THE GEOMETRY OF $p(S^1)$

J. R. QUINE

Let p be a polynomial of degree n. The image of the unit circle, $p(S^1)$, can be thought of as a subset of the real part of an algebraic curve W of degree 2n. This paper outlines some facts about $p(S^1)$ which can be obtained using classical algebraic geometry, for example Bézout's theorem.

Introduction. We wish to study the image of the unit circle S^1 in the complex plane under mapping by a polynomial of degree n. If we let $x^2 + y^2 = 1$ be the equation of the unit circle in R^2 , then if x and y vary over the complex numbers C, we can think of the unit circle as the real part of an algebraic variety V in C^2 . We show that similarly $p(S^1)$ can be thought of as a subset of the real part of an algebraic variety W in C^2 . We use the method of absolute coordinates as outlined in Winger [12] and Morley [7], and we discuss W in terms of the Schwarz function as used by Davis [2].

We obtain the equation for the real part of W in the form $h(\xi, \bar{\xi}) = 0$, where h is a polynomial of degree 2n. We show that if all the zeros of p' are in |z| < 1, then $p(S^1)$ is actually all of the real part of W. We show that the circular points are of multiplicity n on W and that W has at most $(n-1)^2$ simple nodes. If no singular point of W is on $p(S^1)$ then p is univalent, i.e., one-to-one in |z| < 1. We give this condition in terms of a Hermitian form.

1. Definitions. Let C denote the complex numbers. In the following, we consider C as a subset of \mathbb{C}^2 , identifying the complex number z with the point $(z, \bar{z}) \in \mathbb{C}^2$. We say (z, \bar{z}) are absolute coordinates of z (Winger [12] p. 324). If V is a set in \mathbb{C}^2 we will call $\mathbb{C} \cap V = \{(z, \zeta) \in V \mid \zeta = \bar{z}\}$ the real part of V.

Let $S^1 = \{z \mid |z| = 1\}$ be the unit circle in \mathbb{C} . The equation of S^1 in absolute coordinates is $z\bar{z} = 1$, so we may consider S^1 as the real part of the variety $V \subseteq \mathbb{C}^2$ given by the equation $z\zeta = 1$.

Let $p(z) = a_0 + a_1 z + \cdots + a_n z^n$ be a polynomial of degree n. Let $\bar{p}(z) = \overline{a_0} + \overline{a_1} z + \cdots + \overline{a_n} z^n$. We consider p as a map from \mathbb{C} to \mathbb{C} . Since $(z, \bar{z}) \to (p(z), \overline{p(z)})$ gives the mapping in absolute coordinates, we may look at p as the restriction to \mathbb{C} of the mapping $\tilde{p}: \mathbb{C}^2 \to \mathbb{C}^2$ defined by $(z, \zeta) \to (p(z), \bar{p}(\zeta))$.

2. $\tilde{p}(V)$. We now look at $W = \tilde{p}(V)$, which is the rational curve in \mathbb{C}^2 given by parametric equations $\xi = p(z)$, $\eta = \bar{p}(1/z)$. We find

the equation of W in ξ and η by eliminating z from $p(z) - \xi = 0$ and $p^*(z) - \eta z^n = 0$, where $p^*(z) = \overline{a_n} + \overline{a_{n-1}}z + \cdots + \overline{a_0}z^n = z^n\overline{p}(1/z)$. Let $h(\xi, \eta)$ be the resultant of $p(z) - \xi$ and $p^*(z) - \eta z^n$ as polynomials in z, i.e.,

We see that h is of degree 2n and $h(\xi, \eta) = 0$ is the equation of W. The real part of W, $W \cap \mathbb{C}$, is given by the equation $h(\xi, \overline{\xi}) = 0$ in absolute coordinates. Clearly, $p(S^1) = \{(p(z), \overline{p(z)}) | |z| = 1\}$ therefore $p(S^1) \subseteq W \cap \mathbb{C}$. We note also that $h(\xi, \eta) = \overline{h}(\eta, \xi)$ so that $(\xi, \eta) \in W$ iff $(\eta, \xi) \in W$.

We also remark that $h(\xi, \bar{\xi})$ may be written as the determinant of an $n \times n$ Hermitian matrix as follows. Let $g(z) = p(z) - \xi$, $g^*(z) = z^n \bar{g}(1/z) = p^*(z) - \bar{\xi}z^n$. Define the Bézout resultant (see Marden [6] p. 200):

$$\frac{g^*(x)\bar{g}^*(y)-g(x)\bar{g}(y)}{1-xy}=\sum_{i,k=0}^{n-1}h_{ik}x^iy^k.$$

Then $H = H(\xi, \bar{\xi}) = (h_{jk})$ is a $n \times n$ Hermitian matrix and $h(\xi, \bar{\xi}) = \det H(\xi, \bar{\xi})$.

The matrix H also defines a Hermitian form on \mathbb{C}^n of some interest. Let $U=(u_0,\cdots,u_{n-1})$ be a row matrix, then $U\to \bar{U}HU'$ defines a Hermitian form. Let π be the number of positive squares and ν the number of negative squares of H reduced to canonical form. If $h(\xi,\bar{\xi})\neq 0$, then π is the number of zeros of $p(z)-\xi$ in |z|<1 and ν is the number of zeros in |z|>1 (see Marden [6] p. 200).

3. The Schwarz function of $p(S^1)$. Let V be the curve in C^2 given by $z\zeta = 1$, as in §1. Let $z^* = 1/\overline{z}$ be the reflection of z in

 S^1 . We see that $V = \{(z, \overline{z^*}) | z \in \mathbb{C}\}$. The function $z \to \overline{z^*} = 1/z$ is called the Schwarz function for S^1 (Davis [2]), and V may be considered as the graph in \mathbb{C}^2 of the Schwarz function.

Likewise near a nonsingular point of $p(S^1) \subseteq W$, the function $p(z) \to p(1/\bar{z})$ is reflection in the analytic arc $p(S^1)$, and locally this function followed by conjugation is called the Schwarz function for $p(S^1)$. Writing $\eta = S(\xi)$ for the Schwarz function, we see that the complete analytic function that it determines is algebraic satisfying $h(\xi, \eta) = 0$, where h is as in the previous section. Thus W may be considered as the graph of the Schwarz function for $p(S^1)$.

4. $W \cap \mathbf{C} - p(S^1)$. We have seen that $p(S^1) \subseteq W \cap \mathbf{C}$. If $\xi = p(z) = p(1/\bar{z})$ for $|z| \neq 1$, then $\xi \in W \cap \mathbf{C}$, but ξ is not on $p(S^1)$. We may say $\xi \in W \cap \mathbf{C} - p(S^1)$ if ξ is not on $p(S^1)$ but is its own reflection in $p(S^1)$, i.e., $S(\xi) = \bar{\xi}$ and $\xi \not\in p(S^1)$. It would be interesting to know more about $W \cap \mathbf{C} - p(S^1)$, and in particular the relationship to the zeros of the derivative of p. We prove the following

THEOREM 1. If all the zeros of p'(z) are in |z| < 1, then $W \cap \mathbb{C} = p(S^1)$.

Proof. Suppose to the contrary that there is a complex number a such that $|a| \neq 1$ and $p(a) = p(1/\bar{a})$. Then

$$\int_{1/\bar{a}}^{a} p'(t)dt = 0$$

where the integral is over the line segment from $1/\bar{a}$ to a. Therefore p'(z) is apolar to

$$q(z) = \int_{1/a}^{a} (t-z)^{n-1} dt = \frac{(z-a)^n}{n} - \frac{(z-1/\bar{a})^n}{n}$$

(see Marden [6] p. 61). The zeros of q are on the perpendicular bisector L of the line segment joining a and $1/\bar{a}$. The distance of L from 0 is $\frac{1}{2}(1/r+r) > 1$, where r = |a|. Let A be the closed half-plane determined by L, and not containing the disc |z| < 1. By Grace's theorem (Marden [6] p. 61), A contains at least one zero of p'. But this contradicts the hypothesis of the theorem, and we have proof by contradiction.

As a consequence of the theorem, for example, the image of the unit circle under $p(z) = z^2 + z$ is

$$h(\xi, \bar{\xi}) = \begin{vmatrix} -\bar{\xi} & 1 & 1 & 0 \\ 0 & -\bar{\xi} & 1 & 1 \\ 1 & 1 & -\xi & 0 \\ 0 & 1 & 1 & -\xi \end{vmatrix}$$
$$= |1 - \xi|^2 - (1 - |\xi|^2)^2$$
$$= 0$$

since the only zero of the derivative is at -1/2.

- Points of W on the line at ∞ . We consider \mathbb{C}^2 as a 5. subspace of the projective space $P_2(\mathbf{C})$ in the usual way by identifying the point (z, ζ) with the point in $P_2(\mathbb{C})$ with homogeneous coordinates $(z, \zeta, 1)$. Let $\tilde{h}(\xi, \eta, \chi)$ be the ternary form defined by $\tilde{h}(\xi, \eta, \chi) =$ $\chi^{2n}h(\xi/\chi,\eta/\chi)$. Let W* be the projective closure of W in $P_2(\mathbf{C})$, i.e., let W^* be the projective variety given by $\tilde{h}(\xi, \eta, \chi) = 0$. From the determinant expression for h in §1, we see that $\tilde{h}(\xi, \eta, 0) = (\xi \eta)^n$. Therefore the points with homogeneous coordinates (0,1,0) and (1,0,0) are on W^* . These are just the circular points given in absolute coordinates 52). We also see that p. $(-1)^n (a_0 \chi - \xi)^n + (\text{forms in } (\chi, \xi) \text{ of degree} > n)$. Thus (0, 1, 0) is on W^* of multiplicity n. Likewise (1,0,0) is on W^* of multiplicity n. The effect of this is to reduce the number of real intersections of $p(S^1)$ with curves through the circular points. For example, by Bézout's theorem (Walker [11] p. 111; Fulton [3] p. 112) W^* intersects a circle exactly 2(2n) times. Now 2n of these intersections are at circular points, therefore the number of real intersections is at most 2n. Since $p(S^1) \subseteq W \cap \mathbb{C}$, the number of intersections of a circle with $p(S^1)$ is at most 2n. For more on this see Quine [10].
- **6.** Multiple points of W. We investigate points of W with more than one preimage under \tilde{p} . Suppose that $p(\alpha) = p(\beta)$ and $\bar{p}(1/\alpha) = \bar{p}(1/\beta)$. Write

$$G(z,\zeta)=\frac{p(z)-p(\zeta)}{z-\zeta}=\sum_{k=1}^n a_k\phi_k(z,\zeta)$$

where ϕ_k is the form of degree k-1 defined by

$$\phi_k(z,\zeta)=(z^k-\zeta^k)/(z-\zeta).$$

We note that G is of degree n-1 and G(z,z)=p'(z). Now writing

$$G^*(z,\zeta) = z^{n-1}\zeta^{n-1}\bar{G}(1/z,1/\zeta)$$
$$= \sum_{k=1}^n \bar{a}_k \phi_k(z,\zeta)(z\zeta)^{n-k}$$

we note that G^* is of degree 2(n-1). We see that (α, β) is on the intersection of the curves given by $G(z, \zeta) = 0$ and $G^*(z, \zeta) = 0$. By Bézout's theorem, if G and G^* have no common component, then they have at most $2(n-1)^2$ intersections. We have the following theorem

THEOREM 2. If G and G^* have a common component, then $p(z) = q(z^k)$ where k is an integer greater than 1 and q is a polynomial.

Proof. Make the change of variables z = uv, $\zeta = u$. We have $G(z, \zeta) = g(u, v)$ where

$$g(u, v) = \sum_{k=1}^{n} a_k \frac{v^k - 1}{v - 1} u^{k-1}$$

and $G^*(z,\zeta) = u^{n-1}g^*(u,v)$ where

$$g^*(u,v) = \sum_{k=1}^n \overline{a_k} v^{n-k} \frac{v^k-1}{v-1} u^{n-k}.$$

Now G and G^* have a common component iff g and g^* have a common component. Let R(v) be the resultant of g and g^* as polynomials in u. From the determinant expression for the resultant we have

$$R(v) = |a_n|^{2(n-1)} \left(\frac{v^n-1}{v-1}\right)^{2(n-1)} + \cdots$$

so that R is of degree $2(n-1)^2$. Thus any common factor of g and g^* is a polynomial in v alone. Therefore let f = f(v) and suppose f divides g. Then f divides $(v^n - 1)/(v - 1)$ and so f has as a zero some primitive k th root of unity, where k divides n. Denote this root by ω , then

$$g(u, \omega) = \frac{p(u) - p(u\omega)}{u(1 - \omega)}$$

is identically 0 in u. Therefore $p(u) \equiv p(u\omega)$ hence $p(z) = q(z^k)$ for some polynomial q and the proof follows by contradiction.

If $p(z) = q(z^k)$ then $p(S^1) = q(S^1)$. Therefore without loss of generality in studying $p(S^1)$, we may assume that p is reduced so that p(z) is not of the form $q(z^k)$, and we will henceforth make this assumption. We note that if $a_1 = 1$ the assumption holds automatically.

COROLLARY 1. The equation $\tilde{p}(v_1) = \tilde{p}(v_2) = w$ for $v_1, v_2 \in V$ and $v_1 \neq v_2$ holds for at most $(n-1)^2$ points in W.

COROLLARY 2. $p(S^1)$ has at most $(n-1)^2$ self-intersections.

The last corollary is sharp as we showed in Quine [8]. We note that self-intersections of $p(S^1)$ correspond to real singularities of the algebraic curve W.

7. Univalent polynomials. Let $p(z) = z + a_2 z^2 + \cdots + a_n z^n$. Let $V_n = \{(a_2, \dots, a_n) \mid p \text{ is } 1-1 \text{ in } |z| < 1\}$ be the domain of variability for polynomials of degree n. Now (a_2, \dots, a_n) is in the interior of V_n iff W has no singular points on $p(S^1)$ (see Quine [8]). We determine the condition algebraically as follows: Let R(z) be the resultant of $G(z, \zeta)$ and $G^*(z, \zeta)$ as polynomials in ζ . R is of degree $2(n-1)^2$, and the condition that $(a_2, \dots, a_n) \in \text{Int } V_n$ becomes $R(z) \neq 0$ for |z| = 1. By the symmetry of G and G^* we see that R(z) = 0 iff $R(1/\overline{z}) = 0$, therefore without loss of generality, we may assume that R is self-inversive, i.e., $z^{2(n-1)^2}\overline{R}(1/z) = R(z)$. The condition that a self-inversive polynomial have no zeros on |z| = 1 can be expressed in terms of a Hermitian form following Krein [5]. Let $R_1(z) = (n-1)^2 R(z) - zR'(z)$. Let

$$B(x, y) = \frac{R(x)\overline{R_1}(y) + R_1(x)\overline{R}(y)}{1 - xy}$$
$$= \sum_{j=0}^{2(n-1)^2-1} b_{jk}x^j y^k.$$

The matrix (b_{jk}) determines a Hermitian form B on $\mathbb{C}^{2(n-1)^2}$ in the usual way. Let π be the number of positive squares and ν the number of negative squares of B reduced to canonical form. Krein showed that R(z) has no zeros on |z| = 1 iff $\pi = \nu$. Therefore we have

THEOREM 3. $(a_2, \dots, a_n) \in \text{Int } V_n \text{ iff } \pi = \nu \text{ for the Hermitian form } B$.

For more information on V_n , see Koessler [4], Quine [9], Brannan [1].

REFERENCES

- 1. D. A. Brannan, Coefficient regions for univalent polynomials of small degree, Mathematika, 14 (1967), 165-169.
- 2. P. J. Davis, *The Schwarz Function and its Applications*, The Carus Mathematical Monographs, number 17, The Mathematical Association of America, 1974.
- 3. W. Fulton, Algebraic Curves, W. A. Benjamin, Inc., New York, 1969.
- 4. M. Koessler, Simple polynomials, Czech. Math. J., 1 (76) (1951), 5-15.
- 5. M. Krein, On the theory of symmetric polynomials, Rec. Math. Moscow, 40 (1933), 271–283. (Russian-German summary).
- 6. M. Marden, Geometry of Polynomials, Second Ed., A.M.S., Providence, R.I., 1969.
- 7. F. Morley and F. V. Morley, Inversive Geometry, Ginn, Boston, 1933.
- 8. J. R. Quine, On the self-intersections of the image of the unit circle under a polynomial mapping, Proc. Amer. Math. Soc., 39 (1973), 135-140.
- 9. ——, On univalent polynomials, Proc. Amer. Math. Soc., (to appear).
- 10. ——, Some consequences of the algebraic nature of $p(e^{i\theta})$, Trans. Amer. Math. Soc., (to appear).
- 11. R. J. Walker, Algebraic Curves, Princeton University Press, 1950.
- 12. R. M. Winger, An Introduction to Projective Geometry, D. C. Heath and Co. Publishers, New York, 1923.

Received December 29, 1975.

FLORIDA STATE UNIVERSITY