounded and
each Te <# is continuous and linear. Thus it is a neighborhood
of zero, as X is infrabarrelled. Hence <# is equicontinuous by [29,
Proposition 4.1, p. 83] and the fact that V is an arbitrary basic
neighborhood of zero (as Y is locally convex).

The converse is obvious by setting Y = C the complex numbers
and using the characterization mentioned earlier.

The following result is used in Theorem 4.1 and is a direct
consequence of [29, Proposition 3.3, p. 81].

LEMMA 4.8. Let X and Y be locally convex spaces and FZ C
AlX, Y] be bounded. Then Z(M) = Urcs T(M) is bounded in Y
for all bounded subsets M of X. In particular, Z(x) is bounded
wm Y for all xe X.

Now we have the locally convex case of the generalization of
Schauder’s theorem proved by Vala [32, Theorem 3, p. 6] for normd
spaces. A condition such as X infrabarrelled is to be expected in
the theorem, for, if Y=Z2=C and R is the identity map, the
known generalization of Schauder’s theorem to locally convex spaces
[21, Problem 21D, p. 208] falls out as a corollary.

THEOREM 4.1. Let W, X, Y, and Z be locally convex Hausdorff
spaces and in addition assume X is infrabarrelled. Let Re F|Y, Z],
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Se Z[W, X] both be nonzero. Then the mapping
0: a%[):() Y]"——),%[W, Z] ’

given by O(T) = RTS, is a semi-precompact continuous linear opera-
tor if and only if both R and S are semi-precompact.

Proof. Let R and S be nonzero and semi-precompact. Suppose
F < A[X, Y] is bounded. Set

F =0(F) ={He FL|W,Z]: H= RTS for some Te FZ}.

We must show that @(<Z) = 57 is a precompact subset of AW, Z].
This is equivalent to proving that 52|, , has equal variation on M,
for all bounded M, c W and S~ (w) is precompact for each we W by
Theorem 3.1, as obviously £# consists of semi-precompact operators.

Firstly, let w e W, which implies that S(w) e X and hence <ZS(w)
is bounded in Y by Lemma 4.3. By assumption R is semi-precompact
and thus R<# S(w) = 57 (w) is precompact in Z, fulfilling condition
(1) of Theorem 3.1.

Now let M, be bounded in W and let V, be a neighborhood
of zero in Z. As R is continuous, there exists a neighborhood V,
of zeroin Y such that R(Vy)c V,. <& is bounded in &[X, Y] and
hence, by Lemma 4.2, <& is equicontinuous as X is infrabarrelled.
This implies that there exists a neighborhood V; of zero in X such
that & (Vy)c Vy. S is semi-precompact and obviously {S} is pre-
compact in [ W, X] which implies, by Theorem 3.1, that S|, , has
equal variation. Let M, ---, M, be a finite cover of M, such that
S(M;) — S(M;)c Vy for +=1,--.,n. Then we have R<Z(S(M,) —
S(M)))c R&Z(Vy)cR(Vy)c Vyfor i =1, -+, n. Hence RT(S(M,) —
SM)cV, for i1 =1,---,n, Te & As RT is linear for all Tc <7,
we have that RTS(M,) — RTS(M,)c V, for 1 =1, ---,m, Te Z or
equivalently H(M,) — HM)c V, for +=1,.--,n, He 2~ Thus
& |u,, has equal variation on M, and we have proved that @(<Z)
is precompact in &[W, Z]. Consequently, @ is semi-precompact and
we know that it is continuous by Lemma 4.1.

Conversely, suppose 0: F[X, Y] — £ W, Z] is semi-precompact.
We prove that R and S are semi-precompact, assuming of course that
R and S are nonzero.

Firstly, R is proved semi-precompact. Let M, be a bounded
subset of Y. We must prove that R(M;) is precompact in Z. As Sis
nonzero, there exists a w,€ W such that S(w,) = 0. As X is locally
convex Hausdorff, there exists a continuous linear funectional fe X’
such that f(S(w,) =1 [29, Theorem 4.2, Corollary 1, p. 49]. For
each ye M, we define
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K (») = f(x)y .

Then each operator K,: X — Y is obviously a continuous linear one-
dimensional operator. Let

% ={K, ye My} .

We show that .27 is bounded in $4[X, Y], which is equivalent to
proving .2 equicontinuous, as X is infrabarrelled (Lemma 4.2). Let
Vy be a basic neighborhood of zero in Y. Then there exist a con-
tinuous seminorm ¢ on Y such that

Vy={ye Yiqy) = 1}.

My bounded in Y implies there exists an a > 0 such that aM, C V.
As f is continuous, there exists a neighborhood V, of zero in X
such that | f(Vy)| =1 (i.e., | f(x)| <1 for allze V). Now % (aVy)C
Vy. In fact, let K,€ .9 and € Vy. Then q(K/(ax)) = q¢(f(aw)y) =
o(f@ay) = | () lg(ay) = q(ay), since | (V)| = 1. But, since aMy C
Vy, q(ay) =1 and hence ¢(K,(aw)) =1. As aV, is a neighborhood
of zero in X, we have that . is equicontinuous and hence bounded
in Z[X, Y]. But 0 is semi-precompact, implying that @(%") is
precomact in SA[W, Z]. Theorem 3.1 then implies that @(227)(w) is
precompact in Z for all we W. Now @(.%% ) (w,) = {RK,S(w,): y € My}=
{R(f(S(w)y): ye My} = {R(y): y& My}, since f(S(wy)) =1. Thus
(27 )w,) = R(My) and hence R(M,) is precompact. As M, is an
arbitrary bounded subset of Y, R is a semi-precompact operator.

Now we show that S is semi-precompact. As R + 0, there exists
a y,€ Y such that R(y,) # 0. As Y is locally convex and Hausdorff,
there exists a continuous seminorm ¢ on Y such that q(y,) > 0. We
can assume without loss of generality that q(y,) = 1, by taking some
positive multiple of y, or ¢ if necessary. Also, as Z is locally con-
vex and Hausdorff, there exists a continuous seminorm » on Z such
that »(R(y,)) > 0. If p is an arbitrary continuous seminorm on X,
then

Vy = {ze X:p(x) = 1}

is an arbitrary basic neighborhood of zero in X (as any positive
multiple of a continuous seminorm is a continuous seminorm). Define

Vs ={2e Z:r(2) = r(R(v.))}

which is a neighborhood of zero in Z, as 7(R(y,)) > 0. We shall
prove the existence of a bounded set 57" < &£[X, Y] such that

N KR (V) Vi,

Kexr
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as well as having other special properties. As a consequence of the
Hahn-Banach theorem [24, Proposition 8, p. 191] and because p is
continuous, for each x, fixed in X, there is a continuous linear func-
tional fe X’ such that

| f(@)] = px) for all ze X
and
S(@e) = p(wo) -
Define
F,={feX"|f(x)] £ p(x) for all ze X},
which is nonempty by the theorem mentioned above. Let
F ={KpfeFy},

where K (z) = f(x)y,, Obviously each K; is a continuous linear one-
dimensional mapping from X into Y and hence 5% C #[X, Y]. We
claim that

N K'RY(V,)cVy.
KeZ
Letxe Nxer K'R™(V,). Then e K'R(V,) for all Ke %, which
implies that RK(x)e V, for all Ke .9%. Hence
r(RK(z)) = r(R(y,)) for all Ke 57,
which means, by definition of .5;
r(f(@)R(y,) = r(R(y,))  for all fe F,.

Hence | f(2) [r(B(yo) = r(R(yo)) or | f(x)| =1 (as 7(R(y,) > 0) for all
feF,. Using [24, Proposition 8, p. 191], there exists an f¢ F, such
that f(x) = p(x) and hence p(x) £ 1. Hence xe V;.

%" is in fact an equicontinuous subset of <[X, Y]. By defini-
tion of V; and F,, we have

[ F(Vy)| = Sup sup [flx)[=1.

Let Vy={ye Y:iq(y) =1} be an arbitrary basic neighborhood of
zero in Y, where ¢ is some continuous seminorm. If q(y,) = 0, then
A(Ks(2)) = ¢(f(@)y) = | () la(y) = 0 for all fe F,, xc X and hence

F (X)) Vy;
if 9(y,) > 0, we claim that
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1
= a(yo) VX) <V

since, if wxeVy;, Kre 2%, then qEK(1/q(y)x)) = q(f(x/q(y))y) =

1/q(yo)a(f(@)y) = | f(2) la(¥o)/a(yo) = 1. Hence %" is equicontinuous

and, in particular, bounded in F[X, Y].

Let M, be an arbitrary bounded subset of W. We must prove
that S(44;,) is a precompact subset of X. Let V, be an arbitrary
basic neighborhood of zero in X. We can construct 2" from the
associated continuous seminorm p of V, as we have done above.
% is bounded in <£[X, Y] and, as @ is semi-precompact, @(.%") is
precompact in A[W, Z]. By Theorem 3.1, &(%)|y, has equal
variation on M;,. Hence there exists a finite cover M, -+, M, of M,
such that

OK)M) — KYM)cV, =1 --+,n Ke,
where V, is defined as before. Thus

RKS(M,) — RKS(M,) c V, i1=1 -, n Ke 2
— S(M)) — S(M,) c K*R™(V,) i=1 -, m Ke %
— S(ML) - SMyc | KRV, i=1 .

By construction of 9 and V,, Nxe» K'R(V,;)c Vy and hence
S(M,)) — S(M,) c Vy 1=1 - 0.

Thus S(My) is precompact in X (as Se 2% (My, X) by Lemma 2.1),
which implies that S is a semi-precompact operator. This completes
the proof.

The following corollary is Schauder’s theorem (first proved for
Banach spaces in [30]) for locally convex spaces as it appears in [21,
Problem 21D, p. 208].

COROLLARY. Let W and X be locally convex Hausdorff spaces
with X infrabarrelled. Then a continuous linear operator S: W —
X is semi-precompact if and only if the adjoint operator S': X' —
W' is semi-precompact, where X', W' have their 8(X', X), B(W', W)
topologies respectively.

Proof. Let Y= Z = C in Theorem 4.1 and let R be the identity
map, which is obviously continuous, linear and semi-precompact. Then
we have

w xS c-L.c

and @: X' — W’ defined by &(f) = IfS = fS, where X' = ¥[X, C]
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and W' = Z[W, C], and X' (respectively W') with its strong topo-
logy B(X', X) (respectively g(W’, W)) is just £[X, C] (respectively
AW, C]). By Theorem 4.1, as I is semi-precompact, @ is semi-
precompact if and only if S is semi-precompact. But S’(f) = fS and
hence S’ = @, which gives us the required result.

5. Applications to collectively semi-precompact sets of con-
tinuous linear operators. We use the concept of collective semi-
precompactness of a set o7 < F[X, Y] as stated in Definition 1.2.
Throughout this section, X and Y denote locally convex Hausdorff
spaces.

The following three lemmas are results which are known in
other forms but are stated and proved here because of lack of
references.

LEMMA 5.1. Let Y be a locally convex Hausdorff space. The
sets

G, ={9eY" 9| = qly) for all ye Y}

form o fundamental system of B(Y', Y)-bounded sets in Y', where
q runs over the continuous seminorms on Y, if and orly if Y 1is
wnfrobarrelled.

Proof. Suppose the G,’s form a fundamental system of 8(Y’, Y)-
bounded sets in Y’. Each G, is equicontinuous [18, p. 200] and hence,
as every subset of an equicontinuous set is equicontinuous, each
B(Y', Y)-bounded set in Y’ is equicontinuous. This implies that Y
is infrabarrelled by Lemma 4.2.

Conversely, suppose Y is infrabarrelled. Then, by Lemma 4.2,
if My, is B(Y’, Y)-bounded in Y’, it is equicontinuous. By [18, p.
200], there exists a continuous seminorm ¢ on Y such that

My CG,.

The result follows.

LEMMA 5.2. Let Y be a locally convexr Hausdorff space which
is infrabarrelled. Let My be a B(Y', Y)-bounded subset of Y'.
Thewn the function

q(y) = sup |g(y)|
ge_l]Y/
18 a4 continuous seminorm on Y.

Proof. As My is B(Y', Y)-bounded and Y is infrabarrelled, M,.
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is equicontinuous. Thus the polar of M,. in Y,
M ={ye Y:|g(y)| =1 for all ge My},

is a neighborhood of zero in Y, for, as M, is equicontinuous, there
exists a neighborhood V; of zero in Y such that |M;(Vy)| =<1 and
obviously Mg o V,. But

My ={ye Yt jsup l9(y) | = 1}
={ye Yiqy) = 1}.

As g is obviously a seminorm and is continuous by the last statement,
the result follows.

The following lemma is an interesting characterization of infra-
barrelled spaces in terms of the adjoint mapping.

LEMMA 5.8. Let X, Y be locally convex Hausdorff spaces. Then
the adjoint mapping

A: AKX, Y] — AlY, X,
defined by A(T) = T', is a continuous linear map for all X, where

X', Y’ have their B(X', X), B(Y’', Y) topologies respectively, if and
only if Y is infrabarrelled.

Proof. The adjoint mapping A is well defined by [18, Proposi-
tion 3, Corollary, p. 256].

Assume that A is continuous for every locally convex Hausdorff
space X. Then, in particular, it is true for X = C. Thus the map

A: FIC, Y1 — H Y, C]
is continuous. Now C’ is isomorphic to C and hence ZA[Y’, ('] is
topologically isomorphic to Y” with its g(Y”, Y’) topology. Let
¢: %[ Y” Cl] —_— YII
be the isomorphism. We can identify <5[C, Y] with Y itself by the
mapping
")k: Y—b ,%[C, Y] ’

where ¥(y)(a) = ay for each ae C. It is easy, but tedious, to prove
that + is also a topological isomorphism. We have the following
situation

Zlc, Y]-5 Ay, )

| e

Y Y”.
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By defining ¢ in the obvious way, namely
#(T)y) = T(y)1) ,

where Te &[Y’, C'] and y' € Y’, and letting I be the evaluation
mapping of Y — Y”, defined by I(%)(%') = ¥'(y), the above diagram
commutes. Hence I = goAoqr. But ¢, A, + are continuous and
hence I is continuous. This implies that Y is infrabarrelled [21,
Proposition 20.4(i), p. 192].

Conversely, assume Y is infrabarrelled. As X’ has its strong
topology, its continuous seminorms are given by

7y (f) = Sup [ f(z)]

where fe X’ and M, is bounded in X. Thus the continuous semi-
norms on 4[Y’, X'] are given by

RMx,My’(T') = gS%p er(T,(g)) ’
eMy’

where M, is a bounded subset of X and M,. is a B(Y’, Y)-bounded
subset of Y’. Hence, by definition,

Ry (T7) = sup sup [[T'(NI(@)] -
Hence a basic neighborhood of zero in A[Y’, X'] is
7' ={T"e LY, X'|: Ry, 0, (T) = 1} .
As Y is infrabarrelled, M, is equicontinuous and by Lemma 5.2

q(y) = sup |g(y) |
geMy’

is a continuous seminorm on Y. Let

7 ={Te ZIX, Y]: qu(T) = sup (T) = 1} .

This is a neighborhood of zero in #[X, Y]. We claim that A(7")c7™,
implying that A is continuous (for it is obviously linear). Let Te 77
Then gy, (T) < 1 and, since sup, .y, ¢(T(¥)) = SUD, e, SUD;ex, | 9(T(@)) |
by definition of ¢, we have ¢y (T) = SUD;cu, SUDseu, | 9(T())| =
SUDyesryr SUDzesry | [T/(@]®) | = Ruyuy (T) < 1. Thus A(T) = T'e 7
and the result follows.

The next three theorems generalize some results of Palmer [25]
to locally convex Hausdorff spaces (as any Banach space is barrelled
and hence infrabarrelled).

THEOREM 5.1. Let X and Y be locally convex Hausdorf spaces
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with Y infrabarrelled. Then a subset 57 C A[X, Y] is a precom-
pact set of semi-precompact operators if and only if

(1) 2# 1s collectively semi-precompact,

(2) 2A'(W)={H'(Y): He 577} is precompact for all y'e Y'.

Proof. Suppose 2% is a precompact set of semi-precompact op-
erators. The proof of (1) is incorporated, in a slightly different form,
in Proposition 2.3 of [14], however, for the sake of completeness we
utilize the previous results to prove it.

It is obvious that 57 c 2#{[X, Y] and is precompact therein. By
Theorem 3.1, 5# |, has equal variation on M, for every bounded
subset M; of X and S#(x) is precompact for all xe X. Let M, be
a bounded subset of X. We prove that 5#°(M,) is precompact. Let
Vy be a basic neighborhood of zero in Y. Then, as 5#|,, has
equal variation on M,, there exists a finite cover M, -+, M, of M,
such that

H(M,)—H(M,)C UY 7;21, e, M, He 57,

where U, is a neighborhood of zero in Y such that U, + U, C V5.
Assume without loss of generality that the M, are nonempty. Let
v, €M, for t =1, -+, n. Then S~ (x,)is precompact fori =1, ---, n.
As in the proof of Theorem 2.1, we define the mappings

0,58 — Y

by 6,,(H) = H(z;). These are precompact by hypothesis and, by
Lemma 2.2, {0,, ---, 60, } has equal variation on 5. Thus there
exists a finite cover 27, ---, 57, of &# such that

%(wi)_%(xl)CUy izl,"',n;jzl,...’m.
Assume without loss of generality that the £#; are nonempty and
let H;e 5% for j =1, ---, m. Then we claim that

(M) c YU Hiw) + Vs,

implying that 57 (M) is precompact. For let H(x)e 5#(My). Then
there exists an M, such that xe M, and an 5% such that He 57.
Now

H(w) — Hy(w,) = (H(x) — H@@)) + (H(x,) — Hi(z))e Uy + Uy C Vy

or H(z)e H;j(x;) + Vy. This proves (1). By Lemma 5.3, the adjoint
mapping is continuous and linear in this case. Hence it is uniformly
continuous and, as 5#° is precompact, 5%’ = A(S5#) is precompact in
AlY', X']. By the corollary to Theorem 4.1 (Schauder’s theorem),
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the operators in 57’ are semi-precompact. Hence 57’ is a pre-
compact set of semi-precompact operators. By Theorem 3.1, Z#'(v')
is precompact for all ¥’ Y’. Thus conditions (1) and (2) hold.

Conversely, assume conditions (1) and (2) hold. Let 7°(My, q),
defined by

7 (My, @) = {Te Z[X, Y] qu(T) = 1},

where M, is bounded in X and ¢ is a continuous seminorm on Y,
be an arbitrary basic neighborhood of zero in <A[X, Y]. Now we
know that

G, =1{9eY" |9y = q(y) for all ye Y}

is an equicontinuous set of linear functionals on Y. By (1), 22 (My)
is precompact. An equicontinuous set of linear functionals is uni-
formly equicontinuous and, as G, is equicontinuous, G,(y) is bounded
and hence precompact in C for each ye Y. Thus, by corollary to
Proposition 2.1, G, is a precompact subset of % (£ (My), C). This
implies that there exists a finite subset {g,, ---, 9.} © G, such that

Golowuy C Lle 9ilzway + F0, 1/3),

where (0, 1/3) is the neighborhood of zero in .97 (57 (My), C)
defined by

Z0,1/3) = lge 7 (57 (M), ©):_sup |o(w)| <1/3) .

Let Vy be the B(X’, X)-neighborhood of zero in X’ given by
Vi ={feX" sup | f(@)]| = 1/3}.
z€ X

By hypothesis (2), 5#'(g,) is precompact for ¢ =1, ---, n. H'(g) =
9.H for all He 57, by definition, and hence the g, can be considered
as precompact mappings from 5% into X’'. By Lemma 2.2, the g,
have equal variation on 5%, which means there exists a finite cover
G, v, S5, of 27 such that

9.5 — 9,52, C Vy t=1 e nj=1 -, m.
Let H;e 27 for j =1, ---, m, again assuming, without loss of gen-
erality, that the 5#7’s are nonempty. We now claim that
& cUH; + 7 (My, q),
j=1

implying that 5% is precompact. (5% obviously consists of semi-
precompact operators by (1).) If He &%, then He 5% for some
jef{l, ---, m}. We show that H — H;c 7 (My, q). Let ze M, and
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ge Gq' As Gq I;z’(MX) c U'?=l 9; l%(MX) + @(O, 1/3), there exists a (/P8
1€{1, ---, n}, such that
sup l9y) —9(y)| = 1/3.

yex (My

Thus

[9(H — H;)(x)| = | gH(x) — gH;() |
= |gH(®) — 9,H(») + 9. H(x) — 9, Hy(x) + 9. H;(x) — gHy(z) |
= [(9g — 9)H(x)| + [(9.H — 9.H;)(x) | + [(9: — 9)H,() |
<13+13+1/3,

which means that for all xe My, geG,
l9(H — Hy)@x)[= 1.

By the Hahn-Banach theorem [24, Proposition 8, p. 191], for each
x € My there exists a ge G, such that

9((H — Hj)(@)) = o((H — H;)(@)) .

Hence ¢((H — H;)(x)) =1 for all xe My or q,,(H — H;) <1, which
implies that H — H; € 7°(My, q). This proves the converse statement.

We now give the essentially dual theorem as in [25, Theorem
2.2].

THEOREM 5.2. Let X and Y be locally conver Hausdorff spaces
with Y infrabarrelled. Then a subset 57 C A[X, Y] is a precom-
pact set of semi-precompact operators if and only if

(1) =2#~(x) s precompact for all xe X,

(2) &7 is collectively semi-precompact.

Proof. The theorem can be proved using similar arguments to
those in the proof of Theorem 5.1. However, we use Theorem 5.1
for our proof.

Assume % is a precompact set of semi-precompact operators.
By Theorem 5.1, 5#(x) is precompact for all xe X as each {x} is
bounded. This proves (1). As the adjoint mapping A is continuous
and linear, A(S#) = 57’ is precompact in <~[Y’, X'] and consists of
semi-precompact operators by corollary to Theorem 4.1. TUsing
Theorem 5.1 again, 57’ is collectively semi-precompact, proving (2).

Conversely, assume (1) and (2) hold. By (2), each H'e 57’ is
semi-precompact and hence, by corollary to Theorem 4.1, each He 57
is semi-precompact. We prove that (1) and (2) imply 5# |y, has
equal variation on M, for all bounded M, c X, for then the result
holds by Theorem 3.1, as a subset of .%7[X, Y] is precompact in
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27X, Y] if and only if it is precompact in A[X, Y] (as %X, Y]
has the relative topology). Let V, = {ye Y:q(y) < 1} be an arbitrary

basic neighborhood of zero in Y, where ¢ is a continuous seminorm
on Y. Let M, c X be bounded.

G,={ge Y |9(y)| = q(y) for all ye Y}

is equicontinuous and hence B(Y’, Y)-bounded in Y’. Thus, by (2),
7'(G,) = G,5# is precompact in X’, where X’ has its strong topo-
logy and coincides with the space 4[X, C]. Each element of G,57
is obviously a semi-precompact operator. Hence, by Theorem 3.1,
G,57 |y, has equal variation on M,;. We thus have a finite cover
M, -+, M, of My such that

[gH(M,) — gHM)| =1 i=1,---,m9eG, He2F .
If x, ye M,, we have
|gH(») — gH(y)| <=1 g9eG, He 57
or
[g(H(z) — Hy)| =1 geG, He 57 .

But by the Hahn-Banach theorem [24, Proposition 8, p. 191], as
H(x) — H(y)e Y, we know there exists a g€ G, such that

9(H(z) — H(y)) = ¢(H(») — H(y)) .

This says that q(H(x) — H(y)) <1 for all », ye M,, He 5%, which
implies that

HM,) — HM)cV, i=1 --- n HeS~.

Then, by definition, 5# |,, has equal variation on M,. We have
proved now that 5# is a precompact set of semi-precompact operators.

As a direct consequence of Theorems 5.1 and 5.2, we have the
generalization of Palmer’s result [25, Theorem 3.1] to locally convex
Hausdorff spaces.

THEOREM 5.3. Let X, Y be locally convex Hausdorff spaces with
Y infrabarrelled. Then a subset 57 C A[X, Y] is a precompact
set of semi-precompact operators if and only if

(1) =7 is collectively semi-precompact,

(2) =7 is collectively semi-precompact.

Proof. This is trivial using the more strict characterizations of
Theorems 5.1 and 5.2.
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Added in proof. Since submitting this article the author has
learned that some of his results on characterizations of precompact-
ness using the notion of equal variation and on generalizing Schauder’s
theorem have also been obtained, independently, by H. Apiola (“On
the tensorproduct and product Hom (f, g) of compact operators in
locally convex topological vector spaces”, Ann. Acad. Sci. Fenn. Ser.
A. I. Math., 544 (1973), 33pp.).
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