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ON BOUNDARY FUNCTIONALS AND OPERATORS
WITH FINITE-DIMENSIONAL NULL SPACES

FRANKLIN T. IHA

Let L be a closed operator on a Hubert space 3ίf defined on
a linear manifold 2 of 'M with the property that L has a
continuous right inverse T and that the dimension of the null
space of L is finite. A boundary functional 17 for L is defined
to be a linear functional η on 3) such that ηT is
continuous. The boundary-value problems for ordinary
differential equations are generalized to the operator L with the
boundary conditions defined by a set of boundary
functionals. It is shown, in particular, that if K is a continuous
right inverse of L, then there exist n linearly independent
boundary functionals, 171, , ηn, where n is the dimension of the
null space of L, such that the range of K is precisely the linear
manifold {ueS)\ηj(u) = 0J = 1,2, •• ,n}.

We make a further abstraction on the generalized homogeneous
boundary-value problems of ordinary differential equations treated in
[4]. Moreover, we prove that the condition imposed in [4] on the linear
functionals defining the boundary conditions is not only sufficient but
necessary in order to obtain a continuous right inverse.

In earlier works concerning generalized boundary-value problems,
such as found in the survey article [5] by Whyburn, no consideration is
given to the continuity of the right inverse of the differential
operator. Yet, if we examine how boundary-value problems arise in
application, we see that the right-hand side of the the equation Ly = / is
usually a force function which is at best an approximate description of
the force acting on the physical system. Thus, without the considera-
tion of the continuity of the right inverse, the solution of a boundary-
value problem must be regarded as incomplete. It is interesting to note
that in all the boundary-value problems arising in application involving
an nth order differential equation, conditions are never imposed on the
nth derivative. From equation (8) of [4], we see that the linear
functional η defined by η(u) = w(π)(c), u E C"([a9b])9 where c E[a9b]9

does not have the property that ηT is continuous (with respect to the V
norm), where T is a continuous right inverse of the differential operator
L. We show in this paper that the linear functional η must have the
property that ηT is continuous in order to obtain a continuous right
inverse. Thus, even if such a boundary condition did arise in applica-
tion, the solution of the boundary-value problem would not have been
usable.
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Boundary-value problems considered here are actually much more
general than the usual generalized boundary-value problems for a single
nth order equation. Very little use is made of the properties of
differential operators, and consequently, the treatment is set in the
language of a Hubert space. Similar abstraction of the generalized
boundary-value problems for systems of differential equations consi-
dered by such authors as Whyburn [5], Cole [3], and Bryan [2] can
possibly be made, but it is not undertaken here.

2. Notations, definitions and a lemma. Throughout this
paper Sίf denotes a Hubert space and L a closed operator from 3 C 3€
into 5ίf, where 3 is a linear manifold not necessarily dense in Sίf. We let

(1) if = {u G3)\Lu =0}

and we assume dim if = n <o°. We also assume that there exists a
linear operator T on X having the following properties:

r LTf = f for all /G3ίf;
( 2 ) 111 Γ/H ̂ c 11/11 for all feX,

where c is a constant. Following the terminology used in [4], we make
the following definitions.

DEFINITION 1. A linear functional η defined on 3 is said to be a
boundary functional for L if ηT is continuous.

DEFINITION 2. A set {ηu , η,} of boundary functionals is said to
be linearly independent if the set of their restrictions to if is linearly
independent, that is, if Σ{=1 a^}(u) = 0 for all u G if implies α, = 0 for all
j , 1 ̂  j ^ /; or equivalently, if for any basis {uu , MΠ} of if the rank of
the matrix [^(w,)] is /.

The following lemma shows that the property of a linear functional
η being a boundary functional for L depends only on L. Because of
the rather remarkable property, we give the lemma in a slightly more
general form than needed in this paper.

LEMMA. Let L, 2), and if be as defined above. Let L have an
additional property that dimN(L - λl) <°° for all AEC, where
N{L - λl) is the null space of L - λl and C is the set of all complex
numbers. Let A,, λ2 G C and K{ and K2 be continuous right inverses of
L - λj and L - Λ2/, respectively. If η is a linear functional defined on
3) such that ηK} is continuous, then ηK2 is also continuous.
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Proof. Let uE3). Then,

(L - λ,J) [K,(L - λ,/)M - M] = 0

so that

K,(L - λ,/)ιι - w e Λ"(L - λ,/).

Since K2W C 2>, it follows

Kt(L - λ,I)K2f - K2f E JffJL - λ,J)

for all / e Sίf.

Let {z,, ,zm} be an orthonormal basis for Jf(L - λ,J). Then,

(3) K,(L - Σ ft

where

αy ='(K,(L -kJ)K2f-K2f zι), j = 1, ,m.

Since (L - λJ)K2f = f + (λ2 - λι)K2f, we see that the map <£* :f^ak is
continuous. From (3) we obtain

η(K2/) = τ,(K,(L " λ,/)KJ) - § ^ωηCZy).

From this and from the continuities of X l9 K2, &* and (L - λ!/)X2, the
continuity of ηK2 follows.

We use this lemma essentially for the case λ! = λ2 = 0, and for this
case we do not need the assumption that dim Ji(L - λj)<<χ> for all
λ GC.

3. Generalized boundary-value problems and spec-
tral theorem. We begin with a theorem which is an immediate
generalization of Theorem 1 of [4] and can be proved in the same way.

THEOREM 1. Let L,%£f and T be as defined in §2. Let
iVu'' ',ηn} be a linearly independent set of boundary functionals for L,
and let

M={u e
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Then there exists a continuous operator K form %t onto M such that
LKf = f for all / E 5ίf.

We now prove converses of this theorem.

THEOREM 2. Let L, 3 and if be as defined in §2. Let {ηu , ηn}
be a set of linear functional on 3 such that their restrictions to if are
linearly independent. Let M = {u E 3 | η,(u) = 0, 1 ̂ / ^ n}. // f/ιe
πg/iί inverse K, which does exist, from ^ into Jί is continuous, then each
Ύ]] must be a boundary functional for L.

Proof. By the definition of K,Kf<ΞM for all / E Sίf, and so
η,(Kf) ~ 0 for all / E $f. Hence each r^K is trivially continuous and
the assertion follows from the Lemma.

THEOREM 3. Let L, 9b and if be as defined in §2. // K is a
continuous operator from ffl into 3) such that LKf = ffor all f E Sίf, then
there exist n linearly independent boundary functionals ηnj = 1,2, , n,
such that

where $fc(K) is the range of K and n — dim if.

Proof. Let {y,, , ytt} be an orthonormal basis for 6Λ Define
by

= (u -KLu, y,), M E 9 , / = 1,2, •• ,n.

Then, η](Kf) = 0 for all / E Sίf, and so each r/yK is trivially
continuous. Thus, from the Lemma, each η, is a boundary functional
for L.

Let a, E C such that Σ"=1 «yτ7; (w) = 0 for all u E if. Then, putting y*
for u, we obtain α̂  = 0, k = 1, , n. Hence, {T/!, , ηn} is linearly
independent in the sense of Definition 2. Let Jί = {u E S | r//(w) = 0,
l g j ^ n } . Let lίESΪ(K). Then II = K/ for some /ESίf and so

= 0,forallj,j = 1, ,n. Hence, w E^ί
Let M G J . Then

, yy) = I7J(M) = 0, 1 ̂  j ^ n.

Hence, w - KLu E 5^\ the orthogonal complement of if. But L(u -
KLu) = Lu- Lu = 0, so that w - KLu E 5̂ . Hence w - KLu = 0 or
w = K(Lu), so that u<Ξ2ft(K) and so ̂  C«(X). Hence ^ = 9t{K\
which completes the proof.
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The question arises as to what happens if the set M is defined by
two sets of linear functionals, one of which is a set of boundary
functionals. The next result settles this question.

THEOREM 4. Let L, 3 and ίf be as defined in §2 and assume L has
a continuous right inverse. Let {ηu- -,ηn} be a set of linearly indepen-
dent boundary functionals for L and let

M = {u E 3) \ηj(u) = 0, i^j^n}.

If {£i> •">&} is a set of linear functionals on 3 such that their
restrictions to Sf are linearly independent and M ={u G2>|§(w) = 0,
1 ^ / ^ n}, then each £ must be a linear combination of τ//s.

Proof Let {yu , yn} be an orthonormal basis for $f. Then the
matrices [η((y/)] and [£(y,)] are invertible. So let [αι;] and [j8lV] be their
inverses, respectively. Let

n

ζι = Σ "Mi

Then, we have ζi(yi) = δij and ζf

i(yj) = δip 1 ^ / ^ m , l^j^n. Since
{rfi, , τ/n} is a linearly independent set of boundary functionals for L,
by Theorem 1 there exists a continuous right inverse K of L from X
onto M. Then ηy(K/) = 0 = ξ}(Kf) for all / G 3ίf, / = 1, , n. Hence,
ζ XKf) = ζ\(Kf) = 0 for all / G Sίf, 1 ̂  i ^ n. Let M G 9 . Then Lw G Sίf,
so that KLu E Λ£. Moreover, u - KLu E SP, and so u =

KLu + Σ " _ rΛ f° r some ry EC. Hence it follows that

ζi(u) = ri and

Thus, ίf(iι) = fί(iι) for all w 6 ® , o r Σf=1/3I;$(M) = Σf=1 Q:/7^(M) for all
u E S, / = 1, , n. Since the matrix [βι7] is invertible, it follows there
exist fa E C such that

), i = l,2, ,m.

We want to state the immediate corollary of these theorems with
respect to differential operators. Let P(x, D) =Σΐ=oak(x)Dk and let /
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be an interval, may be finite or infinite. If ak 's are sufficiently differen-
tiate, i.e. ak E Ck{I), then it can readily be shown that the operator
u->P(x, D)u from CZ(1) CL\I) into L\I) is closable, where CX

O(I) is
the set of all infinitely diίferentiable complex valued functions with
compact support in I. Let L be the closure of the operator
u -> P(JC, D)w, u E Cl(I) in L\I). Let 3) be the domain of definition of
L, if the null space of L and dim if = n. With these definitions, we
have

COROLLARY. // L ftαs α continuous right inverse T and if
{yij" ΊVn} is a linearly independent set of boundary functionals, then
there exists a continuous right inverse K of L such that

&(K) = {u<Ξ2\ τfc(ιι) = 0, 1 ̂ / ^ n).

Conversely, if K is a continuous right inverse of L, then there exists a
linearly independent set of boundary functionals, ηu , ηn9 such that

9t(K) = {u E 2) I τ/y(M) = 0, 1 ̂ / ^ n}.

Moreover, if {£i, •••,&} is a set of linear functionals on 2) whose
restrictions to if are linearly independent and

& (K) = {u E 2 I £f (K ) = 0, l ^ j g n } ,

then each ^ must be a linear combination of rj/'s.
We now put Theorem 5 of [4] in the general setting, keeping in mind

a possible application to singular boundary-value problems which were
not treated in [4]. Since a part of the proof is almost exactly the same
as that of Theorem 5 of [4], that part of the proof will only be sketched.

THEOREM 5. Let L, $f, 3) and if be as defined in §2, and assume
that L has a continuous right inverse. Let {r/,, ,r//} be a set of
boundary functionals in which {ηu - , ηr} is linearly independent in the
sense of Definition 2, and let

Let Jί = if Π Mo, so that dim M = p = n-r and let q = I - r. Let
{ψi, , ψp} be an orthonormal basis for X. Define ζ, by

(f,Ψi), few, / = I, ,P,

and let
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Then there exists a continuous right inverse K of L from ^ onto Mx. If
moreover, L is self-adjoint on Mo, that is, if (Lu,v) = (u,Lv) for all
u,v G Mθ9 then there exists a spectral measure E such that

Proof. It can readily be shown that {η,, , ηn ζu >,ζp} is a
linearly independent set of boundary functionals. Hence the existence
of the continuous right inverse K of L from 3€ onto Mλ follows from
Theorem 1. To prove the second part, we first show, just as in the
proof of Theorem 5 of [4], that every f G 3€ can be written as

(5) f = 8 + Σ(f,Ψ,)Ψ,
ί = i

with g G L(M0 Π Mx), the image of Jί0 Π Mx under L. From this we can
show that L{MQΓ\MX) is invariant under K.

It can readily be shown that L(MonM]) is a closed subspace of
$ί. Hence if we denote by Ko the restriction of K to L(Mo Π Mx), Ko is
bounded self-adjoint operator on the Hubert space L(M0Γ\ Mi) and so
there exists a spectral measure f?0, whose values are projection
operators on L(M0Γ)M{), such that

Kof = ( I λdEo) /, fEL(Mon Mλ).

Let P be the orthogonal projection of 3€ onto L(MODMX). If δ is a
Borel set in σ(K0), the spectrum of Ko, define E(δ) = E0(δ)P. Then E
becomes a spectral measure in the usual sense (c.f. [1]). Let / G Sίf and
let

Then, it follows from (5) that

Kg = ( I λdEo)g = ( I λdEo)Pf = ( I λdE)/,

so that

Σ
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