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ON SEMI-SIMPLE GROUP ALGEBRAS (I)

EUGENE SPIEGEL AND ALLAN TROJAN

For F' a field and G a group, let F'G denote the group
algebra of G over F. Let ¥ be a class of finite groups, and
& a class of fields. Call the fields F', and F, (F,c Fi=1, 2)
equivalent on & if for all G, He &, F,G~F.H if and only
if F,G~F,H, In this note we begin a study of this equiva-
lence relation, taking the case where & consists of all finite
p-groups and & those fields F, for which F'G is simi-simple
for all Ge &,

1. Let {, denote a primitive %' root of unity (over the field
under consideration). Throughout the paper, p» will denote a fixed
odd prime, and all fields will be assumed to be of characteristic
distinet from p.

For reference, we begin with a result from field theory.

PROPOSITION 1.1. Suppose F'is a field and 2 an extension field
of F. Let K, =1, 2 be fields such that FCK,C2, and assume that
K.,/F is a finite Galois extension. Then the following are equivalent.

(i) K, and K, are linearly disjoint over F

(i) K. Q- K, is a field

(i) K, ®r K, =~ KK,

iv) K.NK,=PF.

Proof. See [1] page 78 and page 149.

Let G be a group of order p™ and K a field. We discuss the
structure of KG.

By Maschke’s theorem KG =~ >} A;, where 4, = [K],,® D,, D, is
a finite dimensional division algebra over K, and [K],, denotes the
ring of n; X m; matrices over K.

If K is a perfect field, then 4, ~ K and for ¢ = 1, the center
of D, is isomorphic to K(x;) = K({x:(9) | g € G}), for some nonprincipal
irreducible character y; of G, K(y;) < K({,»). If T is any nonprincipal
irreducible representation of G into the m x m matrices over an
algebraically closed field F' then T(G) is a finite p-group and thus
contains an element S of order p in its center. Since T is irreducible,
this central element must be a scalar matrix of order p, that is, a
scalar matrix with diagonal element {p.

Let y, be the character associated with 7. Then there is an
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element g€ @, such that y,(¢9) = m{,. As (char F,m) =1, we have
K(&) < K(3:) < K(Cpm)-

Suppose, first, that K is a prime subfield. If K is finite then
D; being a finite division ring must be the field K(y;), which if K
is the rational field, by a theorem of Roquette [5], p. 249, again
D; = K(x.)-

Assume, now, that K is an arbitrary field with prime subfield
F. GF=FOX(Fl.,® F(1,)) and F(&,) C F(x:) © F(Cm). Let S, =
F(r) N K and s, = deg [S,/F].

Then

F(u) Qr K = F(1:) ®r S; ®s
(F(Xz) D - DF(Q) s, K see, e.g. [3] p. 177

(s; summands)

~K)P --- & K(x;) by Proposition 1.1
But,
KG =~ FG QK
= (FD X ([Fl.;, ®r (F(1:) ®rK
=KD 3 (F,, ®r (K(x:) D -+ - D K(1)))
=~ KD X (K], D - - - S [K(x)l.,)
= K@D X sd[K]., ®x K(X)) -

Hence we have shown

LEMMA 1.2. Let K be a field and G a group of order p*. Then
KG = K@ 3, B, where B; ~ [K],, Qx K; and K; are fields such that
K(,) c K, < K(C,n).

THEOREM 1.8. Let L be an extension field of the field K. Let
G and H be groups of order p". Suppose K(C,n) is linearly disjoint
from L(,) over K({,). Then KG ~ KH if and only +f LG =~ LH.

Proof. If KG = KH, then LG =~ KG ®x L = KH @y L =~ LH.

Conversely, suppose LG ~ LH.

From Lemma 1.2, KG =~ K@ 3, ([K]., ®x K;), where K, is a field
such that K(,)c K,c K(,»). By Proposition 1.1, K(,») N L(,) =
K(,). Let R,=LNK, Then R,c(L(,) N K(,) < K(,), so that
R, = LNK(E,), ie. R, is independent of <. Write R, =R and
r = dim [R/K].

K QL =K, QxR QrL
(KEB D K) KL

(r summands)

~LK,®--- P LK, by Proposition 1.1
~ rLK,
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Let LK, = L, so that
L&) L, L) -
Then
LG = KGQRx L

~ (KD X (K], ®x K))) Qx L

~Lp3 r([K]., ®x L)

=~ L > r(Ll.)

=~ L3 r(L],, @ L) . (*)

Pick s; such that K, = K({,s;) and 1 < s, = n.
We clearly have

deg [L(Cm)/L(Cys)] = deg [K(Con)/K(Cpe)]
and
deg [L(C,s:)/L(C,)] < deg [K(Csi)/ K(C)] -
But L(,») = LK((,) is a Galois extension of L, so that
deg [L(C,w)/L(C)] = deg [K(C,n)/(K(Cp) N LEN]
= deg [K(C,»)/K(G,)] -
Thus
deg [L(Cm)/L(Cpr)] = deg [K(Cpm)/ K(Cped)] -
Since
deg [L(Cm)/L(Cps:)] = deg [L:K(Cpn))/Li] = deg [K(Cm)/ (K N L] -
We must have
KCm) N L, = KCp:) =K, .

This together with (*) shows that KG is determined by LG. The
result follows.

If L is an extension field of the field K, we call A the maximal
abelian p-extension of K in L if A is the composite of all finite
abelian p-extensions (of degree a power of p) of K in L.

COROLLARY 1.4. Let L be an extension field of the field K.
Suppose A is the maximal abelian p-extension of K in L. Let G and

H be groups of order p*. Then LG =~ LH if and only if AG=AH.

Proof. LN A(») < A(¢,), and (deg[L((,)/L], p) =1, so that
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L) N A(E,») = A(,). The conclusion now follows from Proposition
1.1 and the theorem.

COROLLARY 1.5. Let L be an extension field of the field K.
Suppose that K is algebraically closed in L. Let G and H be groups
of order p~. Then KG =~ KH if and only +f LG = LH.

2. Let K be a field. The p-sequence {V,(n)},n =0,1,2, ...,
of K is defined as 7,(n) = deg [K({n+2)/ K(Cpnt1)]. {¥p(m)} is of one of
the following three types, (see [8]).

Dy, Dy Dy o+

1,1,1,"'1,p’p7p7 e
L,1,1, .

Define the p-index of K = 0 if 7,(00) = p
n if 7,(n) =p and 7,(n — 1) =1
oo if 7,(n) =1 for all n.
In [8] the following proposition is proved.

PrROPOSITION 2.1. Let K and L be fields. Then K and L are
equivalent on the class of all finite abelian p-groups if and only if
the p-index of K equals the p-index of L.

PROPOSITION 2.2. Let K and L be fields of the same characteristic.
Then K and L are equivalent on the class of all finite p-groups if
and only if the p-index of K equals the p-index of L.

Proof. Suppose the p-index of K equals the p-index of L. Let
G and H be groups of order p”. Let F be the prime subfield of K.
If the p-index of K =r < o, let T = F({,r+1), while if the p-index
of K = oo, define T = F(, &, Cp3y +++). Then Tc K(,) and the
p-index of T equals the p-index of K.

KG =~ KH if and only if K(,)G =~ K(,) H, by Theorem 1.3.
Noting that T((,») N K(,) = T(,), we have, by Theorem 1.3, that
KG =~ KH if and only if TG ~ TH. But T depends only upon the '
characteristic and the p-index of K, and these invariants are indenti-
cal for L. Hence LG ~ LH if and only if TG =~ TH, and the result
follows.

The converse follows from Proposition 2.1.

In order to solve the equivalence problem of the introduction
we must eliminate the requirement on the characteristic in Proposi-
tion 2.2.

For ¢ a prime, let @, denote the field of ¢-adic numbers.
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LEMMA 2.83. Let g # p be a prime, and F a finite extension of
Q.. Suppose R denotes the ring of integers of F. If G is a finite
p-group and ¥ an irreducible character of G, then R(Y) = integers

FQp).

Proof. Passman’s proof of Lemma 1, [5], p. 562, immediately
generalizes to this case when we substitute R for Z and F for Q.

PROPOSITION 2.4. For q a prime, let F be a finite extension of
Q.. Let R be the ring of integers of F, and R, the residue class
field of F. Suppose G and H are finite groups of order s, with
(s,q9) =1. Then the following are equivalent

(i) RG=RH

(ii) FG=FH

(iii) RG ~ RH

Proof. (i) = (ii). If RG = RH, then
FG~RGRX,F~RHR,F~FH

(ii) = (iii).

F(@) determines the ordered pairs {f;, F(}:)}, where y, is an
irreducible character, and f, = deg y,. Also, F(x)c F({,). But F'is
of characteristic 0, so any absolutely irreducible representation of G
can be realized in C, the complex numbers, and any character %,
has its values in Z({).

Let Z, denote the integers modulo q. Z,c R. As is well known,
the characters ¥, of Z,(G) are given by composition of y, with the
mapping into the residue class field, which is a subfield of R(C,).

Let IT € R be such that ord I7 = 1. So w divides q. Then

_ZCL., Z(Cs) ~ D 7
G Z() RN 2C) Z,(C) S E(,) definesY; .

Now deg ¥; = deg ¥; and by Lemma 2.3.

int (F(1)) _ BQW) ~ peyy .
i ) )

Since (int F'(x;))/(Il) is determined solely by F'G, we have that
the pairs {deg ¥;, R(},)} are determined by F'G and in turn determine
RG.

Now the implication follows.

(iii) = (@)

This implication is just a generalization of Sehgal’s [6], Theorem 4,
p. 504.
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THEOREM 2.5. Let K and L be fields. Then K and L are
equivalent on the class of all fintte p-groups if and only if the
p-index of K equals the p-index of L.

Proof. Suppose the p-index of K equals the p-index of L. Let
S be the prime subfield of K.

Case (i) the p-index of K =7 < =

Let T = S(,-+1). The p-index of K equals the p-index of T.
By Proposition 2.2, K and T are equivalent on the class of all finite
p-groups.

If K is of characteristic ¢ # 0, then T is the residue class field
of the local field Q.(¢,~+1). By Proposition 2.4, F = Q. (,r+1) is
equivalent to T on the class of all finite p-groups. But adjoining a
primitive p”"th root of unity to Q,, gives a totally unramified exten-
sion of @,, so that the p-index of F equals the p-index of 7.

If K is of characteristic 0 let FF = T. No matter what the
characteristic of K, we have associated to K a field F, of charac-
teristic 0, of the same p-index as K, and equivalent to K on the
class of all finite p-groups. In a similar fashion, associate to L a
field F’ of characteristic 0. By Proposition 2.2, we must have K
and L equivalent on the class of all finite p-groups.

Case (ii). The p-index of K = o«

Let G and H be groups of order p*. K({,) D SEm)

KG ~ KH — K(,)G = K({,)H (by Theorem 1.3)
== S({»)G =~ S(¢»)H  (by Theorem 1.3)

If K is of characteristic 0, then
KG ~ KH if and only if Q)G = Q(¢H .

Suppose K is of characteristic ¢ # 0. Then S(,») is the residue
class field of the local field Q,({,»). By Proposition 2.4, S({)G =
S H if and only if Qu()G = Q,((,»)H. But Q. L) D Q(,n), so
that, by Theorem 1.8, S({,»)G =~ S(,»)H if and only if Q)G =
Q(,»)H. No matter what characteristic K has, KG ~ KH if and
only if Q(€,»)G =~ Q(,»)H. Since such a statement also holds for L,
the result follows.

The converse is immediate by Proposition 2.2.
Let C, denote a cyclic group of order n.

COROLLARY 2.6. Let K be a field. Then K and Q are equivalent
on the class of all finite p-groups if and only K(C,) # K(C, D C,).
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Proof. Assume K is equivalent to @ on all finite p-groups. As
Q(C, & C,) # Q(C,:), then K(C, P C,) # K(C,).

Conversely, suppose K(C,®D C,) % K(C,»).

Let {7v,(»)}n =0,1,2, ..., be the p-sequence for K. If 7,00) =1,
then {,.€ K(¢,), and by Lemma 1.2 K(C,D C,) = K(C,) =~ KD aK(,)
where o (deg [K((,)/K]) = (»* —1). Thus 7,(0) = p, and the p-index
of K, like that of @ is 0. The result follows by Theorem 2.5.

Let [K], denote the equivalence class of all fields F, such that
the p-index of F' equals the p-index of K. The equivalence classes

consist of [Q], = [Q(Cp)]m [Q(C;oz)]m RG], - -- and [C],. The class
[K],, if [K], # [C],, contains an infinite number of prime subfields.
For if the p-index of K is r, then by Dirichlet’s theorem, there are
an infinite number of primes ¢, such that ¢ = (1 + »"™)(mod p"*?).
For any such prime q, {,»+1€ Z,, but {,»+:¢ Z,. If would be interest-
ing to know if there is a prime ¢ such that [Z,], = [@], for all odd
primes p # q. (When q = 2, for example, the first prime for which
this fails is p = 1093.)

REFERENCES

1. N. Bourbaki, Elements de Mathématique, Fascicule XI chapitre 5, 1102, Hermann,
Paris 1967.

2. C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative
Algebras, Interscience, New York, 1962,

3. N. Jacobson, Structure of Rimgs, American Mathematical Society, Vol. XXXVII,
1956. )

4. D. Passman, Isomorphic groups and group rings, Pacific J. Math., 15 (1965), 561-
583.

5. P. Roquette, Realisierong von Darstellungen endlicher nilpotenter Gruppen, Archiv
der Math., 9 (1958), 241-250.

6. S. Sehgal, Isomorphism of p-adic group rings, J. Number Theory, 2 (1970), 500-
508.

7. J.-P. Serre, Corps Locaux, Hermann, Paris 1968.

8. E. Spiegel, On isomorphisms of Abelian group abgebras, Canad J. Math., XXVII
(1975), 155-161.

Received February 4, 1975, and in revised form May 23, 1975.

UNIVERSITY OF CONNECTICUT
AND
ATKINSON COLLEGE-YORK UNIVERSITY








