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ON SEMI-SIMPLE GROUP ALGEBRAS (I)

EUGENE SPIEGEL AND ALLAN TROJAN

For F a field and G a group, let FG denote the group
algebra of G over F. Let ^ be a class of finite groups, and
^ a class of fields. Call the fields F± and F2 {Fte^i = 1, 2)
equivalent on S? if for all G, He &, FiGczFtH if and only
if F2G~F2H. In this note we begin a study of this equiva-
lence relation, taking the case where ^ consists of all finite
p-groups and ^~ those fields F, for which FG is simi-simple
for all Ge Sf.

1* Let ζn denote a primitive wth root of unity (over the field
under consideration). Throughout the paper, p will denote a fixed
odd prime, and all fields will be assumed to be of characteristic
distinct from p.

For reference, we begin with a result from field theory.

PROPOSITION 1.1. Suppose F is a field and Ω an extension field
of F. Let Ki = 1, 2 be fields such that Fa Kid Ω, and assume that
KJF is a finite Galois extension. Then the following are equivalent.

( i ) Kx and K2 are linearly disjoint over F
(ii) JEi (g)F K2 is a field
(iii) Kx®rK%czKxK*
(iv) K1f)K2 = F.

Proof. See [1] page 78 and page 149.

Let G be a group of order pn and K a field. We discuss the
structure of KG.

By Maschke's theorem KG cz X Aif where At ~ [K]n. (x) Dt, A is
a finite dimensional division algebra over K, and [K]n. denotes the
ring of nt x nt matrices over K.

If K is a perfect field, then Ax cz K and for i Φl, the center
of Di is isomorphic to K(Xi) = K([Xi{g) \ geG}), for some nonprincipal
irreducible character χ* of G, K(Xi) c K(ζpn). If T is any nonprincipal
irreducible representation of G into the m x m matrices over an
algebraically closed field F then T(G) is a finite p-group and thus
contains an element S of order p in its center. Since T is irreducible,
this central element must be a scalar matrix of order p, that is, a
scalar matrix with diagonal element ζp.

Let χτ be the character associated with T. Then there is an
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element geG, such that χτ(g) = mζp. As (char F, m) = 1, we have

Suppose, first, that K is a prime subfield. If K is finite then
Dt being a finite division ring must be the field K{χϊ), which if K
is the rational field, by a theorem of Roquette [5], p. 249, again

Assume, now, that K is an arbitrary field with prime subfield
F. GF-F&Σ, (WU ® F(χ,)) and ί (ζ,) c Ffo) c F(ζ,.). Let S, =

χ.) Π J5Γ and β, =
Then

umm

K(Xi) Θ Θ K(Xi) by Proposition 1.1

@..®F(χt))®SiK. see, e.g. [3] p. 177
i summands)

But,

KG ^

Hence we have shown

LEMMA 1.2. Let K be a field and G a group of order pn. Then
KG ~ Kφ Σ Bi where Bt ~ [K]ni ®κ Kt and JT4 are fields such that

ζ C K(ζpn).

THEOREM 1.3. Let L be an extension field of the field K. Let
G and H be groups of order pn. Suppose K(ζPn) is linearly disjoint
from L(ζv) over K{ζr). Then KG ^ KH if and only if LG cz LH.

Proof. If KG =: KH, then LG ~ KG®KL ~ KH®KL ~ LH.
Conversely, suppose LG ct LH.
From Lemma 1.2, KG =; £Γφ Σ ([^J^ ®κKι), where Z", is a field

such that K(ζ,,)cLK(c:K(ζpn). By Proposition 1.1, K(ζpn) f] L(ζp) =
K(ζP). Let Bt = LΠ K{. Then β 4 c (L(ζ,) n ί ( ζ , )) c ίίC,), so that
i?i = L Π -K"(Q, i.e. Ri is independent of -i. Write E( = B and
r = dim [R/K].

- (JSΓ* θ θ Ki) ®R
(r summands)

~ LKt φ φ LKi by Proposition 1.1
=: rLKt
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Let LKt — Li so that

L(C,)cL,cL(C,.).

Then

LG ~ KG(g)κL

Pick Si such that Kt = K(ζpSi) and 1 ^ βt ^ n.
We clearly have

deg [L(M/L(ζpU)] ^ deg [K(ζp«)/K(ζ9.t)]

and

deg [L(ζpSi)/L(ζp)] 5g deg [ i f(ζ p S i )/#O .

But L{vn) = LK(ζpn) is a Galois extension of L, so that

deg [L(ζpn)/L(ζp)] - deg [K(ζpn)/(K(ζpn) Π

= deg [K(ζpn)/K(ζp)} .

Thus

deg [L(ζpn)/L(ζpSi)] = deg [^(C J/XίC,.,)] .

Since

deg [L(C,.)/Ir(C,.O] = deg [LtK{M)/Lt] = deg [JΓ(ζ, )/(Jr(ζ,. Π L%)\ .

We must have

) ΠLi = K(ζpSi) = Ki .

This together with (*) shows that KG is determined by LG. The
result follows.

If L is an extension field of the field K, we call A the maximal
abelian p-extension of K in L if A is the composite of all finite
abelian ^-extensions (of degree a power of p) of K in L.

COROLLARY 1.4. Let L be an extension field of the field K.
Suppose A is the maximal abelian p-extension of K in L. Let G and
H be groups of order pn. Then LGczLH if and only if AGczAH.

Proof. Lf)A(ζp«) c i ( Q , and (deg [L(ζP)/L], p) = 1, so that
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L(ζp) Π A(ζpn) = A(ζp). The conclusion now follows from Proposition
1.1 and the theorem.

COROLLARY 1.5. Let L be an extension field of the field K.
Suppose that K is algebraically closed in L. Let G and H be groups
of order pn. Then KG cz KH if and only if LG a LH.

2 Let K be a field. The p-sequence {
of K is defined as Ύp(n) = deg [K(ζpn+2)JK(ζpn+i)]. {vp(n)} is of one of

the following three types, (see [8]).

P, P, P,

1, 1, 1, . . . 1, p, p, p, -•-

1,1, 1, •

Define the p-index of K = 0 if 7p(0) = p
n if yp(n) — p and Ύp(n — 1) = 1

oo if Ίp{n) = 1 for all n.
In [8] the following proposition is proved.

PROPOSITION 2.1. Let K and L be fields. Then K and L are
equivalent on the class of all finite abelian p-groups if and only if
the p-index of K equals the p-index of L.

PROPOSITION 2.2. Let K and L be fields of the same characteristic.
Then K and L are equivalent on the class of all finite p-groups if
and only if the p-index of K equals the p-index of L.

Proof. Suppose the p-index of K equals the p-index of L. Let
G and H be groups of order pn. Let F be the prime subfield of K.
If the p-index of K — r < oo, let T = -F(ζPr+i), while if the p-index
of K=:oo, define T = F(ζp, ζP2, ζp3, •). Then T<zK(ζp) and the
p-index of T equals the p-index of K.

KG ~ KH if and only if K(ζp)G =z K{ζp) H, by Theorem 1.3.
Noting that T(ζpn) Π K(ζp) = 5P(ζp), we have, by Theorem 1.3, that
KG ^ KH if and only if TG a TH. But T depends only upon the
characteristic and the p-index of K, and these invariants are indenti-
cal for L. Hence LG ~ LH if and only if TG ~ TH, and the result
follows.

The converse follows from Proposition 2.1.
In order to solve the equivalence problem of the introduction

we must eliminate the requirement on the characteristic in Proposi-
tion 2.2.

For q a prime, let Qq denote the field of #-adic numbers.
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LEMMA 2.3. Let q Φ p be a prime, and F a finite extension of
Qq. Suppose R denotes the ring of integers of F. If G is a finite
p-group and χ an irreducible character of G, then R(χ) = integers

Proof. Passman's proof of Lemma 1, [5], p. 562, immediately
generalizes to this case when we substitute R for Z and F for Q.

PROPOSITION 2.4. For q a prime, let F be a finite extension of
Qq. Let R be the ring of integers of F, and R, the residue class
field of F. Suppose G and H are finite groups of order s, with
(s9 q) — 1. Then the following are equivalent

( i ) RG-RH
(ii) FG-FH
(iii) RG-RH

Proof, (i) => (ii). If RG ~ RH, then

F~ FH

(ii) => (iii).
F(G) determines the ordered pairs {fif F{χ^}, where χt is an

irreducible character, and /< = deg χ, . Also, F{χτ)<zF(ζs). But F i s
of characteristic 0, so any absolutely irreducible representation of G
can be realized in C, the complex numbers, and any character χi9

has its values in Z(ζs).
Let Zq denote the integers modulo q. Zqcz R. As is well known,

the characters χt of Zq{G) are given by composition of χt with the
mapping into the residue class field, which is a subfield of R(ζs).

Let Π e R be such that ord Π = 1. So π divides q. Then

G ^ Z(ζs) > πΊ?^i(r, ~ Z«{Q S RiQ defines χt .
1 1 I I

Now deg % = deg χ4 and by Lemma 2.3.

int (F(χt)) _
(77) -

Since (int F{χt))l(Π) is determined solely by FG, we have that
the pairs {deg χif R(Xi)} are determined by FG and in turn determine
RG.

Now the implication follows.
(iii)-(i)
This implication is just a generalization of SehgaΓs [6], Theorem 4,

p. 504.
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THEOREM 2.5. Let K and L be fields. Then K and L are
equivalent on the class of all finite p-groups if and only if the
p-index of K equals the p-index of L.

Proof. Suppose the p-index of K equals the p-index of L. Let
S be the prime subfield of K.

Case (i) the p-index of K — r < oo
Let T = S(ζpr+i). The p-index of K equals the p-index of T.

By Proposition 2.2, K and T are equivalent on the class of all finite
p-groups.

If K is of characteristic q Φ 0, then T is the residue class field
of the local field Qff(ζpr+1). By Proposition 2.4, F = QQ(ZPr+i) is
equivalent to T on the class of all finite p-groups. But adjoining a
primitive p^th root of unity to Qq, gives a totally unramified exten-
sion of Qq, so that the p-index of F equals the p-index of T.

If K is of characteristic 0 let F == T. No matter what the
characteristic of K, we have associated to K a field F, of charac-
teristic 0, of the same p-index as K, and equivalent to K on the
class of all finite p-groups. In a similar fashion, associate to L a
field F' of characteristic 0. By Proposition 2.2, we must have K
and L equivalent on the class of all finite p-groups.

Case (ii). The p-index of K — oo
Let G and H be groups of order pn. K(ζp) D S(ζp»)

KG~KH*=* K(ζp)G ~ K(ζp)H (by Theorem 1.3)

<=* S(ζpn)G ^ S(ζpn)H (by Theorem 1.3)

If K is of characteristic 0, then

KG ~ KH if and only if Q(ζp*)G cz Q(ζpn)H.

Suppose K is of characteristic q Φ 0. Then S(ζpn) is the residue
class field of the local field Qq{ζp«). By Proposition 2.4, S(ζpn)G cz
S(ζpn)H if and only if Qq(ζpn)G ~ Qq(ζPn)H. But Q,(ζ, ) 3 Q(ζpn), so
that, by Theorem 1.3, S(ζ, )G ̂  S(ζp*)H if and only if Q{ζPn)G ~
Q(ζpn)H. No matter what characteristic K has, KG — Kff if and
only if Q(ζpn)G ^ Q(ζpn)H. Since such a statement also holds for L,
the result follows.

The converse is immediate by Proposition 2.2.

Let Cn denote a cyclic group of order n.

COROLLARY 2.6. Let Kbea field. Then K and Q are equivalent
on the class of all finite p-groups if and only K(CP2) ψ K(CP 0 Gp).
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Proof. Assume K is equivalent to Q on all finite ^-groups. As
Q(CP 0 Cp) Ψ Q(Cpή, then K(CP 0 Cp) Φ K(Cpή.

Conversely, suppose K(Cpζ$Cp) Φ K(Cpi).
Let {ΎP(n)}n = 0, 1, 2, , be the p-sequence for K. If 7,(0) = 1,

then ζp2β K(ζp), and by Lemma 1.2 K(CP@CP) cz K{CP*) ~ K@aK{ζp)
where a (deg [K(ζp)/K]) = (p2 - 1). Thus 7p(0) = p, and the p-index
of K9 like that of Q is 0. The result follows by Theorem 2.5.

Let [K]p denote the equivalence class of all fields F, such that
the p-index of F equals the p-index of K. The equivalence classes
consist of [Q]p = [Q(ζp)]p, [Q{^)]P9 [Q(ζp*)]p, . . . and [C]p. The class

[K]p1 if [K]p Φ [C]p, contains an infinite number of prime subfields.
For if the p-index of K is r, then by Dirichlet's theorem, there are
an infinite number of primes q, such that q =Ξ (1 + pr+1)(moάpr+2).
For any such prime q, ζpr+i e Zq, but ζpr+2 ί Zq. If would be interest-
ing to know if there is a prime q such that [Zq]p = [Q]p for all odd
primes p Φ q. (When q — 2, for example, the first prime for which
this fails is p = 1093.)
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