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STOCHASTIC CONVEX PROGRAMMING:
SINGULAR MULTIPLIERS AND EXTENDED DUALITY
SINGULAR MULTIPLIERS AND DUALITY

R. T. RockAFELLAR AND R. J.-B. WETS

A two-stage stochastic programming problem with recourse
is studied here in terms of an extended Lagrangian function
which allows certain multipliers to be elements of a dual space
(£7)*, rather than an #' space. Such multipliers can be
decomposed into an Z'-component and a ‘‘singular”
component. The generalization makes it possible to charac-
terize solutions to the problem in terms of a saddle-point, if the
problem is strictly feasible. The Kuhn-Tucker conditions for
the basic duality framework are modified to admit singular
multipliers. It is shown that the optimal multiplier vectors in
the extended dual problem are, in at least one broad case, ideal
limits of maximizing sequences of multiplier vectors in the basic
dual problem.

1. Introduction. This paper is a sequel to [3], where the
following two-stage stochastic programming problem was investigated:
minimize

(L.1) )+ [ fals xi xs(s))er(ds)

over all x, € R™ and x, € &5, = £(S, 2, o; R™) satisfying

(1.2) x€C, and f,(x)=0 for i=1,---,m,

and almost surely

(1.3) xA(s)EC, and fo, (s, %, xx(s))=0 for i=1,---, m,

Here (S, 3, o) denotes a probability space, and the sets C; C R™ and
C, CR™ are closed, convex, and nonempty. The functions f,, for
i=0,1,---,myand f, (s,-,- ) for i =0,1, - - -, m, are finite and convex on
all of R™ and R™ X R™, respectively. It is assumed for each (x,, x,) €
R™ X R™ the function f,, (-, x,, x,) is measurable on S, in fact summable if
i =0 and bounded if i=1,---,m,. (As pointed out in [1], these
assumptions imply that for every x, € R™ and x, € £5,, fa (s, x1, x5(s)) is
measurable in s, summable if i =0 and essentially bounded if i=
1, my).
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The results in [3] concern the justification of this model and its
analysis in terms of the Lagrangian function:

(1.4) L(x,y)=L(x,,y,)+ L Ly(s, x1, x2(8), ya(s))o(ds) if x € X,
and y €Y,
= - if xE€X, and yZ€Y,,
=+ if xZ X,,
where

(1.5) x=(x,x,)EX=R"x %5, and y =(y,y,)EY=R™X ¥},
(1.6) X, ={x € X|x, € C, and almost surely x,(s) € C,},
(1.7) Y,={y € Y|y, =0 and almost surely y,(s) = 0},

(1-8) Ll(xla )’1) = flO(xl) + 2 )’hfn (xl)’
(1-9) Lz(S, X1, X2y Y2) = fzo(S, X1, xz) + g )’21fzx (S, X1, xz)-

Of course, L(x,y) is convex in x € X, concave in y € Y, and finite on
X)X Y.

It is easily seen that the stochastic programming problem above can
be expressed equivalently as

P minimize f(x) over all x € X,
where
(1.10) f(x)= sg;y) L(x,y).

A corresponding dual problem is therefore:

D maximize g(y) over all y €Y,
where
(1.11) g(y) = inf L(x,y).

The general duality theory of [4] was applied to these problems in [3],
and it was shown in particular that minP=supD if C, and C, are
bounded. The condition that (X, y) be a saddle-point of L on X X Y (or
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equivalently on X, X Y,), which is always sufficient for X to solve P and y
to solve D, is therefore also necessary in the latter case.

A version of the Kuhn-Tucker theorem is thereby established:
assuming that C, and C, are bounded, and assuming that the supremum in
D is attained, an element ¥ € X solves P if and only if there exists y € Y
such that (¥, y) is a saddle-point of L. We have shown in another paper
[5] how this saddle-point property can be expressed by certain ‘“‘point-
wise”” Kuhn-Tucker conditions involving a function p € &, which assigns
prices for making alterations in the first-stage decision x, after the
observation of s.

The central question in this is whether the supremum in D is indeed
attained. One might hope this is always true if P is strictly feasible, in the
sense that for some x € X and € >0 the constraints (1.2) and (almost
surely) (1.3) are satisfied with —e€ in place of 0. There are simple
counterexamples, however [3, §5]. We have at least shown qualitatively
in [3] that the supremum in D is “‘typically” attained, if C, and C, are
bounded. But the issue remains of whether a verifiable condition can be
furnished, whereby attainment is assured for an individual case.

The aim of this paper is to provide an answer in somewhat modified
terms. The Lagrangian function is extended so that the multiplier
functions y, € £,,, are replaced by more general elements of the dual
space (¥;.)*, each of which can be decomposed into an #,,, component
and a ‘‘singular” component. This leads to a new dual problem D, a
natural extension of D. Strict feasibility of P is shown to imply
infP=maxD and hence a Kuhn-Tucker theorem in terms of the
extended Lagrangian. It is demonstrated that the optimal multipliers in
this setting, solutions to the extended dual D, can be characterized fairly
generally as the limits in a certain sense of maximizing sequences for the
basic dual D. Finally, the Kuhn-Tucker conditions in [5] are generalized
to the extended Lagrangian.

We shall show elsewhere [6] that these results, together with an
analysis of so-called induced constraints, yield a reasonable condition for
the supremum in D itself to be attained.

2. Singular functionals and the extended Lagran-
gian. The second-stage inequality constraints in P can be expressed by
saying that the functions

21 for (x): 5 = o (s, X1, xa(5)), i=1,---,m,

(each of which is measurable and essentially bounded for x = (x,, x,) €
X = R X ¥73) are all to be nonpositive as elements of £7. Symbolically:

(2.2) fu(x)=0 for i=1,---,m, (in &).
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The Lagrangian L associates with each of these constraints, in effect, a
multiplier y,, 20 in #] via the natural pairing

(2.3) (a,b)=f a(s)b(s)a(ds) for a€¥; and bE L.

These multipliers y,; thus represent continuous linear functionals on £75.

But, unless the probability space (S, 2, o) consists of a finite number
of atoms, there exist continuous linear functionals on £7 not represent-
able solely by elements of ¥|. The antithesis, so to speak, of a
functional arising from £} is a singular functional on ¥7. By this, one
means a continuous linear functional b° with the property that the
underlying probability space can be expressed as the union of an
increasing sequence of measurable sets S, such that for each k one has
b°(a)=0 for all the functions a € ¥7 vanishing almost everywhere
outside of S,. The set of all singular functionals forms a linear space
1= %S, 2, 0).

It is an important fact that the dual space (£7)* can be identified
with £} X ¥, under the pairing

(2.4) (a,(b,b°)) = fs a(s)b(s)o(ds)+ b°(a).

In other words, the continuous linear functionals on ¥7 are the ones
which can be represented as (2.4) for some (unique) b € £} and
b°e &,. This decomposition, first applied in the study of optimization
problems by Dubovitski and Miliutin [1], has been exploited in several
papers on integral functionals and optimal control by Rockafellar [7], [8],
[9]. Further applications to convex analysis have been pursued by loffe
and Levin [2], who furnish in their Appendix I a complete proof in the
more general case of Z£”-functions with values in a separable Banach
space, rather than just R. Remarkably, singular functionals have not
previously been employed in the theory of stochastic programming
although they are essential, as we shall see, in the derivation of the strong
forms of the duality results.

Singular functionals on %}, are defined in the same way as on
¥7. They correspond obviously to elements of &, =%, X - X%, (m
times). Let

(2.5) Y°=%, and Yi;={y°€Y°|y°=0}

where the relation y°= (0 means that each component y$€ ¥, is non-
negative as a functional on ¥7, i.e. satisfies
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(2.6) y$(a)=0 for all nonnegative a € 7.

The extended Lagrangian L on X X (Y X Y?9) is defined by

QD) L3y =Ly + [ Lo 5 xi) yi)+ Lix )

if x€X, and (y,y°)€ Y X Y5,
=-ow if x€X, and (y,y°)& Y, XY},
=40 if x€X,,

where

CH Ly = B vt = 3 v, mnl ),

Thus each of the constraints (2.2) is now associated with a multiplier pair
(y2 ¥ € LiX F1= (L))"

It is clear that L(x, y, y°) is convex in x, concave in (y, y°), and finite on
XoX (Y, X Y5). Moreover

(2.9) L(x,y,0)= L(x;y).

If x satisfies the second stage constraints (2.2) and y°€ Y75, then
trivially L(x, y, y°) = L(x, y). Therefore, the essential objective function f
in P, defined by (1.10), can also be expressed by

(2.10) fx)= sup L(xy,y°).

(3 y)EYXY®

In other words, L is truly another Lagrangian associated with P. The
problem

~

D maximize g(y,y°) over all (y,y°)EY X Y®,
where
2.11) £(y,y°) = inf L(x,y,y°),

will be called the extended dual of P. Note that

(2.12) §(y,0)= g(y).
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It is always true, therefore, that
(2.13) inf P=sup D = sup D,

and any solution (¥, y°) to D having 7° = 0 is also a solution to D. If C,
and C, are bounded, then min P = sup D according to the duality theorem
in our previous paper [3], and hence in fact

(2.14) min P = sup D = sup D.
Formulas (2.10 and 2.11) yield also the general fact that (%, y, y°) € X X
(Y X Y®) is a saddle-point of L if and only if x gives the minimum in P,
(v, y°) gives the maximum in D, and min P = max D (finite).

3. Perturbations. For purposes of applying general duality
theory such as in [4] to the study of the relationship between P and D, it is
essential to demonstrate that the extended Lagrangian L arises from a

specific choice of perturbations of P and their topology.
In the case of the basic Lagrangian L, the perturbation space is

(3.1) U=R™X X%,

and the function F is defined as follows: F(x, u) for x = (x,, x,) € X and
u = (u;, u;) € U is the value (1.1) if the perturbed constraints

(3.2) x;E C] and fli (x,)é Uy, fOI' i= 1," ,my,
and almost surely

(3.3) x:(s)E C, and f,, (s, x4, X5(5)) = uy(s) for
i = 1’ T, My,

are satisfied; otherwise F(x,u)= +®. Then
(3.4) F(x,0)=f(x).
Assigning to U the product of the topology of R™ and the weak topology

induced on #;,, by £,.,, we can identify the dual of U with Y under the
pairing

(3.5) (Uyy)=u,-y, + L ux(s) - y,(s)o(ds).

Then, as observed in [3], the formula
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(3.6) L(x,y) = inf {F(x,u)+{u, y)}
u€lU

holds. In other words, the function L we have defined in (1.4) is the
Lagrangian for P associated by general theory with this perturbational
framework.

The function F is convex, proper, and lower semicontinuous on
X x U with respect to the product of the above “weak* topology” on U
and the similarly defined weak* topology on X [3, Proposition 3].

The framework changes if we assign to U the strong topology, i.e. the
product of the topology of R™ and the norm topology of #;,,. Then the
dual of U is identified instead with the space Y X Y°under the pairing

(3.7) (u, (y, y°) = (u, y) + y°(u).

ProposITION 1. The Lagrangian for P associated with F and the
latter pairing is L:

(3.8) L(x,y,y°) = inf {F(x,u)+(u (v, yM}

Proof. Denote the right side of (3.8) by M(x,y,y°). Trivially
M(x,y,y°) = +=if x& X,, since then F(x,u) = +»forallu € U. Thus
L(x,y,y°)= M(x,y,y°) if x& X,. Assume that x € X,. Then M(x,y,y°)
is the infimum of the expression

(B9) fio(x)+uy -y, + J; [fao(s, x1, X2(8)) + Ua(s) - yo(s)] o (ds) + y°(u2)

over all u;€ R™ and u,€ ¥;, satisfying (3.2) and (almost surely)
(3.3). Setting

U, = Wy, +,f11(x1) for l = 1’ trr, My,

Uy (s) = wy(s)+ fa (s, x,, x2(s)) for i=1,,my,

we see that

(310) M(x,y,y°) = Li(x,, y:) + L Ly(s, x1, X2(s), ya(s))o(ds) + N(y, y°),

where L, and L, are given as before by (1.8) and (1.9), and

1) NG,y = it {w v+ [ wis) vao)ortds) + yo(w)].



514 R. T. ROCKAFELLAR AND R. J.-B. WETS

To show that M(x, y, y°) = L(x, y, y°), it suffices to show therefore that

N(y,y?)=0 if (y,y°)E€ YoX Y5,
=+ if (y,y°)E Y, X Y3
This is obvious from the definitions (1.7) and (2.5) of Y, and Y7, except

for the following. Suppose that b € ¥} and b° € &, have the property
that

(3.12) f a(s)b(s)a(ds)+ b°(a)=0 for all nonnegative a € £7.
N

We must show that then b=0 and b°=0. The argument is by
contradiction. If it is not true that both b =0 in £} and b°=0 in ¥,
then there exist nonnegative functions @ and a in ] such that

(3.13) f a(s)b(s)o (ds) + b*@) <0.

Let S be expressed as the union of an increasing family of measurable
sets S, associated with b° as in the definition of singular functional.
Define

a“(s)=a(s) if s€E€S,
=a(s) if s€S\S.

Then b°(a*)= b°(a) and
{i_rgf a"(s)b(s)a-(ds)=f a(s)b(s)o(ds),
so that by (3.13)

(3.14) {imf a*(s)b(s)o(ds)+ b°(a*)<0.

-*Js
But also a* =0, since a=0 and a =0, so (3.14) is in conflict with
(3.12). The proof is now complete.

4. Main results on duality. Proposition 1 enables us to
analyse the relationship P, D and D in terms of the optimal value function
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@1 $(u) = inf F(x,u)

giving for each u € U the infimum in the perturbed problem:
P(u) minimize F(x,u) over all x€X
Among the facts we obtain from general theory [4] (mostly right from the

formulas above) are the following.
The function ¢ is convex on U and,

“2) gy = inf {¢()+(u, (3, y M= —d*(=y, —y°),

where ¢* denotes the conjugate of ¢ on Y X Y° with respect to the
pairing (3.7). Hence also

4.3) strong-cl ¢ (u) = (y’yus)tégxyo {8, y°)—(u, (v, yN},

where strong-cl ¢ is the closure of ¢ with respect to the strong topology
on U (coinciding with the conjugate of ¢ * for the given pairing). Thus,
whereas

4.4 inf P = ¢(0)

by definition, we have

4.5) sup D = strong-cl ¢(0).

This may be compared with the relation

(4.6) sup D = weak*-cl ¢(0)

obtained in our previous paper [3], where weak*-cl ¢ is the closure of ¢
with respect to the weak topology on U induced by the pairing (3.5) with

Y alone. In particular, then, if either inf P < +o or supD > — o, we
have

supD =liminf ¢(u)  (strong topology),

supD = liry_’ionf é(u) (weak* topology).
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As for solutions to D, we have the fact that the equation
4.7) 2(3,7°) = max D = inf P
holds if and only if
— (5, ¥°) € 3¢(0),
or in other words
(4.8) d(u)+(u, (y,y°»=¢@0) for all ueU.

This means that (¥, y°) represents a ‘‘vector of equilibrium prices”” for the
constraints in P with respect to the given system of perturbations: the
expression

(4.9) Fx,u)+(u, y)+ y°(u)

attains its minimum in (x, u) at (x,0) if X is any solution to P.

We can regard Y as a Banach space whose dual is U and whose
bidual is Y X Y°. Thus Y is identified with a subspace of Y X Y°
(namely Y X {0}) which is dense in the weak ** topology, i.e the weak
topology induced on Y X Y° by the pairing with U. At the same time,
the essential objective function g in D can be regarded as given on this
dense subspace, and the essential objective function g in D is then,
according to (2.12), a certain extension of g to the whole space. The
topological nature of this extension is clarified in an important case by the
next result.

THEOREM 1. Suppose the sets C, and C, are bounded. Then

(4.10) g(y, y°) = weak** — limsup g(z) for all (y,y°)EY X Y".

(2,00 (y,y°)

Moreover, the following conditions on an element (y,y°)EY X Y° are
equivalent:

(@) (3,5°) solves D;

(b) (v,7°) is the weak** limit of a maximizing (generalized)
sequence for D;

© —(7)€(0);

(d) For some (equivalently: for every) X solving P, (X, y,7°) is a
saddle-point of the extended Lagrangian L.

Proof. We rely on Theorem 3 of [3], from which we have not only
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(2.14) but the properness and weak lower semicontinuity of the function
¢ in formula (4.2). The latter ensures, according to the basic theory of
conjugate convex functions, that ¢ coincides with its biconjugate under
the pairing between U and Y. Since

(4.11) sup {d(u)+{u,y)=g(y,0)=g(y),

i.e. g is the concave conjugate of — ¢, this means that — ¢ is in turn the
concave conjugate of g:

(4.12) —¢(u) = inf {u,y) ~ g ()}
Define g on Y X Y° by

gy, y?)=g(y) if y°=0,
= -0 if y°#0.

Then g is concave, and we can re-express (4.12) as

(4.13) @)= inf Ay - &,y

VY)EYXY?

But g is the concave conjugate of —¢ by (4.2). Therefore g =
g**. Since ¢ is not identically + (obvious from (2.11), since
L(x,y,y°) < +xif x € X,), it follows & is the upper semicontinuous hull
of g in any topology on Y X Y° compatible with the pairing with U, and
hence in particular in the weak** topology. This is exactly the meaning
of (4.10). The equivalence of (a) and (b) is an immediate consequence of
(4.10). The equivalence of (a), (c) and (d) follows from the equality

(2.14) and the remarks above.
THEOREM 2. If P is strictly feasible, then
(4.14) inf P=max D < +x,
and (assuming inf P> — ) in terms of one-sided directional derivatives :
(4.15)  ¢'(0; u) = max{(w, (3, 7°)| (5, 7°) solves D} for all u € U.

Furthermore, the following conditions are equivalent:
(a) P is strictly feasible;
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(b) #(0)< + o, and ¢ is strongly continuous on a neighborhood of
0;

(c) the level sets {(y,y°)|&(y, y°)= B}, B ER,
are all bounded in Y X Y°, hence weak **-compact.

Proof. Strict feasibility means by definition that ¢(— €1) < + = for
some € >0, where 1 is the element of R™ X &£, = U whose components
are all I’'s. This is clearly equivalent to the seemingly weaker property
that ¢ (u) < + o for some u in the interior of the nonpositive orthant of
U. Since ¢(u)= ¢(u') if u = u’, it follows that P is strictly feasible if
and only if ¢ is bounded above on a strong neighborhood of 0. In this
case, as observed in [4, Theorem 17], one has (4.14), (4.15) and (c). On
the other hand, if (c) holds then from the conjugacy relation (4.2) and [4,
Theorem 10] we know that the biconjugate of ¢ with respect to the
pairing between U and Y X Y°, namely strong-cl ¢, is bounded above on
a neighborhood of 0. But this implies ¢ (u) < + = for certain elements u
of the interior of the nonpositive orthant of U, and hence, as we have
seen, the strict feasibility of P.

COROLLARY. Suppose P is strictly feasible. Then, in order that X be
a solution to P, it is necessary and sufficient that there exist (y, y°)E€ Y X
Y® such that (%,9,y°) is a saddle-point of the extended Lagrangian
L. The pairs (3, 7°) are solutions to the extended dual D, and if C, and
C, are bounded, they can also be regarded as idealized solutions to the

basic dual D.

5. Extended Kuhn-Tucker conditions. We have estab-
lished in [5] that (%, y) is a saddle-point of L on X X Y if and only if the
following properties, called the basic Kuhn-Tucker conditions, hold for
some p € L,

(a) x,€C, and for i=1,---,m, one has y,,20, f,,(x,)=0 and
yufu (£) =05

(b) for almost all s, x,(s)EC, and for i=1,---,m, one has
V2(s)Z0, f(s, X1, X2(5)) =0 and y,,(s)fz (s, X;, X(s)) = 0;

(c) the expression fi(x;)+ =2 ¥y (x1) + x, f p(s)o(ds) attains its
N

minimum over the set C, at x,;

(d) for almost all s, the  expression  fy(s, xi, X))+
32 V2 (8)fai (s, X1, X2) — X, - p(8) attains its minimum in (x,, x,) over the set
R™ X C; at (X, Xy(s)).

Supplementary conditions for a saddle point of the extended La-
grangian L can be stated in terms of the function / on R™ X Y7 defined
by
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5.1) 1(x,,y°)=inf{2 (- x50 ) | 1€ 22 1a(5) € © a.s.}

(Recall that Y{={y°E€ &%,.|y5=0 for i =1, -+, my}.) It is easily seen
that /(x,, y°) is convex in x; € R™, concave in y° € Y§g, and nowhere + .

We shall say that (X, y,y°) satisfies the extended Kuhn-Tucker
conditions if it satisfies the basic Kuhn-Tucker conditions with the term
I(x,, y°) added to the expression in (c), i.e.:

(c') the expression fro(x:) + 220 v fu (x0) + x4 f p(s)o(ds)+
N

I(x1, y°) attains its minimum over the set C, at X,;
and if in addition the following conditions involving the singular parts of
the multipliers hold:

(5.2) )7?20 and y?(fzi(',fl,fz(')))=0 for l= l,"',mz,

(5.3) I(%,, 7°) = 0.

Conditions (a), (b), (¢') and (d) mean, of course, in view of the result cited
above, that (%, y) is a saddle-point of the function L + I(-, y°), which is
the basic Lagrangian for the modification of P in which f,, is replaced by

fot 1(+,¥°)-

THEOREM 3. In order that (X,y,y°) be a saddle-point of the ex-
tended Lagrangian L on X X (Y X Y°), it is necessary and sufficient that
the extended Kuhn-Tucker conditions hold for some p € ¥1,.

Proof. 1In view of the remark prior to the theorem, it suffices to
show that (X, 7, 7°) is a saddle-point of L if and only if (%, ) is a saddle-
point of L + (-, y°) and (X, y°) satisfies (5.2) and (5.3). By definition,
(%,9,v°) is a saddle-point of L if and only if

(5.4) L(%5,7°)= sup L(%yy°),

(y,y)EYXY®
(5.5) L(% 3 7°) = inf L(x,7,7°).
These conditions imply in particular that x € X, and (y,y°)€ Y, X Y3

(consider (y, y°) € Y, X Y5 in (5.4) and x € X, in (5.5)). If x € X, the
right side of (5.4) can be expressed as

sup L(%,y) + Z sup y(fa (- %1, %:())).
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Assuming X € X,, it is obvious from this that (5.4) is equivalent to (5.2)
and the relation

(5.6) L(x,y) = sup L(x,y).

Trivially, (5.6) can also be written as
(57) [L(f’ )7)+ l(il’ )70)] = Sylelg [L(fl’ }70)]’

if [(x,,y°) is finite. To complete the proof of the theorem it will suffice
therefore to show that (5.5) is equivalent to (5.3) and

(5.8) [L(E 79+ 15, 7] = inf [L(s9)+ 1, 7)),

under the assumption that (5.2) holds and y € Y,.
From (5.2) we have of course

(5.9) 15,5 2 35 yo(a (-, 8, () =0

and hence (5.3) holds if and only if the minimum in the definition (5.1) of
(x,, ¥°) is attained by %x,. Thus (5.3) and (5.8) together amount to the
assertion that the infimum of

AL, 7) + [ Luls 30 1460, 5o Dr(ds) + 3, 720 1)

subject to

5.11) x,€C, x€%;, x;€%5, x(s)EC, and xi(s)EC,
almost surely is attained for x;, = ¥, and x, = x; = ¥,. On the other hand,
(5.5) asserts that we have attainment of this infimum for x, = %, and
X, = x;=X, if we make the a priori restriction that x,= x;. Thus the
argument is reduced to showing for any x, € C, that, with the notation

(5.12) A ={x, € ¥;,| x:(s) € C, almost surely},

one has
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6:13) int { [ Lo 3000 76D (@s) + 3 9300 (- )]

= int [ Lo xi 505), 75D (@s) + int, 3 9(F 0 ().

x2€EA

Since the inequality = certainly holds in (5.13), equality will follow if we
demonstrate that for arbitrary x; € A, x5E€ A and € >0, there exists
x, € A such that

G:14) [ L5, 5506, ) (ds) + 3, 950 (x5 )

= L Ly(s, x,, x5(s), §:(s))o(ds) + MZI Volfu (o x,xi(7))+e

For each of the singular functionals y$, there exists by definition an
increasing sequence of measurable sets S, with Ug_; S, = S, such that
y%(a)= 0 if for some k the function a € £7 vanishes almost everywhere
outside of S;. The latter property implies that y$(c)= y%(c")if ¢ and ¢’
agree almost everywhere outside of Sy. For each index k, define

(5.15) x5(s)=x5%s) if s€S8Sy for i=1,---,m,

= x3(s) for all other s.
Since x;€ A and x;E A, we have x5 € A. Moreover
f21 (S, xl,xg(s)) = fo (s7 xl’xé(s)) if Sg Sik’

so that
616) SR Cx BN = S T X
At the same time, since
lim o(S\Sx) =0,
we have from (5.15) that

(5.17) ;(i_r’lgc L Lo(s, x1, x5(s), yo(s))o(ds) = L L,(s, x1, x5(s), y.(s))a(ds).
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From (5.16) and (5.17), we conclude that (5.14) holds for x, = x5, if k is
sufficiently large. This finishes the proof of Theorem 3.

REMARK. The last part of the proof of Theorem 3 has shown more
generally that

(-18) g(y,y) = inf {L(x,y)+1(x;,y°)} for (y,y)E€ Y, x Y5

Of course, g(y, y°)= —« for (y, y°)& Y, X Y5 by definition.
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