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THE GEOMETRY OF p(Sι)

J. R. QUINE

Let p be a polynomial of degree n. The image of the unit
circle, p(5'), can be thought of as a subset of the real part of an
algebraic curve W of degree 2n. This paper outlines some facts
about p(S]) which can be obtained using classical algebraic
geometry, for example Bezout's theorem.

Introduct ion. We wish to study the image of the unit circle S1 in
the complex plane under mapping by a polynomial of degree rc. If we let
x2 + y2 — 1 be the equation of the unit circle in R2, then if x and y vary
over the complex numbers C, we can think of the unit circle as the real
part of an algebraic variety V in C2. We show that similarly p(S]) can
be thought of as a subset of the real part of an algebraic variety W in
C2. We use the method of absolute coordinates as outlined in Winger
[12] and Morley [7], and we discuss W in terms of the Schwarz function
as used by Davis [2].

We obtain the equation for the real part of W in the form
h(ξ, f) = 0, where h is a polynomial of degree In. We show that if all
the zeros of p' are in \z \ < 1, then ^(S 1) is actually all of the real part of
W. We show that the circular points are of multiplicity n on W and that
W has at most (n - I)2 simple nodes. If no singular point of W is on p(S])
then p is univalent, i.e., one-to-one in | z | < 1. We give this condition in
terms of a Hermitian form.

1. Definit ions. Let C denote the complex numbers. In the
following, we consider C as a subset of C2, identifying the complex
number z with the point ( z , z ) E C 2 . We say (z, z) are absolute coordi-
nates of z (Winger [12] p. 324). If V is a set in C2 we will call
CΠV = {(z, ζ) e VI ζ = z) the real part of V.

Let S1 = {z I \z I = 1} be the unit circle in C. The equation of S1 in
absolute coordinates is zz = 1, so we may consider S1 as the real part of
the variety V C C 2 given by the equation zζ = 1.

Let p(z) = ao+ aλz + + anz
n be a polynomial of degree n. Let

p(z) = ~a'() + ~axz + +Ίϊnz
n. We consider p as a map from C to

C. Since (z, z)-> (p(z), p{z)) gives the mapping in absolute coordi-
nates, we may look at p aS the restriction to C of the mapping p: C2 —> C2

defined by (z,ζ)^>(p(z),p(ζ)).

2. p ( V ) . We now look at W = p(V), which is the rational
curve in C2 given by parametric equations ξ = p(z), η = p(l/z). We find
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the equation of W in ξ and η by eliminating z from p(z) — ξ = 0 and
p*(z)- ηzn = 0, where p*(z) = α~n + αΓTz + + ά^zn = znp(l/z). Let
h(ξ,y) be the resultant of p(z) - ξ and p *(z) - rjzn as polynomials in z,
i.e.,

- ξ an

- ξ

- - an

a0

an ao~ η

an ao-η

We see that h is of degree In and h(ξ,η) = 0 is the equation of
W. The real part of W9 W Π C, is given by the equation h(ξ, ξ) = 0 in
absolute coordinates. Clearly, ^(S1) = {(p(z),p(z))| |z | = 1} therefore
p(S !) C W n C . W e note also that h(ξ,η)= Λ(τj, f) so that (f, TJ) E W iff

We also remark that h(ξ, ξ) may be written as the determinant of an
nxn Hermitian matrix as follows. Let g(z) = p(z)- ξ, g*(z) =
zng(l/z) = p*(z)— ξzn. Define the Bezout resultant (see Marden [6] p.
200):

= Σ hikx>yk.
j,k=O1 — xy

Then H = H(ξ, ξ) = (hjk) is a n x n Hermitian matrix and /ι(£ ^) =
detH(£#).

The matrix H also defines a Hermitian form on C" of some interest.
Let U = (w0, * * , Mπ-i) be a row matrix, then U^UHU* defines a
Hermitian form. Let TΓ be the number of positive squares and v the
number of negative squares of H reduced to canonical form. If
h (£, ξ) 7̂  0, then π is the number of zeros of p (z) — ξ in | z | < 1 and v is
the number of zeros in \z \ > 1 (see Marden [6] p. 200).

3. The Schwarz function of p (Sι). Let V be the curve in
C2 given by zζ = 1, as in §1. Let z* = 1/z be the reflection of z in
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S1. We see that V = {(z,7*)| z G C}. The function z->J* = l/z is
called the Schwarz function for S1 (Davis [2]), and V may be considered
as the graph in C2 of the Schwarz function.

Likewise near a nonsingular point of p(Sι)CW, the function
p(z)->p(l/z) is reflection in the analytic arc p(Sι), and locally this
function followed by conjugation is called the Schwarz function for p(Sι).
Writing η = S(ξ) for the Schwarz function, we see that the complete
analytic function that it determines is algebraic satisfying h(ξ,η) = 0,
where h is as in the previous section. Thus W may be considered as the
graph of the Schwarz function for

4. W ΠC- p(Sι). We have seen that p(Sι)QWΠC. If
ξ = p(z) = p(l/z) for | z | ^ l , then ξ G W Π C , but £ is not on
p(S]). We may say ξ G W Π C - p(5 !) if £ is not on p(5 !) but is its own
reflection in p{Sx), i.e., S(ξ) = ξ and ξ£p(Sι). It would be interesting to
know more about W Π C - p(S*), and in particular the relationship to the
zeros of the derivative of p. We prove the following

THEOREM 1. // all the zeros of p\z) are in \ z \ < 1, then W Π C =

p(sιy

Proof Suppose to the contrary that there is a complex number a
such that \a\/ί and p(a) = p(l/ά). Then

Γ P'(t)dt =
Jl/ά

0

where the integral is over the line segment from 1/α to a. Therefore p\z)
is apolar to

(see Marden [6] p. 61). The zeros of q are on the perpendicular bisector
L of the line segment joining a and 1/α. The distance of L from 0 is
i(l/r + r) > 1, where r = | α |. Let A be the closed half-plane determined
by L, and not containing the disc | z \ < 1. By Grace's theorem (Marden
[6] p. 61), A contains at least one zero of p'. But this contradicts the
hypothesis of the theorem, and we have proof by contradiction.

As a consequence of the theorem, for example, the image of the unit
circle under p(z)= z2+ z is
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since the only zero of the derivative is at - 1/2.

5. Points of W on the line at o°. We consider C2 as a
subspace of the projective space P2(C) in the usual way by identifying the
point (z, ζ) with the point in P2(C) with homogeneous coordinates
(z, ζ, 1). Let h(ξ, 17, χ) be the ternary form defined by h(ξ, η, χ) =
X2nh(ξ/χ, v/χ). Let W* be the projective closure of W in P2(C), i.e., let
W* be the projective variety given by h (ξ, η, χ) = 0. From the determin-
ant expression for h in §1, we see that h(ξ, 17,0) = (ξη)n. Therefore the
points with homogeneous coordinates (0,1,0) and (1,0,0) are on
W*. These are just the circular points given in absolute coordinates
(Winger [12] p. 52). We also see that Λ ( £ l , χ ) =
( - l)n(aoχ - ξ)n + (forms in (χy ξ) of degree > n). Thus (0,1,0) is on W*
of multiplicity n. Likewise (1,0,0) is on W* of multiplicity n. The effect
of this is to reduce the number of real intersections of p(S]) with curves
through the circular points. For example, by Bezout's theorem (Walker
[11] p. I l l ; Fulton [3] p. 112) W* intersects a circle exactly 2(2n) times.
Now 2n of these intersections are at circular points, therefore the
number of real intersections is at most In. Since p(S])C W ΠC, the
number of intersections of a circle with p(Sι) is at most 2n. For more on
this see Quine [10].

6. Multiple points of W. We investigate points of W with
more than one preimage under p. Suppose that p(a) = p(β) and
p(l/a) = p(l/β). Write

where φk is the form of degree k — 1 defined by

φk(z,ζ) = (zk-ζk)/(z-ζ).
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We note that G is of degree n - 1 and G(z,z) = p'(z). Now writing

G*(z,ζ) = z-'ζ

k = \

we note that G* is of degree 2(n - 1). We see that (α, β) is on the
intersection of the curves given by G(z,ζ) = 0 and G*(z, ζ) = 0. By
Bezout's theorem, if G and G* have no common component, then they
have at most 2(n - I)2 intersections. We have the following theorem

THEOREM 2. If G and G* have a common component, then p(z) =
q(zk) where k is an integer greater than 1 and q is a polynomial.

Proof. Make the change of variables z = uυ, ζ - u. We have
G(z,ζ) = g(u,v) where

g(κ,t>) = 2J k
k=\ V —

a n d G * ( z , ζ)= unlg*(u, v) w h e r e

— , vk -
(w, υ) =

Now G and G* have a common component iff g and g* have a common
component. Let R(v) be the resultant of g and g* as polynomials in
u. From the determinant expression for the resultant we have

R(v)=\an\
2^(^—j-yn °

so that JR is of degree 2(n - I)2. Thus any common factor of g and g * is a
polynomial in v alone. Therefore let / = f(v) and suppose / divides g.
Then / divides (vn - l)/{v - 1) and so / has as a zero some primitive fcth
root of unity, where k divides n. Denote this root by ω, then

is identically 0 in u. Therefore p(u) = p(uω) hence p(z)= q(zk) for
some polynomial q and the proof follows by contradiction.
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If p(z) = q(zk) then p(Sι) = q(Sι). Therefore without loss of gener-
ality in studying p(Sι), we may assume that p is reduced so that p(z) is
not of the form q(zk), and we will henceforth make this assumption. We
note that if aλ = 1 the assumption holds automatically.

COROLLARY 1. ^The equation p(v{) - p(v2) = w for υuv2E. V and
ϋi ^ v2 holds for at'most (n - I)2 points in W.

COROLLARY 2. p(Sι) has at most (n - I)2 self-intersections.

The last corollary is sharp as we showed in Quine [8]. We note that
self-intersections of p(S]) correspond to real singularities of the algebraic
curve W.

7. Univalent polynomials. Let p{z)- z + a2z
2+ - • + anz

n.
Let Vn - {(a2, , an)\p is 1-1 in \z \ < 1} be the domain of variability for
polynomials of degree n. Now (α2, * *, α«) is in the interior of Vn iff W
has no singular points on p(Sι) (see Quine [8]). We determine the
condition algebraically as follows: Let R(z) be the resultant of G(z, ζ)
and G*(z,ζ) as polynomials in ζ. R is of degree 2(n - I)2, and the
condition that (α2, * * , an)E Int Vn becomes R(z)/ 0 for \z \ = 1. By the
symmetry of G and G* we see that R(z) = 0 iff R(l/z) = 0, therefore
without loss of generality, we may assume that R is self-inversive, i.e.,

z

2{n-])2R(l/z) = R(z). The condition that a self-inversive polynomial
have no zeros on \z \ = 1 can be expressed in terms of a Hermitian form
following Krein [5]. Let R^z) = (n - l)2R(z)- zR'(z). Let

B(x v ) = 1 -

= 2 < τ
/,k=0

The matrix (bjk) determines a Hermitian form B on C2("~1)2 in the usual
way. Let rr be the number of positive squares and v the number of
negative squares of B reduced to canonical form. Krein showed that
R(z) has no zeros on \z \ — 1 iff TΓ = v. Therefore we have

THEOREM 3. (α2, , an)€ί Int Vn iff π = v for the Hermitian form
B.

For more information on Vm see Koessler [4],Quine [9], Brannan [1].
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