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A CLASS OF TrCOMPACTIFICATIONS

ELLEN E. REED

In this work the correspondence between T2-compactifica-
tions, proximity relations, and families of maximal round
filters is extended to the case of TΊ-spaces. The major results
spell out bijections between a special class of T^compactifica-
tions, certain proximity relations on the original space, and
certain filterfamilies. Perhaps the most interesting result
is the identification of a class of compactifications between
T± and Tg-compactifications. This class consists of the prin-
cipal weakly regular minimal compactifications and includes
the Wall man compactiίication, and also the one-point compac-
tification of a locally compact space. Moreover, the Wallman
compactification is the largest weakly regular minimal com-
pactiίication of a ΪVspace. This improves the known result
that the Wallman compactification is Tl9 and is larger than
any T2-compactification.

!• Extension structures and TΊ-compactiίications* This section

develops the notion of a compactification structure, which is a family
of filters satisfying conditions strong enough to guarantee that the
induced extension is a compactification. These induced compactifica-
tions constitute a class lying between Tλ and ^-compactifications.
In the language developed in this section, it is the class of principal
weakly regular minimal compactifications. The main result is the
1 — 1 correspondence between these compactifications and the set of
compactification structures on a given TΓspace. The Wallman com-
pactification is characterized as the largest weakly regular minimal
compactification of a 2\-space. Much of the notation and terminology
in this section is taken from ϊhron [4], Chapter 17.

DEFINITION 1.1. An extension structure on a topological space
(X, ^~) is a family Φ of open filters on X which includes all neigh-
borhood filters. We will call the extension structure 2\ if no filter
in Φ contains any other filter in Φ.

The inverse images of the neighborhood filters of an entension
constitute an extension structure. We will call this the trace system
of the extension. Conversely, each extension structure is the trace
system of some extension.

This correspondence between extensions and extension structures
is not 1-1, since inequivalent extensions can have the same trace
system. However, for each extension structure Φ there is a preferred
extension π(Φ), which we will call the principal extension associated

471



472 ELLEN E. REED

with Φ.
This extension is.obtained as follows (in the case of a T0-space).

For AdX we define A~ = {&* eΦ:Ae J^}. Then {G~: G e J Π is a
base for a topology y A on Φ. We define j(x) = «^ς, the neighborhood
filter at α, for xeX. When (X, jT") is TQ then (i, (Φ, ̂ ^)) is a
T0-extension of (X, <^~) with trace system Φ. We will denote this
extension by π(Φ).

By a principal extension we mean any extension equivalent to
one of the π(Φ)?s. Since equivalent extensions have the same trace
system, this is the same as saying that a principal extension is
equivalent to the image under π of its trace system. A principal
extension is the continuous image of every extension with the same
trace system. Thus the principal extensions are minimal in some
sense. The Wallman, one-point, and T2-compactifications are all
principal extensions.

In what follows we will describe a more useful characterization
of principal extensions.

DEFINITION 1.2. Let K = (e, (Γ, ^~')) be an extension of (X,
For any subset A of Y we define

A+ = {yeY:Ae ee

REMARK 1.3. Notice that if G is open then GQG+QG~ and G+

is open. In fact, G+ is the union of all open sets in Y which have
the same restriction to X as G does.

PROPOSITION 1.4. A T0~extension Y of a space X is principal
iff {G+' G is open in Y} is a base for the topology on Y.

Proof. Note first that this condition is preserved under equi-
valence of extensions. To see this, check that whenever (etf {Yif

are extensions of (X, ̂ ) equivalent under h: Yι —• Y2 then for G
we have h(G)+ - h(G+).

Now if Φ is an extension structure on X then in π(Φ) we have
CΓ+ = G". From this and the preceding remark it follows that every
principal extension satisfies the required condition.

Suppose now that K satisfies the given condition. Let Φ be its
trace system. We wish to show K and π(Φ) are equivalent. Let
h:Y—+Φ be defined by y—^e^iyV^). Then h is continuous, with
he = j . We wish to establish that h is a homeomorphism.

To prove that h is an open map, note that if U and V are open
subsets of Y with U+ C F then e'\UT Q h(V). Now using the fact
that the ϋ7'+s form a base for JT" we can easily see that h maps
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open sets to open sets.
Now suppose y Φ z. Since Y is To we can assume ^ ς §£ Λ^.

Using the condition, let U be an open set such that y e U+ and zg U+.
Then clearly e~\ U) £ e~V^) and so h(y) Φ h(z).

The following definitions lead up to conditions to be imposed on
an extension structure which will guarantee that the induced extension
is compact. These conditions identify a class of IVcompactifications
which include the Wallman compactification and the 1-point compac-
tification of a locally compact space.

DEFINITION 1.5. An extension structure Φ on a TΓspace (X,
is totally hounded iff every ultrafilter on X contains a member of Φ.

REMARK 1.6. It is easy to check that in the definition of total-
boundedness we can replace ultrafilters by ultra-closed filters. (These
are closed filters not contained properly in any other closed filter.)

Note also that this at least is a necessary condition in that the
trace system of a compactification is always totally bounded.

DEFINITION 1.7. An extension structure Φ is covered iff every
filter in Φ is contained in some ultra-closed filter.

REMARK 1.8. Requiring an extension structure to be covered
is close to requiring it to be minimal in the sense that no "extra"
points are being adjoined to the space. The idea is that every point
adjoined is used to make an ultra-closed filter converge.

The last condition to be imposed on an extension structure is a
kind of regularity condition. This will be defined in terms of an
induced proximity relation.

DEFINITION 1.9. Given Φ an extension structure on X, we define
Φ-containment as follows.

A <φB iff for every J^~ in Φ, if A is in some ultraclosed filter
containing J ^ then

This defines a map p from extension structures on X to relation
on ^{X). We will sometimes denote < φ by p(Φ).

REMARK 1.10. Let < ^ > denote the intersection of all ultralosed
filters containing ^ T (If there are none, (^) = &*(X).) Then for
a closed set A, A<,ΦB iff for every &~ in Φ, either Be^ or
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The relation < φ is a strong containment relation. On a ΪY space,
Φ-containment implies containment. If Φ is the set of maximal
round filters from an ϋLF-proximity c , then AaB iff A~<,ΦB. If
Φ is the trace system of the Wallman compactification then A<,ΦB
iff A £ B\

DEFINITION 1.11. The Φ-hull of a filter / O n I is the filter

= {A: F<ΦA for some

REMARK 1.12. Note that if ^ is an ultra-closed filter containing
a filter ^ in Φ then Φ(^1) £ Φ ( ^ ) £ jiC When equality holds we
say that Φ is regular. This is made precise in the next definition.

DEFINITION 1.13. An extension structure Φ is regular iff for
every &~ in Φ and every ultra-closed filter ^ , if ^ £ <%/ then

REMARK 1.14. Note that if Φ is covered and totally-bounded
then Φ is regular iff it consists of the Φ-hulls of open hulls of ultra-
closed filters.

Note also that a covered regular extension structure is 2\. In
fact, if Φ is covered and regular then no two of its filters are con-
tained in the same ultra-closed filter. Thus Φ determines a partition
of the ultra-closed filters. Without regularity we have this separation
property for any two filters in Φ as long as one of them converges.
This can be established using the following lemma.

LEMMA 1.15. Let Φ be a Ί\-extension structure on X. If J^~ eΦ
and %S is ultra-closed and J?~ £ *2S —• x then

Proof. Note that on a TVspace if <%s is ultra-closed and ^ —> x
then ^ = x, the point filter at x. Hence <%fι = ^ ς . Since &~ is
open, we have ^ Q <%" = ^ . Since Φ is Tlf

EXAMPLES 1.16.

1. Let Ω denote the trace system of the Wallman compactifica-
tion. Note that Ω consists of the open hulls of the ultra-closed
filters. We have A<ΩB iff AQ B\ and hence each filter in Ω is
its own β-hull. From Remark 1.14 it follows that Ω is regular.

2. Let i? denote the set of filters maximal round with respect
to an ^F-proximity c . Recall A c B iff A~ < B. Thus 8" consists
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of the if-hulls of filters in Ω, and this makes g? regular.

3. Let j y denote the trace system of the Alexandroίf 1-point
compactification of a locally compact TΓspace X (which is not compact).
Here by locally compact we mean that every point of X has a compact
neighborhood.

We claim that J^f consists of the neighborhood filters, together
with the open hull of the intersection ^l of all the nonconvergent
ultra-closed filters on X. To see this, let A be any subset of X.
If A is compact then it cannot be a member of any noncovergent
ultra-closed filter. If A is closed but not compact then using Zorn's
lemma we can obtain a nonconvergent ultra-closed filter which contains
A. Thus for any closed subset B of X we have that B is compact
iff X\B is in j ^ \

To establish regularity, we will show that for each ^~ in Ssf
we have ^ = j ^ ( ^ ) . Note first that Sf is a ΓΓextension structure.
For if xeX then ~{x}e^*, and so ^ ι <g ̂ . On the other hand,
since X is not compact, ^ % cannot contain any compact sets. Since
local compactness ensures that each Λ^ contains a compact set, we
have ^fς g ^ \ for all x.

Now let &~ e A. Suppose &~ — ̂ 7. Let G be open such that
G 6 J?~. Then since every convergent ultra-closed filter is a point
filter, we have G < y G. Hence ^ * = S^{^7). Now suppose ^ =
^ ς . Let G be an open neighborhood of x, and let W be a compact
neighborhood of x. From Lemma 1.15 it follows that G Γ\
Hence ^Vx =

DEFINITION 1.17. A compactification structure is a covered
totally-bounded regular extension structure.

THEOREM 1.18. The principal extension obtained from a com-
pactification structure is a T^compactification.

Proof. Let Φ be a compactification structure on a Tx-space
(X, J7~). We need to show that (Φ, ̂ ~~) is compact. Let {Ga: a el}
be a family of open sets in X such that Φ £ U* G£ Let ^ =
{X\[7: £7 is open and U<ΦGa for some a el}.

We claim that some finite intersection of sets in <f is empty.
If not, then there is some ultra-closed filter *%f which contains Sf.
Since Φ is totally-bounded, ^ contains some filter ^ in Φ. By
regularity, ^ = Φ ( ^ ) This, together with the definition of S?
and the fact that some Ga is in ^ 7 leads to the contradiction that
for some open set U, both U and X\U are in ^ . Thus Sf does not
have the finite intersection property.
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Accordingly, let U19 , Un be open sets with complements in S^
and such that X = (J* ^ and tT, < Φ Gα< for 1 <L i <: n. Using that
Φ is covered it is easy to show that Φ £ U* &«Λ

This establishes that (Φ, ̂  ) is compact. The regularity of Φ
guarantees that no filter in Φ contains any other filter in Φ; hence
(Φ, y~) is Tx.

We turn now to the characterization of those compactifications
which are obtained from compactification structures.

DEFINITIONS 1.19. A filter T on an extension (β, Y) of X is
relatively ultra-closed iff e(X) e 'T and e~x(5O is ultra-closed on X.
The condition e(X) e T guarantees that e{e~\T)) = T.

Using this we can define a weak closure operator on Y as follows.
For AQY,

4* = i U {y ^T relatively ultra-closed such that AeT ~*y).
For a filter &r on Y", ^ * is the filter generated by {A*: Ae&}.
We say 7 is a weakly regular extension of X iff for every

relatively ultra-closed filter T\

T > y = _ (3Γ*)* , y ̂

REMARK 1.20. Note that A* S A~. From this it follows that
if ^V\ £ <%S then ,^ς~ £ (<^ ί)*. Hence every extension which is
regular in the usual topological sense is also weakly regular. Thus
in particular every jΓ2-compactification is weakly regular.

LEMMA 1.21. A principal extension is weakly regular iff its
trace system is regular.

Proof. Let K = (β, Y) be a principal extension of a ϊ\-space X
with trace system Φ. The key to establishing the result is the
following relation: for any two open sets U and V in Y,

e-\U) <Φ e-'iV) iff ^ * £ V+ .

Using this, the result follows easily from the definitions.

DEFINITION 1.22. An extension is covered iff every point has a
relatively ultra-closed filter which converges to it.

REMARK 1.23. Note that an extension is covered iff its trace

system is covered.
The results obtained thus far are summarized in the following

theorem.
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THEOREM 1.24. The compactifications obtained from compactifi-
cation structures under the map π are exactly those principal 2\-
compactifications which are weakly regular and covered. Given a
fixed Tγ-space X, the map π is a bisection from the set of compac-
tification structures on X to the set of (equivalence classes of) principal
weakly regular covered T-compactifications of X.

Proof. Let Φ be a compactification structure on X. Then by
Theorem 1.18 we have that π(Φ) is a Trcompactification of X. Recall
that π(Φ) has trace system Φ. Hence by Lemma 1.21, π(Φ) is weakly
regular. Finally, by Remark 1.23, π{Φ) is covered. Hence π maps
compactification structures to principal weakly regular covered ϊ\-
compactificat ions.

Conversely, suppose Φ is the trace system of a principal weakly
regular covered TVcompactification. From Remarks 1.6 and 1.23 we
have that Φ is totally-bounded and covered. By Lemma 1.21, Φ is
regular.

To see that π is 1 — 1, let τ denote the map from an extension
to its trace system. Clearly τπ is the identity map on the set of
extension structures.

To see that π is a surjection, let K be a principal weakly regular
covered TVcompactification of X. Let Φ = τ(K). By Remarks 1.6
and 1.23, Φ is totally-bounded and covered. By Lemma 1.21, Φ is
regular. Hence Φ is a compactification structure. We claim that
π(Φ) is equivalent to K. This follows from the fact that they both
have the same trace system.

The next series of results gives an equivalent characterization
of the compactifications induced by compactification structures. In
the characterization "covered" can be replaced by "minimal" although
the two concepts taken separately do not appear to be equivalent.
The main result is that a weakly regular principal compactification
is minimal iff it is covered and 7\.

DEFINITION 1.25. A compactification Y of a space X is minimal
iff the only compact set between k(X) and Y is Y itself.

LEMMA 1.26. Every weakly regular minimal compactification
of a Tx-space is covered.

Proof. Assume K = (k, Y) is a weakly regular minimal com-
pactification of a 2\-space X.

Let Z be the set of all points in Y which are limits of relatively
ultra-closed filters. We wish to show Z = Y. Since K is minimal
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it is sufficient to show that k(X) £ Z and Z is compact.
Since X is T19 for x e l w e have that k(x) is a relatively ultra-

closed filter converging to k(x). Hence k(X) £ Z.
Now suppose {Ga: a el} is an open cover of Z. Let

Sf = {X\17:Ϊ7 is open and k(U)* Q Ga for some a} .

We claim that Sf does not have the finite intersection property.
Suppose this is false. Then let ^ be an ultra-closed filter containing
S^. Since Y is compact, k(^) has a limit, y eY. Since fc(^) is rela-
tively ultra-closed, y eZ. Thus y is in some Gα. By weak regularity,
Gβe(fc(^)*)*; thus we can choose [7 open in Y such that ϊ /e fc^)
and ί/* £ Gα. This allows us to conclude that k~ι{U) e ^ and
X\krι{U)eS^ £ ^ , which is impossible. Therefore S^ cannot have
the finite intersection property.

Accordingly, let Uί9 •••, Un be such that X\Uie^ and U*^* =
X Choose at such that fc(E7,)* £ Gα.. We claim that ZQ \JiGa..

Let ^ e Z . Let 3^ be relatively ultra-closed such that T —*z.
Since ft"1^) is ultra-closed, some Z7, is in k~ι(T). Then *(!/,) €
T{ = kk~\T)) and hence by definition zekiU.Y Q Ga..

LEMMA 1.27. Every minimal compactification is To.

Proof. Suppose ^4^y — ^/V\ with y Φ z. Since X is To, at least
one of these, say y, is not in k(X). Note F\{̂ /} is still compact,
since ^Y^ Q ^ί^z. This violates the minimality of K.

To help establish the connection between being minimal and being
covered we introduce the notion of a separated extension.

DEFINITION 1.28. An extension is separated iff each relatively
ultra-closed filter has at most one limit.

LEMMA 1.29. Every weakly regular T0-extension is separated.

Proof. Let f be a relatively ultra-closed filter such that 7Γ —•
y, z. By weak regularity, (Tψ -> y, z. From (T*)* -+y imdT->z
we obtain ^ ς Q Λ^z. Similarly, ^ ς £ ^ ς . Since Γ is To, we obtain
».= z.

LEMMA 1.30. Every covered separated extension is 2V

Proof. Let ^Y^ Q ^Y%% Since K is covered, there is a relatively
ultra-closed filter ^ which converges to z and a fortiori to ?/. Since
K is separated, y = z.
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LEMMA 1.31. Every covered separated compactification is minimal.

Proof. Let Z be compact such that k(X) £ Z £ 7 . We wish
to show Z = Y.

Let y eY. Since F is covered there is a relatively ultraclosed
filter T* such that Y* —>y. Since Z is compact, 3^ must converge
to a point 2 6 Z. Since Y is separated, y = z.

THEOREM 1.32. Let K be a weakly regular compactification of
a T^space. The following conditions are equivalent:

( i ) K is minimal
(ii) K is covered and separated
(in) K is covered and T1

Proof. If K is minimal then by Lemma 1.26 it is covered; and
by Lemmas 1.27 and 1.29 it is separated. Hence (i) => (ii).

If K is separated and covered then by Lemma 1.30 it is 2\.
Thus (ii) ==> (iii). Finally, if K is covered and Tx then by Lemma
1.29 it is separated. By Lemma 1.31, every covered separated com-
pactification is minimal.

COROLLARY 1.33. The compactifications obtained from compac-
tification structures under π are those principal compactifications
which are weakly regular and minimal.

REMARK 1.34. The following proposition establishes that the
compactifications induced by compactification structures fall between
T1 and T2 compactifications.

PROPOSITION 1.35. (1) Every T^compactification is weakly re-
gular, minimal, and principal.

(2) Every weakly regular "minimal compactification is Tγ.

Proof. Let Y be a ϊVcompactification. Then Y is regular. Since
for any A Q Y we have A+ Q A~ and A* Q A~ we can conclude Y
is principal and weakly regular. (See Definitions 1.2 and 1.19.) Since
compact subsets of a Γ2-space are closed, we have that F is minimal.

The rest of the conclusion follows from Theorem 1.32.

THEOREM 1.36. The Wallman compactification of a T^space is
its largest weakly regular minimal compactification.

Proof. Let ω — (j, ( ̂ , *^~~)) denote the Wallman compactification
of a TVspace X. We have already seen that its trace system is
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regular (Example 1.16). Hence by Remark 1.20, ω is weakly regular.
Note that if <%S and T are ultra-closed on X then j ( ^ ) -> T

iff ^ = Y: From this it follows that ω is covered and separated.
Hence by Theorem 1.32, ω is minimal.

Now let K = (fc, (Y, J^')) t>e a n y weakly regular minimal com-
pactification of X. For ^ ultra-closed we note k{^) has a unique
limit in Y, since K is compact and separated (Theorem 1.32). This
defines a map h: "W—^Y. Since K is covered, h maps onto Y.

To establish that h is continuous we will use the fact that K is
weakly regular. Suppose G is open in Y and ^/ is ultraclosed with
k(^f) -^yeG; i.e., <Zf e h~ι(G). By weak regularity (ft(^O0* -> 2/.
Pick [7 open in k(^f) so [/* £ G. It is easy to check that k'^UΓ
is an open neighborhood of fS contained in h~\G).

2. Proximity relations and TVcompactifϊcations* In this section
we will study the correspondence between extension structures and
a class of proximity-like relations, called extension relations. These
extension relations take in many of the known proximity relations,
including LO and i£F-proximities. We can pass from extension rela-
tions to extension structures via a map φ. Of particular interest
are the extension relations which give rise to compactification struc-
tures under φ. These are the weakly dense, balanced, focused
extension relations, and will be called compactification relations. The
map φ is not 1 — 1 on this set, and hence gives rise to an equivalence
relation on the set of compactification relations. Each equivalence
class contains a largest member, called a saturated compactification
relation. The main result states that φ is a bisection from the set
of saturated compactification relations on a fixed 2Vspace X to the
set of compactification structures on X.

DEFINITION 2.1. An extension relation on a space (X, ^7~) is a
relation < on the subsets of X such that the following conditions are
satisfied.

(Rl) ψ < A for A £ X;
(R2) if A < B then A £ B f or A, B Q X;
(R3) if A! Q A < B £ Bf then A' < B';
(R4) if A < B and A < C then A < B Π C;
(R5) if A < B then A < B';
(R6) if xeGe^~ then {x} < G.

REMARK 2.2. The first three axioms are very nearly the axioms
for a semi-topogenous order given by Csaszar [1], Only the axiom
A < X for A £ X is missing. The extension relations of interest;
namely, those of the form < φ , where Φ is an extension structure,
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all satisfy this axiom. So the fact it is missing does not appear
significant. The axiom (R4) is a weakening of the requirement for
a semi-topogenous order to be a topogenous order. If < is symmetric,
then the first four axioms gurantee that < is a topogenous order.

The last two axioms are designed to guarantee that the topology
induced in the usual way by < is the original topology ^~. (A set
A is <-open iff x e A ==> {x} < A.)

Note that a symmetric extension relation is a LO-proximity
compatible with the topology.

EXAMPLE 2.3. Note that if Φ is a ΪVextension structure then
< φ is an extension relation. In particular then < , < ώ , and < β

are extension relations.

To see more clearly the correspondence between extension rela-
tions and ordinary proximities we introduce the notion of the "star"
of a relation.

DEFINITION 2.4. For any relation < on the subsets of a topological
space X we define A < * B iff for every closed subset F of A we
have F < B.

PROPOSITION 2.5. If < is an extension relation on a T^space
X then <* is also an extension relation on X.

REMARK 2.6. Note that if g7 is the set of filters maximal round
with respect to an Efremovich proximity c then < ^ = c * . Note also
that if c is a Lodato proximity then c and c * are both extension
relations.

In order to obtain an extension structure back from an extension
relation we make the following definitions.

DEFINITION 2.7. If < is an extension relation on X and ^ is a
filter on X then

= {A: 3 F e ^ such that F < A}.

Then Φ< = {r<(^/): ^/ is ultra-closed}.
This defines a map φ from extension relations to extension struc-

tures on X.

PROPOSITION 2.8. // < is an extension relation on a T^space
X then φ{<) = Φ< is an extension structure on X.

Proof. This follows easily from the definitions.
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Next we will develop properties which will guarantee that φ< is
a compactiίication structure.

DEFINITION 2.9. An extension relation < is weakly dense iff for
any two ultra-closed filters fS and T we have

We say < is balanced if r < ( ^ ) £ 3^ ==> r<{T) £ ^ for any
ultra-closed filters ^ and T. The relation < is focused if r<(^) =
r<(^0 for any ultra-closed filter ^ .

Finally, < is a compactίfication relation iff it is weakly dense,
balanced, and focused.

LEMMA 2.10. Let < be a compactification relation on a T^space
X.

(1) // ^~ £ ^ , where j ^ ~ e Φ< and ^ is ultra-closed, then

(2) <

Proof. Straightforward.

THEOREM 2.11. If < is a compactification relation on a Ύ-space
X then Φ< is a compactification structure.

Proof. It is easy to check that Φ< is a covered totally-bounded
extension structure.

To see that Φ< is regular let &~ e Φ< and suppose
where <%s is ultra-closed. By the preceding lemma, &~
By the same lemma, <Qpφ«) and hence r^^QΦ <{&% This
establishes regularity.

THEOREM 2.12. If Φ is a compactification structure on a T^space
X then p(Φ) is compactification relation.

Proof. Let < denote ρ{Φ). Note that for any filter ^ r<

1. < is focused. Let *%/ be ultra-closed. Since Φ is totally-
bounded, we can pick ^eΦ such that ^Q^S. By regularity,

2. lϊ ^eΦ and ̂ ^ £ ^ where ^ is ultra-closed then

3. < is weakly dense and balanced. Let ^ and T be ultra-
closed such that r<(^) £ T. It is sufficient to show r<(
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Choose ^ " e Φ such that &~ £ ^ . Then &~ = r < ( ^ ) and hence
£ T. This implies J ^ - rK(T). Thus r<(

REMARK 2.13. We have now defined maps p and φ, which map
compactification structures to compactification relations, and back.
These maps turn out to be inverses, provided we restrict the domain
of ψ to a special class of relations, called saturated compactification
relations.

LEMMA 2.14. The map φp is the identity on the set of compac-
tification structures on a given T^space X.

Proof. Let Φx = φp(Φ), where Φ is a compactification structure
on X. If / e Φ then since Φ is covered there is an ultra-closed
filter ^r with &~ £ ^/. Since Φ is regular, ^ = Φ ( ^ ) . But by
definition of Φ, we have Φ(^/) e Φ1# Hence Φ £ Φx.

Now let ^~ 6 Φιm Choose ^ ultra-closed such that ^ = Φi&\
Since Φ is totally-bounded there is a filter ^ e Φ with ^ £ ^ . By
regularity, ^ = Φ(^) and hence ^ " e Φ.

DEFINITION 2.15. An extension relation < is saturated iff A < B
implies the existence of an ultra-closed filter <%S such that i e ^
and

PROPOSITION 2.16. (1) If Φ is a compactification structure then
<.Φ = ρ(Φ) is saturated.

(2) If < is a saturated compactification relation and <,' is
any extension relation such that φ(<.') = φ(<) then <! £ <.

Proof. Clearly (1) follows from definitions. Now suppose < is
a saturated compactification relation on a Trspace X. Let < ; be an
extension relation on X with φ{<!) = φ{<)

First we will establish that for any ultra-closed filter <%S we have
r < ( ^ ) = r<t(^r). Note that r<f{^)eφ{<), and so r<,(^) = r^T)
for some ultra-closed filter T. Then r < ( ^ ) £ ^ . Since < is weakly
dense and balanced, r<(3r) = r<(^) .

Now suppose A < B. We wish to show A < ' J5. Let ^ be
ultra-closed such that 4 e ^ and S g r ^ ) . Then J5ίr</(^) and
hence A < 5.

LEMMA 2.17. The map pφ is the identity on the set of saturated
compactification relations on a fixed Tγspace.

Proof. Let < be a saturated compactification relation and let
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< x = pφ(<). Note that <j. is a saturated compactification relation,
by Theorems 2.11, 2.12 and Proposition 2.16. Moreover, since φp is
the identity on compactification structures, we have <P«i) = £>(<)•
Thus < ! = <, by the preceding proposition.

The results of this section are summarized in the next theorem.

THEOREM 2.18. The map φis a bίjection from the set of saturated
compactification relation on a T^space X to the set of compactification
structures on X. Moreover, φ and p are inverses on these two sets.

Proof. Lemmas 2.14 and 2.17.

Open questions 2.19. Gagrat and Naimpally [2] proved that a
separated Lodato proximity gives rise to a jΓV-compaetification, using
maximal bunches. In this paper it was shown that a compactification
relation gives rise to a TΊ-compactification via an associated family
of filters. What is the relation between these two constructions? A
Lodato proximity compatible with a given ΓΓtopology is simply a
symmetric extension relation on the space. Are these two compac-
tifications equivalent for a symmetric compactification relation?

Similarly we now have two ways of obtaining an extension relation,
given a ΓΓcompactification K = (ft, (Γ, S"')) of X. Let c κ be the
relation induced on X from the elementary proximity c on Y; namely,
A c κ B iff k{AY Π k(X\B)- = 0 . Let the Φ be trace system of K. It
is easily checked that c j £ <<?>. Under what conditions are these
two relations equal?

We have seen that different extension relations can give rise to
the same family of filters (under the map φ). This divides the set
of extension relations into equivalence classes. What can be learned
from studying these classes? In particular, which of these classes
contain compactification relations?
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