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THE RANGE OF A CONTRACTIVE PROJECTION
ON AN L,-SPACE

S. J. BERNAU AND H. ELTON LACEY

Suppose (X, Y, ¢) is a measure space, 1 = p < o and p #
2. Let L,= L,(X, 2, #) be the usual space of equivalence
classes of 3-measurable functions f/ such that | f|® is integrable.
A contractive projection on L, is a linear operator P:L,—
L, such that P2= P and ||P|| = 1. In this paper we give a
complete description of such contractive projections in terms
of conditional expectation operators. We also show that a
closed subspace M of L, is the range of a contractive projec-
tion if and only if M is isometrically isomorphic to another
L,-space. Another sufficient condition shows, in particular,
that every closed vector sublattice of an L ,-space is the range
of a positive contractive projection.

Most of our results are known. The case of finite /¢ was treated,
for p =1, by Douglas [2] and for 1 < » < <» by Ando [1] who
showed how to reduce this case to that of » = 1. These authors
obtained our necessary and sufficient condition. Grothendieck [4]
considered p =1 and general ¢ and showed that the range of a
contractive projection on L, is isometrically isomorphic to another
L,-space. Wulbert [11] showed that a positive contractive projection
on L, which is also L. contractive is a conditional expectation, and
pointed out that his proofs applied for p > 1. Tzafriri [10] showed
that for general ¢ the range of a contractive projection on L, is
isometrically isomorphic to another L,-space. In [5] we gave an
outline, based on Tzafriri’s, of another proof of this fact.

We obtain complete generalizations of the Douglas-Ando results
to the case of an arbitrary measure 2. We have chosen to give
our proofs in detail. It seems easier not to reduce the case » > 1
to the case p = 1. The proofs for p > 1 often use duality arguments
which are just not available for p = 1. By giving such proofs,
generalizations to reflexive Banach function spaces may be possible.
Some such generalizations have been tried by Rao [8] but his reduction
from arbitrary norms to the L, case is faulty and his Theorem 2.7
is false in general (see Remark 4.4). Duplissey [3] considers Banach
function spaces but requires || Pf ||. =< || f|l.. as well as P contractive.
We also avoid reducing to the case of finite measures. This device
turns out to be unnecessary, and needlessly complicated.

We have deliberately omitted the cases 0 < p < 1, except in the
appendix, and the case p = 2. A contractive projection on Hilbert
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space is an orthogonal projection and every closed subspace is the
range of a unique one. For 0 < p <1 the arguments for p =1
will work or can be modified to work. We no longer have a norm,
however, and it seemed best to ignore this case.

We have included a section in which we discuss the proof of
the famous theorem that if 1 < p < -, a Banach space is an L,-
space, if and only if it is an &5, for all A > 1, if and only if
it contains an increasing set of finite dimensional subspaces whose
union is dense and each of which is isometrically isomorphic to a
finite dimensional I,-space of appropriate dimension. This result is
a combination of work of Zippin [12] and of Lindenstrauss and
Pelczynski [7]. We discussed the real case in [5]. There seems to
some value in going over the results again here because both [5]
and [7] really consider only the real case. The extensions to the
complex case are technically more difficult than is admitted in [7].
Also we have had many questions about some of the details omitted
in [5].

In our final appendix we have given two technical results used
by Ando [1] and Tzafriri [10]. Our proofs seem a little easier and
Ando’s result has been generalized to arbitrary measure spaces.

1. Notation and definitions. We consider complex L,-spaces
throughout. Our proofs are valid, with obvious modifications in the
real case too. We use, for complex 2z, the version of the signum
function, sgn z defined by

z/lz] if z+#0

sgnz =
SRE=10 it z=0.

We modify some standard vector lattice terminology to apply in
the complex case. A closed vector sublattice of L, is a closed subspace
M such that if feM,RefeM, and if fe M and f is real-valued,
ff=fVvoelM.

If feL, write S(f) = {ze X: f(&) = 0} and call S(f) the support
of f. This only determines the support of f to a set of p-measure
zero. However, this will either not matter, or we will want all
possible determinations for the support of f. If Mc L,, the polar
of M, M, is defined by

t={ge L, |g] A |m|=00me M)} .

By |gl A |m| =0 we mean p-almost everywhere of course.) If M =
M-~ we call M a band (or polar subspace). If M is a band L, =
M M*, and the, natural, band projection J, of L, onto M is given,
for positive he L,, by
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Jyh =sup{ge M:0 < g < h}.

If feL, and M= f**, we write J, for the band projection on f-*
and note that, if 0 < he L,

Jh=sup{h An|flin=12 ---},

(indeed, by dominated convergence, b A 1| f|— Jh in L,-norm) while
for any he L,, J;h = %s k. The following lemma is easy to prove.

LEMMA 1.1. If M s a subspace of L, (X, 2, 1), he L,, and J is
the band projection on M- *, then there is a sequence (f,) tn M such
that Jh = lim (s )h.

Proof. Choose a sequence (f,) in M such that

sl lle — sup {[| xsnh|lo: f € M} .

We omit the remaining details.

REMARK 1.2. This lemma can be strengthened, in case M is
closed, to say that for each & e L, there exists f € M such that Jh =
Jh = ys»h. This depends essentially on the fact that the set of
supports of functions whose equivalence classes are in M is closed
under countable union. This is proved by Ando [1, Lemma 3] for
finite £, and we give a rather easier alternative proof in our appendix.

2. Preliminary results. In this section the cases p =1, and
1< p< eo, p=2, are treated separately. Our first lemma is based
on an argument of Douglas [2, p. 452].

LEMMA 2.1. Let P be a contractive projection on L(X, 2, 1)
and suppose f e .ZB(P); then

(i) PJ;=JPJs;

(ii) P(hsgn f) =|P(hsgn f)|sgn f (0 =he L)

(iii) || P(hsgn f)|| = [[J:A] (0 < ke L).

Proof. Suppose 0 £ h < |f], then

WAl — llksgn fll = |[f — hsgn ff
= || P(f — hsgn f)]]
=||f — P(hsgn f)|
=[£Il = [ P(h sgn f)]|
= |[fll = llhsgn f] .

This gives equality throughout so (iii) is valid for 0 <A Z|f]. In
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addition we have 0 < |f — P(hsgn f)| = |f| — |P(hsgn f)| p-almost
everywhere, and (ii) also follows for 0 < h < |f]. We extend imme-
diately to he L, such that 0 < & < n|f| for some 7, and since linear
combinations of such % are dense in f'‘ we have (ii) and (iii) for
0<hef*. If heL, and h =0, (J/h)sgn f = hsgn f so (ii) and (iii)
are proved.

For (i) take ge L, and put & = (Re (¢ sgn f))* sgn f, by (ii) Phe
f*+' so Ph = J;Ph. We conclude easily that

P(J;9) = P((g sgn ) sgn f) = J;PJg

and (i) is proved.

Suppose 1 < p < oo; then identify the dual of L,(X, 2, ) with
L/(X, 2, ) in the usual way (1/p + 1/¢ = 1). Let P be a contractive
projection on L,. The conjugate operator P* is defined uniquely on
L, by the equation

ng-gdy - Sf-P*gdpe (feLngel,).
Clearly P* is a contractive projection on L,.

LEMMA 2.2, [1, Lemma 1]. Suppose 1 < p < « and let P be a
contractive projection on L,(X, 3, 1), then fe . (P) if and only if
| f17~" sgn f e 2(P*).

Proof. Suppose fe .22(P); by Holder’s inequality
171 = {17 Pdg = (P71 P~ sen Fap

= \£-P20s1 sgn Paw

< | £l P*( £ 17~ sgn f)]l,
<111 /17" sgn 7l
=[£I F15"

=|f1lz.

The conditions for equality in Holder’s inequality lead to
PH(|f|"sgnf) = |f[""sgnf

as required. This proves necessity. Sufficiency follows dually.
We next generalize an argument in Ando’s Theorem 1 [1].

LEMMA 2.3. Suppose 1 < p < oo, p %= 2; and let P be a contrac-
tive projection on Ly(X, 2, p); if f e #(P) then,

(i) |flsgnge 2(P) (9e 2(P)),

(ii) PJ;,=J,P,
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(iii) P(hsgn f) = |P(hsgn f)|sgn f (0 < he L,).

Proof. (i) Suppose first that p > 2, let A e R, 0 < |\]| < 1, and
let g€ #(P). By Lemma 2.2,

g:=\"(f +rg["sgn(f + rg) — | FI"" sgn f) e 2(P*) .
Since p > 2,
=21 2P = 1P + M) + LIP30
=NASf + M P2 = 1 FP 2l + L7
Recall, that for real A and complex w,z, d/d\|w + N\]|];=
Re[zsgn (w + A\z)], provided w + Az %= 0. It follows that as A — 0,
9:— (p — 2| " Re(gsgnf)-f + |F "7

at all points of X where f = 0.
If 2|ng| < |f]| we have |fl2<|f+Oon|<2|f]if 0<O<L;
and, by the mean value theorem there exists 6, 0 < 8 < 1 such that

l9:l < (0 — 2)|f + Ong|"®| Re(gsgn (f + )| |f + rg| + | fI"]g]
= (p — 22" f P gl 2 f | + | f 17?9l
=(p— 22 +DIfI"*lgle L, .
If 2Ing| =z S, |f + x| = 3|2 and

la:] = MBI D7 + 21 )]
o (373'—1 __[__ 2?—1),glp—ll>\||?—2
=SE T+ 27)gl e L,

The penultimate line above shows that g,— O(x — 0) if f = 0.
This shows that g, converges to

9% =(—2)|f[*sgnfRe(gsgnf) +|7I"7,

pointwise almost everywhere on X and that the convergence is
dominated by an element of L,. Hence ||g; — ¢,]|, — 0 and g,€ Z(P*)
because .Z(P*) is closed.

By the same argument, applied to —ig, we have, using
Re — 1z = Im z,

ko= (p—2)|fI”*sgnfIm(gsgnf) + ¢|f|"*ge 2 (P).
Now,
9 — ke = (p — 2)| fI"*sgnf-(gsgnf) + 2| f "G

=(p—2)|f|"*sgnf-g-sgn f + 2| FI"*7
=p|fI"*ge .2 (P*) .
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(Note that this last is valid in the real case too.)
Using Lemma 2.2 again, we conclude that | | f |"2g|" 'sgn | f P27 =
[ fI7 Vgt sgnge A(P). Set
ko = L1700 g " sgn g (n=1,2--").
We have just shown that k, e <Z(P) and the same method, applied
inductively, gives k,c .Z2(P) for all n. Since 0 < ¢ —-1< 1,

[kl < max {|f1, g} = |F] + lgle Ly,

so (k,) is dominated in L,. Since k, — |f|sgn g p-almost everywhere
on X, we have ||k, — | f|sgn g||, —0 and since .2(P) is closed | f | sgn g ¢
A (P) which proves (i) for »p > 2.

Suppose 1 < p < 2; as we have already stated P* is a contractive
projection on L, and ¢ > 2. By Lemma 2.2, f, =|f|""'sgnf and
g, =|g"'sgng are in <Z(P*). By our proof above |f,|sgng, =
[ FI”'sgn ge Z(P*), and, by Lemma 2.2 again, |f|sgnge .2(P).

This completes the proof of (i).

For (ii) we have by (i), that | f|sgn Pke .#(P) (ke L,). By (i)
again,

J,Pk = | Pk|sgn (| f| sgn Pk) e <2(P) .

Thus J;P = PJ;P.’ _Further, since P* is a contractive projection on
L, and |f|”" sgn fe.22(P*) we have J,P* = P*J, P* with

g=|f""sgnsf.

In addition J, = J¥, since J, and J; are each multiplication by the
same characteristic function. We conclude

J;P = PJ,P = (P*JtP*)* = (P*J,P*)* = (J,P*)* = PJ,,
which is (ii).
(iii) The proof is like the proof of Lemma 2.1(ii). Suppose 0 <
h<|f|. By (i), |f|sgn P(hsgn f)e S#(P), so by Lemma 2.2,
[f 17 sgn P(h sgn f)e Z(P*) .
Hence,
I P sgn £)1171-ae = |P(hsgn £)-1£ 17 sen Plhsen 7)dy:
= {nsgn f-1£ 17 sgn Pl sgn ap
< fulrrage.

Also 0= |f —hsgnf|=|fl—-RL=|f]
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Hence,

s

i

[P([flsgn f)||fI7dp

I

IA

| P(hsgn f)[Lf 77 dee + EIP((lfI — R)sgn F||f17idp

IA

|
|| Pisgn £) + P71 - 1y sgn £ 17 d
|
|

RIFP g+ (£ = W17 P

LA -

We have equality at each stage and hence, (¢#-almost everywhere),
|71 = 1P(fIsgn )| = [ P(hsgn /)| + | f — P(hsgn f)].

This proves (iii) for 0 < h < |f|. The extension to 0 < ke L, is the
same as in the proof of Lemma 2.1(ii) and (iii) so we are done.

Il

3. Contractive projections and conditional expectations. In
this section we describe the contractive projections on L,(X, 2, 9
I=p< -, p=+2) in terms of conditional expectation.

We first need the necessary o-subring.

LEMMA 3.1. Suppose 1 < p < oo, p = 2, and let P be a contractive
projection on L,(X, X, ). Define 3, to be the set of supports of all
Sunctions whose equivalence classes are in F(P); then

(i) PLf=J,f (f ge BP));

(i) Y, is a o-subring of X.

Proof. (i) By Lemma 2.3(ii), (i) is valid if p = 1. We give a
proof that uses only the identity J,PJ, = PJ, valid for 1 < p < ¢,
p # 2 (Lemma 2.1(I) or 2.8(ii) weakened). Since f — J,fe€g* and
J.f — PJ,feg**+, we have

WP(f = I NN =If — PISI

=f = LI + | Jof — PLSI

= [|P(f = IO + 1. — PLSI".
Thus PJ,f = J,f which is (i).

(i) By (), S(F) ~ Sg) = S(f — J,f) = S(P(f — J,f) e . Thus
3, is closed under differences. If (f,) is a sequence of nonzero elements
in . ZZ(P) such that S(f,) N S(f.) = @(m # n) then
=227 full7 e 2 (P)

and S(f) = US(f,)- This proves (ii).
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COROLLARY 3.2. Let P be a contractive projection on Ly(X, X, 1)
I=p<oo,p#2). If he F(P)* there exists fec A(P) such that
he ft,

Proof. By Lemma 1.1 there is a sequence (f,) in .2(P) such
that o = lim,_ s k. Choose f e .ZZ(P) such that S(f) = U S(f.),
then ke f++.

Observe now that if f e L, the measure |f|’¢ restricted to any
o-subring, X, of X, is finite. By the Radon-Nikodym theorem we
may define the conditional expectation operator, &, = £(2,, | f|"), for
the measure | f|"¢ relative to 3,. &, is uniquely determined by the
equation

[ plrrae = @ mirrin (Aes)
for he L(X, 2, |f|"dr), and the condition that & i is 3,-measurable.

LEMMA 3.3. Suppose 1 < p < oo, p # 2; let P be a contractive
projection on Ly(X, 2, 1) and let 3, be the o-subring of X, consisting
of supports of functions in B (P). If M; = f~'J;FB(P)={f"'J9:9¢
FB(P)} then M; = Ly(S(f), ol S(f), | f 1" 1e) where 3| S(f) = {Ac X A
S(f)} and we make the obvious tdentification of functions on S(f) and
functions on X which vanish off S(f). In addition the map h— f'h is
an isometric isomorphism between J .72 (P) and L,(S(f), 2ol S(F), |1 11).

Proof. Observe that | f|"z is finite on S(f), and that the isometry
claim is obviously true. If Ae ¥,|S(f) then A = S(g) for some ge
#(P). By Lemmas 2.1 and 3.1 (if p = 1) or 2.3 (if p > 1) we have
J,f = PJ,f so that y, = f'J,fe M;,. Let h be a simple function
with respect to 3,|S(f). Then he M; and hf e .ZZ(P). In addition

|l rpde =\ (nrpdge .
We conclude that
M, > L(S(f), SIS0, | £1789) -

Conversely, let he M,, then he L,(S(f), 2|S(f), | f|#) and it is
enough to show that % is Y,-measurable. Let g = (ReZ)", then
gf € Ly(X, 2, t). By Lemma 2.1(ii) or 2.3(iii)

P(gf) = P(lgf|sgn f) = | P(lgf|sgn f)|sgn f
so fP(gf) =|F1""1P(gf]|sgn f)| e M;,. It follows that
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Reh = f'P((Reh)*f) — fP((Reh) f)e M; .

Since each of these functions is nonnegative it is sufficient to consider
0 <heM, Supposea >0andputhk =h\V a)sy. Arguing as above,
we have fP(kf) = h and f'P(kf) = a)s; so that f7'P(kf) =k =
0. Since P is contractive we have

WEfII" = |PENI = | PES) — kf + EfII
= | P(kf) = kAP + NIRST

This gives P(kf) = kf, so that ke M;. This shows, incidently, that
M; is a lattice. For our purpose, however, we have

{teS(f):h(t) > a} = {te S(f): (k — ays,)(E) # 0}
=Skf —af)e,.

Thus M, consists of Y ,-measurable functions and we are done.

THEOREM 3.4. Suppose 1 < p < oo, p %= 2 and that P is a con-
tractive projection on L,(X, 2, t). If fe Z(P) and he f+* then

Ph = &, | FIRST) -

Proof. Since f'Phe M, we know f~'Ph is Y -measurable. Thus
we have only to show

| sopnlsrde = npfrde (Aes).

Choose ge.<Z(P) such that A = S(g). By Lemma 3.1(i), u = J,f €
F#(P).
Suppose p =1 and 0 < ke L,. By Lemma 2.1(ii) and (iii),

| senseriflde = kdp= 1] = || P(esgn )|
= ||| P(J,k sgn /)| sgn £ ||
=\ fPUksen £)- 171z
Putting v = f —u = f — J,f ¢ Z(P), we have, by Lemma 2.1(i),
P(ksgn f) = J,P(J,ksgn f) + J,P(J,ksgn f) .

Hence

| S PUksen )1 fld = | 7 Psen f)-|Fldpe.

We conclude that



30 S. J. BERNAU AND H. ELTON LACEY

| hrifldp = ropheiflde

for all he f+* and all Ac X, so we are finished for » = 1.
If p>1 we have PJ, = J,P by Lemma 2.3(ii) and | f|**sgn fe
#(P*) by Lemma 2.2. Hence,

| pf 1 frdpe = | Tl 717 sgn Ty

Jh-P*(| 17 sgn f)d

PJ,h-|f "7 sgn fd

STPh-|fPdpe (Ael).

4

|
|

= 7,Pne g1 £ pag
|

Thus
Ph = f'&(Z | FINRFT) (ke f)

as claimed.
Our theorem has useful consequences.

THEOREM 3.5. Suppose 1 < p < oo, p # 2, let P be a contractive
projection on L, (X, 2, tt) and let J be the band projection on FZ(P)*+;
then PJ is the unique contractive projection on L, which satisfies
FB(PJ) = A (P) and PJZ(P): ={0}. If p+ 1, P= PJ so Pisuni-
quely determined by its range. If p =1, and A is a linear contraction
on L, which satisfies PA= A and AJ = 0, then PJ -+ A is a contractive
projection on L, with the same range as P.

Proof. Let Q be a contractive projection on L, such that .Z(Q) =
A (P) and Q#(P)* = {0}. Then @ = QJ and if ke L, there exists,
by Corollary 3.2, f € &Z(P) = <#(Q) such that Jh = Jh. By Theorem
3.4, Qh = QJh = &, | fFI")Jh- ') = PJh. Thus Q@ = PJ. (It is
clear that PJ satisfies the stated conditions.)

If p = 1 take &, f as above and put v = Ph — PJh = Ph — PJ:h =
Ph — J;Ph, by Lemma 2.3(ii). Since band projections commute and
we Z(P)n f, Jh=JJh = J,Jh =0. By Lemma 2.3(ii) again,

u =dJu=dJ,Ph— JPJh=PJh—JJ;Ph=0—-0=0.
Hence P = PJ as required.
If p=1,PA= A, and AJ =0, we have AP = AJP =0and A*=
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APA = 0. Also (PJ + Ay = PJPJ + PJA + APJ + A* = PPJ +
PJPA + 04 0= PJ+ A. Thus PJ + A is a projection. Observe that

B(PJ + A) = H(PJ + PA)c #(P) = #(PJP + AP)
= .@(PJ + A)P) c 2(PJ + A) .

It remains to show that if A is contractive, PJ + A is contractive.
If he L,

1(PJ + Al = || PJh + A(h — Jh)]|,
= || PJR||, + [[A(h — JR)]|,
< [|Jhl], + ||l — JR||,
= ||Jh + b — Jh]l,
= k]l .

4. Contractive projections and isometric isomorphisms. In this
section we prove the equivalence of various conditions on a subspace
of L, so that it is the range of a contractive projection.

Let &7(X, X) denote the set of Y-measurable functions z such
that S(k) is o-finite. By a multiplication operator on A(X, Y) we
mean a map h — kh defined for functions & in some subset of &7(X,
J) and some fixed X-measurable function k. If & satisfies [k| =1 on
S(k) we will call & a unitary multiplication.

A multiplication operator on $7(X, X) preserves equality almost
everywhere and hence induces a multiplication operator on each L,(X,
2, 1) into .&“(X, 3) modulo null functions (1 < » < ). Further, £,
and k, will induce the same such multiplication operator on L, if %,
and %, agree locally almost everywhere.

Suppose that .9 is a set of Y-measurable functions such that if
ky kye o7 and k, # ky, £(S(k)N S(k,)) =0. If fe.o”(X, 2) then,
because S(f) has o-finite measure, S(f) meets at most countably
many S(k), with ke 27, in a set of positive measure. Enumerate
these as (k,), then there is a unique set Ne 3 such that, NcS(f)
and each teS(f) ~ N lies in at most one set S(k,). (In fact N =
Uisnemce (S(k) N S(k)).)  On S(f) ~ N the series 317, f(¥)k,(t) has at
most one nonzero term. Thus .2 determines a map U, : (X, 2)—
(X, ) by taking, for f as above, U..f(t) = S, f(©k,(t) for te
S(f) ~ N and U, f(t) = 0 elsewhere. We call U, the direct sum of
the (disjoint) multiplication operators induced by the elements of 277
If U, maps L, to L,(1 < p < o) it is not hard to check that the
net of finite sums of the multiplication operators in %  is strongly con-
vergent to U, .

We can now state our theorem. The equivalence of (i) and (ii)
generalizes [1, Theorem 4] and extends [10, Theorem 6].
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THEOREM 4.1. Suppose 1= p < o and p=2 and let M be a
subspace of L,(X, 2, 11). The following conditions on M are equivalent.

(i) M is the range of a contractive projection on L,.

(ii) There is a measure space (2, &, ) such that M 1is isomet-
rically isomorphic to Ly(2, B, \).

(iii) There is a direct sum of unitary multiplication operators
U: L,(X, %, ) — LiX, ¥, tt) such that U is an isometry and UM 1is
a closed wector sublatiice of L,(X, X, p).

Furthermore, in (i) we can always choose 2 = X, 5 a o-subring
of 2, N absolutely continuous with respect to p, and the isometry a
direct sum of multiplication operators.

If p is o-finite the direct sums of multiplication operators can
be taken to be ordinary multiplications.

Proof. Assume (i). By Zorn’s lemma there is a maximal subset
2" of M consisting of functions f e M, such that p#(S(f,) N S(f2) =
0 if f, = f.. If ge M, S(g) is o-finite and there is countable subset
{fa} of 22 such that if fe 9 ~ {f.}, #(S(f) N S(g)) = 0. By Lemma
3.1, Y, is a o-ring so, there exists h € M such that S(h) = S(g) ~ U S(f.)
and by maximality of 9% h = 0. Define a measure » on 3, by N A =

Nire jg | f|°dge.  This definition is meaningful since A has o-finite
A

p-measure and at most countably many of the integrals are nonzero.
For fe o7 define f~' by

(1) teS()
FFO=10 iesy,

and let V be the direct sum of the multiplications f'(fe.#"). By
Lemma 3.3 Jh — f'h(h € M) is an isometric isomorphism of J.M with
L,(S(f), Z,|8(f), | fI’¢). It is routine to check that V is an isometric
isomorphism of M with L,(X, ¥, \). (M is the direct sum of its
subspaces J,M(f € .2%") and similarly for the L,-spaces.)

It ¢ is o-finite 27~ will be countable, say 2" = {f.} and we can find
fe M such that S(f)=US(f.). Then Y, consists entirely of subsets
of S(f) and sets of measure zero so that M, = L,(X, 2, |f|"t), J:M =
M, and V can be multiplication by f.

Assume (ii) and let T L,(2, B, \) — Ly(X, %, ) be a linear isometry
with range M. Suppose a, be L,(2, Z, \) and |a| A |b] = 0, we claim
that |Ta| A |Tb| = 0. This is essentially proved by Lamperti [6].
Since |a| A 16| =0, [la + b|” + ||la — b]|” = 2]|a||” + 2||b]|". Since T
is an isometry, || Ta + Tb|” + || Ta — Tb||” = 2|| Ta||” + 2|| Tb||". Since
p # 2, the equality condition for Clarkson’s inequality [6, Corollary
2.1] shows that |Ta| A | Tb]| = 0.

Take a maximal subset of 5 consisting of sets of nonzero finite
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M-measure which intersect pairwise in sets of A-measure zero and let
22" be the corresponding set of characteristic functions. Letae 2%
and suppose Be 5 and B S(a). Write b = )z, then T(a — b), Tb are
disjoint in M so we have Tb = |Tb|sgn Ta. This extends to non-
negative simple functions b in a** and then to all nonnegative be
att. Define U: L,(X, 5, p) — L,(X, X, t) to be the direct sum of the
unitary multiplications sgn Ta(a € .5%"). It is easy to see that U is an
isometry of M such that UT is positive and hence UM =UT L2, &, \)
is a closed vector sublattice of L,(X, 2, ¢t) (compare the proof
in Lemma 3.3 where we showed that functions in M, were -
measurable).

Assume (iii) and let Y, be the set of supports of functions (whose
equivalence classes are) in M. Then Y, is a o-subring of Y. (If (f,)
is a sequence in M, S(f,) = S(Uf,) = S(|Uf,|) so

U S(f.) = S(UZ27* | f. 7 U -

Iff,9eM,J,=Jdy,; J,|JUf| =lim |Uf| A n|Ug|e UM and S(f) ~ S(g9) =
S(UNUSf| — J,|UfD).) Let f,ge UM and suppose f is real, g =0
and fegtt, then {te X:(f/9)¢) > a} = S((f — ag)*)e X,. Thus flg
is Y -measurable. This extends to all fe UM N g** and hence J,f/g
is Xrmeasurable if f,ge UM and g = 0. This now extends to all
f,9¢ UM and, since U'J,f/U'g = J,f/g, we have f/g, ¥ -measurable
for f,9eM and feg*‘. It follows that M is the set of all
elements in L,(X, 2, ¢) which can be written in the form Af with
h, 2-measurable and feM. (If h = x5, with geM hf =J,f =
U'J,,Uf e U (UM) = M.)

Let J be the band projection on M**, let he L,(X, X, ¢), choose
f e M such that Jh = Jsh, (such an f exists by the arguments used
in Corollary 3.2) and define

Ph = f&(Z,, | f )RS .

Then Phe M and this definition is independent of the choice of f in
M such that ke f++. To see this suppose ge M and heg*‘. Then
h is zero outside S(f) N S(g)e X, and so is & (&, | f|")hf), p-almost
everywhere. Let B = S(f) N S(g9), then f, = xzf € M and

| prtrvae =\ nrispdn= | heoisipde (dez),

so that f&(Z, |fI"hf™) = [L&(3, | £1I)RSfTY). Thus we may as-
sume S(f) = S(g9). Now

g_lfg(zoy Iflp)(h’f—l)e Ll(Xy 207 [g|”p) ’
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so we have, for Ae 2,
| o F (S 1710 g P
= | g s 1 gl @, 17 g

Because ¢g7'f and f'g are 3,-measurable and the integrals are finite,
the second integral is

| g r1 s £ g = | kg ig P

Thus
LS | IS = 9 (2, [g ") (hg™)

and our definition of Ph is unambiguous. If A, h,e L, we can take
f e M such that Jh, = J;h, and Jh, = Jh,. Thus P is linear. Since
ST'Ph =&, | fIP)hf) we see P*= P. Finally, if p > 1, write
u =&, | FI")hf), we have

| PRz = g;u [P~ sgn @- & (3,, | £ ) hF)] F P .

Since u is Y-measurable, this is

Jlulsenans= s pap = || Prp- sgn fa-hd

= PR 1R
= [ PRI || R l5 -

(We used Holder’s inequality and ¢ for the conjugate index to p.)
We conclude that || PR, = ||R]]».

Since Ph = h(h € M) we have shown that M is the range of the
contractive projection P.

REMARK 4.2. The results (iii) implies (i) (with the same proof)
and (i) is equivalent to (ii) are valid if p = 2; in fact (i) and (ii) are
equivalent for any Hilbert space. If we assume the projection P, is
positive as well as contractive the proof in Lemma 3.3 that M, is a
lattice shows .ZZ(P) is a sublattice of L, and Theorem 4.1 is valid
for L, with the projection and the isometry both required to be
positive and in (iii) M required to be a closed vector sublattice. We
use this remark in our next result.

COROLLARY 4.3. If M is a closed wector sublattice of L, (1 =
D < o) then M is the range of a positive contractive projection.
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Proof. Clearly M satisfies condition (iii) with U= 1. In the
definition of Ph we may always choose a positive fe M such that
he ftt. Positivity of P follows from positivity of conditional expec-
tation.

REMARK 4.4. In the introduction we referred to Rao’s paper [8]
and claimed that its treatment of contractive projections contained
errors. In particular, his Theorem II. 2.7 asserts that if M is the
range of a contractive projection P on a Banach function space L°(Y)
there is, under suitable conditions, a unitary multiplication U such
that UPU™ is a positive contractive projection.

The conditions are all satisfied if M is the subspace of I*(3) = C*
spanned by (1,1,1) and (1, 2, —3). Rao’s theorem now claims the
existence of a unitary multiplication, say by » = (A, Xy, \s), such that
M is a vector sublattice of C®. This is impossible, as we show.
First, wM contains the elements (0, \;, —4\;), (A, 0, 5)\;), and (4r,, 5\,
0). If Rexx, = 0 we have M)Ayt = Mh; = 4 and wM contains Im (0,
ks, —4) = (0, =1, 0); so that (0,1, 0)euM, and uM = C® If all
Rexn; # 0 (¢ # ), then uM contains Re (0, 1, —4x;),) and Re(l, 0,
5\s\,); hence, taking a multiple of their infimum, (0, 0, 1)e M and
again uM = C°.

Exactly the same counterexample vitiates the proof of Rao’s
Theorem II. 2.8 see p. 177 lines —15 to —11.

The error in both cases seems to be the reduction of the general
case of Lr(Z) to the L, situation. Vital to this reduction, but invalid,
is the assertion that if L/(X)c L'(Z,G) and ||-||,¢ < o(-) then a
contraction on L°(X) for the p-norm can be extended to the closure
of Lr(X) in L'(2, G) with the 1, G-norm and that the extension is
contractive for the 1, G-norm.

5. The theorem of Lindenstrauss, Pelczynski, and Zippin.
We begin by recalling some definitions.

If E, F are isomorphic Banach spaces, d(E, F') = inf {|| L|| || L7"|}:
L is a linear isomorphism between E and FJ}.

A Banach space E is an &5, ; space (for 1< p < o and v = 1)
if for each finite dimensional subspace F' of E there is a finite dimen-
sional subspace G of E such that FFc G and d(G, l,(dim G)) < \.

We shall say that a Banach space E is a Z,-space (for 1 < p < )
if there exists a set 2 of finite dimensional subspaces of E such
that:

(i) % is upwards directed by set inclusion;

(ii) cdu=z =E;

(iii) each Fe 2 is linearly isometric to I,(dim F).

Our definitions apply, of course, over the real or complex number
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fields.
We now state the theorem of Lindenstrauss-Pelezynski-Zippin,
[51, [7], [12].

THEOREM 5.1. Let E be a Banach space and suppose 1 < p < oo,
then the following are equivalent.

(1) There is a measure (X, 2, tt) such that E is isometrically
isomorphic to L,(X, 2, t).

(2) E s a Z, space.

(3) E is an & ~space for all » > 1.

As outlined in the introduction we discuss some details of the
proof for the complex case.

Observe first that (8) is a trivial consequence of (1). Simply
identify E with L,(X, 2, ¢) and take for 2  the subspaces spanned
by finite sets of (pth power)-integrable characteristic functions.

The proof that (3) implies (2). This result is certainly part of
the folklore. It can be obtained quite efficiently as follows.

LEMMA 5.2. Let x, --+, %, be n linearly independent elements
of a normed space E then there exists € > 0 such that if y,€ E, and
o, — i)l <e(@ =1, 2, ---, m) then {y,, -, ¥.} is a linearly independent
subset of K.

Proof. (This is standard but our proof may be novel.) Let K
denote the scalar field and S the unit sphere in K*, S = (N\C K™ ||\ =
1}. The map g:S x E™— E defined by g((Ay, <+, M), 0y =+ ¢, Ya)) =
MY, + oo + A, is continuous. By linear independence, the compact
set S x (%, -+, x,) does not meet the closed set ¢~'(0). Hence there
are open neighborhoods U, of x,7 =1, ---, n, such that (S x U, x

-xU)Ng'0)=2. If yeU@k=1,---,u) it follows that {y,
«++, Y.} is linearly independent.

LEMMA b5.3. Let E be a Z,-space, then E is an &5 -space for
every N > 1.

Proof. Let F be a finite dimensional subspace of E. Let {x,
-+, %,} be a basis for F, such that ||z,||=1(¢=1, ---, n). Let a7,
-+, 2¥e E* be such that x}(x;) = 0,;, and let M = 3, ||2¥||. Choose
¢ >0 such that Me <1 and ||z, — y;|| <& for 4 =1, ---, n implies
that {y,, -+, ¥.} is linearly independent. By the Z,-hypothesis there
is a finite dimensional subspace H of E and points y,, ---, ¥, in H,
such that H is isometrically isomorphic to l,(dim H), and ||z, — v,|| <

et=1,---,n). Then {y, ---, y,} is a linearly independent subset of
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Since Me < 1 we conclude that a, =0 for each ¢. Thus we can
extend y, -+, ¥, to a basis, say ¥, ***, Yn, Tuss, ***, Tpy of H with
the property that {#,.., «--, @} © N, A+ (&F).
Let G be the subspace of E spanned by @, -+, Tu Zuss, ***» To-

Then FcG. If y=>r ay, + >, ax € Hdefine Ty = 3%, a2, +
Stanax,eG. We have

lly — Tyl| Hgai(yi—xi){ geglazl

=<3, |5(Ty)]
< Me || Ty|.

This gives (1 — Me)||Ty|l = llyll = 1 + Me)|| Tyl|(y € H); so that T
is an isomorphism between F and H such that ||T]|||T7'] =
(1+ Me)/(1— Me). If A >1 we can choose ¢ such that (1+ Me)/(1—Me)<
A. Thus E is an &, -space for all A > 1.

The proof that (2) tmplies (1). Here the plan is first to embed
E, isometrically, in an L,-space, and then to use the theory of con-
tractive projections of L,-spaces.

This is carried out in detail for the real reparable case in [7]
and for the real nonseparable case in [5]. The generalizations to
cover the complex case are mostly obvious. For 1< p < « our
Theorem 4.1 is used. For p» = 1, it follows as in the real case that E*
is a & space whence by the complex version of Grothendieck’s
theorem [9] K is an L (u) space.

There is an aspect of the construction which needs a little elabora-
tion. At one stage of the proof we have a complex vector space,
say V, consisting of complex valued functions on a set U. V is a
vector sublattice of the space of all complex functions on U. There



38 S. J. BERNAU AND H. ELTON LACEY

is a seminorm 7w on V such that #(f) < 7(9) whenever | f| < |g|, and
o(f + 9)" = n(f)’ + w(g9)" whenever |[f| A |g] =0. We then need to
embed the quotient V/N, where N = {f e V:z(f) = 0}, isometrically
in a concrete, complex, L,-space. For this, let V; and N, denote
the spaces of real-valued functions in ¥V and N respectively. The
quotient V/N, with the norm induced by = is then linearly and
lattice isomorphic, and isometric, to a vector sublattice of real
L,(X, %, 1) just asin [7]. Let k4, denote the composition of the quotient
map U, — V;/N; and the isometric isomorphism into real L,(X, ¥, p).
Then h, is a linear and lattice homomorphism and ||k, f || =7(F)(f € V).
We construct the required embedding of V/N into complex L,(X, %, t)
by defining

W(f + N) = h(Re f) + ih(Im f) .

Then & is clearly well defined. To verify that & is an isometry we
need the next lemma.

LEMMA 5.4. The map h constructed above satisfies h|f| = |hf],
(feV).

Proof. For any real 6 |f| = Re(e”’f) so
Rl f] = h|f] = h(Ree’’f) = Reh(e?’f) = Ree?’hf .

Hence & |f| = |hf]. For the converse, let ® be a complex nth root
of unity and observe that for any complex 2z

max {Rewz:r =1, 2, ---, n} = cos(n/n)|z] .

Hence,
cos (m/n)h| f| < h(sup {(Re w"f):r =1, -, n})
=sup {Rewhf:r=1, ---, n}
= kS
Letting n— oo we have h|f]| = |hf]| as required.

This completes our discussion of the proof of Theorem 5.1. We
add a comment. It seems that a more elementary proof that a space
which is an & -space for all X > 1, is an L*(¢) space, should be
possible. Certainly the result should not depend on the entire theory
of contractive projections for such spaces. Indeed if p = 2 the &5,
condition already implies the parallelogram law and this makes the
space a Hilbert space. For p % 2 we can see that the Clarkson
inequalities are valid and these with enough finite dimensional [,-
subspaces might give a more elementary proof.
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6. Appendix. We prove two technical results used in [1], [10].
The first is also an extension of that in [1].

LEMMA 6.1. [1]. Suppose 0 < p < o and let M be a closed subspace
of L,(X, 2, tt). If (f.) is a sequence in M, then there exists fe M
such that S(f) = Uy S(f,). In particular if p is finite or M s
separable there exists f € M such that J; = J,; . .; that 1s, f s a function
wm M of maximum support.

Proof. If f,ge L, and « is a scalar, the zero sets {te X:(f +
ag)(t) = 0} have disjoint intersection with S(f) U S(g) for differing
values of @. Since S(f) U S(g) is o-finite, £(S(f) U S(¢) ~ S(f + ag)) =
0 except, perhaps for countably many values of a.

Assume, as we may, that S[fn ? =1 for all n. We define, induc-

tively, two sequences («,), (¢,) of positive real numbers such that, if
we write g, = a,f, + --- + a,f,, A, = {te X:|g,(t)] < ¢,}, and B, =
{te Xi|a,..f,(t)] = ¢,/2}, then

(i) a,,<2™? and ¢,., < ¢&,/2;

(i1)  £(S(g,) U S(f 1) ~ S(9241)) = 0;

(iii) SA! | £ 1Pdp < 27 (=12 ).
Start with on = 1. Suppose «,, ---, &,; &, -+, £&,, have been chosen.
Note that p#(S(f;) ~ S(g,)) =0@ =1, ---,m) so if C. = {t e X: |g,(t)]| =
g, Sc|fmdp—»0(e—»o +)yfori=1,---,m. Also if

D, = {te X: | funl®) Z7), | 1 FlPdp— 007 — =) fori = 1,

Thus we choose ¢, such that 0 < ¢, < ¢,_,/2, and S [ flfdpe <2778 =

1,2, -+, n); then choose 7 such thatg | f)Pdpe < 27771 = 1, 2, n),

and «,., such that 0 < a,., < 277, (11) is satisfied, and «,.,p < en/2
Since B, < D, we also have (iii) satisfied.

By (i) (¢,) converges in L, to an element f ¢ M, and S(f) < U S(f.).
Let £ =limsup(4,UB,) = Ny Ur-. (4, U B,). Fix 7 and let N >
1, then, by (iii)

SEI flrdp

A

" /Ms «Ms —

oIl

nUBy

IA

SM A

-n

IA

Y0 (N— o).
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Thus #(E N S(f;) =0 for all ©+ and (BN US(f.) =0. We complete
our proof by showing that X ~ EcS(f). If te X~ E choose the
smallest integer n such that t¢ Ur.. (A, U B,), then |g,(t)] > ¢, and
|2 f 6] < &2 < &,/25"(k Z n + 1). Hence

[9:0)] = 9.0)] — |Cirfari®)] — -+ — |arfiu(D)]
> |g.t)] — €27 + --- + 2757
> 90| — e, (k>mn).

Thus | f(¢)| = lim,_.. |9.(t)| = |9.(t)| — ¢, > 0, and we are done.

LEMMA 6.2. [10]. Let M be a separable subspace of Ly(X, 3, tt)
(p=1) and T a bounded linear operator on L,. Then there is a
o-finite set X, 3 and a o-subring 3, of X such that Y, consists of

subsets of X, and Ly(X,, 3, ) is separable, T-invariant and contains
M.

Proof. The subspace M + TM is separable, T-invariant and
generates a separable vector sublattice M, of L,. Inductively con-
struct separable vector sublattices M, such that M, + TM,c M,.,.
Then ¢l U M, is a separable T-invariant closed vector sublattice of
L,. Writing K, = cl UM, we have K, closed under all band projec-
tions J, with xe K,. Let ¥, = {S(z): e K} then Y, is a o-subring of
Y and if 2, ye K, with e y** then a/y is X ,-measurable. If (f,) is
dense in K, f = 227"|| f. 7' f.l€ K, and p(S(z) ~ S(f)) = 0(z € K)).
Consider L,(S(f), X, p#). It is easy to see that this is the closure of
the vector sublattice spanned by K, and the functions ¥;-i,.; with
« positive rational. Thus, writing X, = S(f) we have

Kl C LP(XU Zly ‘L!)

with L,(X,, ¥, ¢t) separable. Continue inductively, we obtain a sequence
X, cX,c---cX,c--- of o-finite subsets of X and a sequence
. cY,c---c2, -+ of o-subrings of 5, such that each X, con-
sists of subsets of X, L,(X,, 2., 1) + TLAX,, 2, 1) C L(X,11, Tois 1)
and each L,(X,, %, #) is separable.

Let K, = cl Uz, L(X,, 2., tt). Then K, is a separable T-invariant
closed vector sublattice of L,(X, 2, ). Define 3, = {S(f): fe Ky}
and find, as for K, f € K, such that p(S(x) ~ S(f)) = 0(we K,). Itis
routine to show that K, = L,(S(f), ¥, ). This proves our lemma
with X, = S(f).

Added in Proof (October 1974). In a manuscript, “A local
characterization of complex Banach lattices with order continuous
norm,” submitted to Studia Math., the authors have given a necessary
and sufficient condition for a complex Banach space to admit a lattice
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structure so that it is a complex Banach lattice with order continuous
norm. The condition is automatically satisfied if the Banach space
is an &,,; space for every A > 1. This does provide an elementary
proof that such spaces are L,-spaces.
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