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NEGATIVE THEOREMS ON GENERALIZED

CONVEX APPROXIMATION

ELI PASSOW AND JOHN A. ROULIER

In this paper we show that there exist functions fe C[—l,
+1] with all (r + l)-st order divided differences uniformly
bounded away from zero for r fixed (f[x0, xί9 , xr+i] ^ <5 > 0
for fixed δ and all sets x0 < < xr+1 in [—1, +1]), for which
infinitely many of the polynomials of best approximation to
f do not have nonnnegative (r+l)-st derivatives on [—1,+1]

I* Introduction. In [6]-[10] there appear many examples of
functions / in C[a, b] with nonnegative (r + l)-st divided differences
there for which infinitely many of the polynomials of best approxi-
mation to / fail to have nonnegative (r + l)st derivatives. None
of these examples has the (r + l)st divided differences uniformly
bounded away from zero. In [11] Roulier shows that if / 6 C2r+2[ —1,
+ 1] and if f{r+1)(x) ^ δ > 0 on [-1,1] then for n sufficiently large
the polynomial of best approximation of degree less than or equal
to n has a positive (r + l)st derivative on [ — 1, +1],

On the other hand for the case r = 0 Roulier in [12] shows that
first divided differences of / uniformly bounded away from zero is
not sufficient to insure that for n sufficiently large the polynomial
of best approximation to / is increasing on [ — 1, 1],

In this paper we extend the results of [12] to the case when
r ^ 0. The proofs are similar to those in [12] but make use of
higher order divided differences and their properties.

2* Notation and preliminary concepts* For n — 0, 1, 2,
define Hn to be the set of all algebraic polynomials of degree less
than or equal to n. For feC[a, b], let

We define the degree of approximation to / to be

En(f) = mΐ{\\f-p\\:peHn},

n = 0, 1, 2, . It is well-known that there is a unique pn 6 Hn for
which | | / — pn\\ — En(f). This pn is called the polynomial of best
approximation to f on [α, 6] from Hn. Unless specifically stated
otherwise we will restrict ourselves to the interval [ — 1, +1].

Define C* to be the class of continuous 2π-periodic functions
and H* the trigonometric polynomials of degree n or less. Then
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En*{f) is defined for / e C * as the degree of approximation to f by
trigonometric polynomials from H*. That is,

#.*(/) = inf{ | |/- T\\*:TeH;]

where

11/11* = sup{|/(a?)|: - π £ x £ π} .

If J = [ - l , l ] or I=[-π,π] and / e C [ - l , + 1 ] or /eC* we
define the r-th modulus of smoothness β)r(f, h) = sup {| Jj"/(αs)|: \t\ ^ h

and rA^|/|}, where 4/(#) = f(x + ί) - /(a?) and Jί/(a?) = J i ί^/W),
and \I\ is the length of J.

If r = 1 then (Or(f9 h) is called the modulus of continuity of /
and is written ω{f, h).

Estimates for En{f) are intimately related to ωr(f, h) by the
theorems of D. Jackson. These theorems are well-known and will
not be given here. See [5].

As in [3] let f[xQ, , xr] denote the rth order divided difference
of /. It is well-known that if feCr[x0, xr] and a? 0<»i< < %r
then there is ζ in (x0, xr) for which

It is also well-known that if all (r + l)st order divided differences
of / are nonnegative in [-1, +1] then / e C ^ - l , +1). See [2].

In the following sections, pn will always denote the polynomial
from Hn of best approximation to / on the appropriate interval.

3. The main theorems* The following theorems treat the
situations where all (r + l)st order divided differences of / are
bounded away from zero on [ — 1, +1] and / 6 C M [ - 1 , +1] or
feCr[ — 1, +1]. The first two theorems and their corollaries show
that for all functions with nonnegative (r + l)st order divided
differences for which En(f) does not get small too fast there are
infinitely many n for which we do not have pγ+1>(x) ^ 0 on [ —1, +1].
The last two theorems show that this will also occur for some
functions with (r + l)st order divided differences bounded away from
zero even if En(f) does get small faster than allowed in the first
two theorems.

THEOREM 3.1. Let feC[ — 1, 1] have bounded rth order divided
differences (if feCr[ — 1, 1], then this happens) and nonnegative
(r + l)st order divided differences on [ — 1, +1]. Assume that there
is no C > 0 for which

En(f) ^ C/(n + i r * for n = 0,1, - .
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Then there are infinitely many n for which we do not have
PΪ+1>(x) ^ 0 on[-l, + 1].

COROLLARY 3.1(a). Let feCr[-l, + 1] and assume that f has
nonnegative (r + l)st order divided differences on [ — 1, +1]. Define
g(t) = /(cost). Assume that

( 1) lim sup kr+1ωr+1(g, ^-)/log k = + oo .

Then there are infinitely many n for which we do not have
p<;+1\x)^0 on [-1, +1].

COROLLARY 3.1(b). If / has nonnegative (r + l)st order divided
differences on ( — 1—6,1+ e) for some 6 > 0 and if there is no
C > 0 for which

En{f) ^ C/(n + l) r + 1 for n = 0, 1,

then there are infinitely many n for which we do not have

pir+1>(x)^0 on [-1,

THEOREM 3.2. Let feCr~ι[-l, +1] and assume that f has
nonnegative (r + l)st order divided differences. Assume that there
is no C > 0 for which

EΛf) £ C/(n + 1)" for n - 0, 1, • • .

Then there are infinitely many n for which we do not have
pϊ+1\x)^0 on [-1, +1].

COROLLARY 3.2. Let feCr~'[ — 1, +1] and assume that f has
nonnegative (r + l)st order divided differences. Define

g(t) - /(cos ί) .

Assume that

( 2 ) lim sup krωr(g, ^-)/log k = + ^ .

Then there are infinitely many n for which we do not have
p^+1\x)^0 on[-l, +1].

THEOREM 3.3. For each integer r ^ 0 and modulus of conti-
nuity o) there exists feCr[ — 1, +1] with
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( 3 ) f[x0, , xr+i] ^ S > 0 for all x0 < < xr+1

in [ —1, +1] and with

( 4 ) ω(h) rg α>(/<'>, Λ) ̂  JSΓω(Λ)

cmώ ?/eί tfeβre are infinitely many n for which we do not have

vϊ+1\χ) ^ o.

THEOREM 3.4. For each integer r ^ 1 and modulus of continuity
ω there exists feCr~ι[ — l, +1] with

( 5) f[xQ, , xr+1] ^δ > 0 for all xo< --• < xr+1

in [ ~ 1 , + 1 ] and with

ω(h) ^ ω(f{r'ι\ h) £ Kω(h)

and yet there are infinitely many n for which we do not have
p<;+ί>(x) ^ o.

4* Proofs of the main theorems* We first state some known
lemmas. The first lemma is due to Steckin [13] and is found in
[5] page 59.

L E M M A 4 .1 . There exist constants Mp,p = 1,2, •••, such that
for each f eC*

( 6 ) ωp{f, h) <; MJh? Σ , (n + lY^E^f) .

LEMMA 4.2. Let feC[ — 1, +1] and define geC* by g{t) —
/(cosί). If

( 7) lim sup kr+1ωr+1(g, —)/log k = + oo

t/iβrβ does ?ιoί βxisί M > 0 /or which

En{f) <; Λf/(n + I)"*1 , for n = 0,1, 2, . .

Proof. Assume such a constant M exists. Then E${g) =
En{f) ^ M/(n + l) r + 1 for n = 0, 1, . Now use Lemma 4.1 with
h = 1/iV. This gives

ωr+1(Λ W ) ^ - ^ y — ί - ̂  ^ | ^ .

Hence
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Nr+1ωr+1(g, l/N)/log N ^ Kr .

This is a contradiction.
The next lemma is stated in [12] and is a simple consequence

of a theorem of Kadec [4].

LEMMA 4.3. Let / e C [ - l , +1] and for each n = 0,1,2, let
%o,n < ••• < β*+i,» be a Chebyshev alternation for f.

Let dn = maxo^gB+1 \xk>n — cos (kπftn + 1))|. Then there is a
sequence {%}JU of positive integers for which

The next lemma is found in [5] page 45.

LEMMA 4.4. Let ω be any modulus of continuity. Then there
is a concave modulus of continuity co with the same domain of
definition as ω for which

( 8) ±w(h) ̂  ω(h) rg ώ(h) .

The next lemma is well-known. We first define for r = 1, 2,

(0 for x ^ 0
( 9 ) xr =

[xr for x > 0 .

LEMMA 4.5. There is a constant Cr > 0 for which

(10) En(xr

+) ^ CJ(n + l ) r .

Proof. This is an easy consequence of a theorem of S. N.
Bernstein [1].

LEMMA 4.6. If there are m non-overlapping intervals Il9 , Im

contained in [a, b] each with length lti = 1, , m respectively, then
for each positive integer I there must be at least [m(l — l)/l] inter-
vals Ii for which lt ^ (l(b — a)/m).

Proof. The proof of this is elementary and is omitted.

LEMMA 4.7. Let m ^ 2 be an integer and let z0 < zι < <zm

be given. Define h[zQ, --,zm] = Σf=0 Π?=ojsi — zk\~K Then

(Λ 1 ̂  (? — 9 \h \? . . . v 1 > (mr> -4- 1 \(9 9 \-m+i
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(12) (zm - Z0)(zm - Zjhfaf ', S»l ^ («• - ^o)~m+2

(13) (Zm - S0)(s»-i - Zo)MZo, , « J ^ («» - ^o)~W+2

Proo/. The proof of (11) is easy. The proofs of (12) and (13)
are obtained by considering the terms j = 1 and j = 0 in the sum
respectively.

LEMMA 4.8. If f[xOf , # r + 1] ̂  0 /or αίί #0 < < xr+ί in

[ — 1— e , l + e ] for some e > 0 ίfcew /[ί0,
 m—,tΛ is bounded on

[-1, +1].

Proof. Use the above mentioned result in [2] that

feCr-\-l- 6 , 1 + 6)

and therefore that /(r""1J is convex on ( — 1 — e, 1 + e).

We now proceed with the proof of Theorem 3.1 and its corol-
laries. Let /have bounded rth order divided differences and nonnega-
tive (r + l)-st order divided differences on [ — 1, +1]. Assume that
for n sufficiently large we have pir+1>(x) ^ 0 on [ — 1, +1]. We will
show that this gives a constant M > 0 for which

En(f) ^ M/(n + l) r + 1 for n - 0, 1, 2, . . . .

This will give Theorem 3.1. Corollary 3.1(a) will then follow from
Theorem 3.1 and Lemma 4.2. Corollary 3.1(b) follows from Theorem
3.1 and Lemma 4.8.

+1
Proof of Theorem 3.1. Let n ^ r and let xQ < χ1 < < xn

be a Chebyshev alternation for /. Assume that there is a positive
integer N so that for all n ^ N we have pγ+1\x) ;> 0 on [ —1, +1],
and let n^ N.

Now

for i = 0, 1, , n + 1 where ε = ± 1 is fixed relative to i. Let g
be any function which satisfies

g{xτ) - (-1)* for i = 0, 1, , n + 1 .

Then

(14) f{x,) = p.ία?,) + eJ

for i = 0, 1, 2, •••, ̂  + 1.



CONVEX APPROXIMATION 443

From [3] p. 247 we have the identity

(15) F[xQ, , xj = Σ F(χj) Π («i ~ α*)"1 .

If ΐ + τ + 1 ^ % + 1 we have

(16) g[xif , xi+r+1] = Σ ( ~ l ) ί + i Π (»<+i ~ ίKί+fc)"1

j=o fc=q

We note that all terms in the sum on the right of (16) have
the same sign. If ε is as in (14) and if

(17) (-iyεΐΐ(x(
fc = l

we have from (16)

(18) εg[xif , xi+r+1] = h[xif , xi+r+i\

where h is as in Lemma 4.7.

From (11) and (17) we have

(19) ε(xi+r+1 - Xi)g[xi9 , xi+r+i] ^ (r + 2)(a?< + r + 1 - »<)" r

Now using (14), (17), and (19) and the assumption that
p[xi9 •••, x ί+r+1] ^ 0 we have

(20) (xί+r+1 - ^ ) / [ ^ , , xi+r+ι] ^ E%(f)(xi+r+1 - xτ)~r{r + 2) .

There are at least tn = [(w — r + l)/2] points a?, in [ — 1, +1] for
which (17) holds. We now consider non-overlapping sets {#*,•••,
xi+r+1} where (17) holds for xt. There are at least

m - Γ *• 1
" L r + 2 J

such sets, and by Lemma 4.6 there are at least [m/2] such sets
with xi+r+1 — Xi ^ 4/m. It is clear that there is a constant K > 0
for which

(21) — ^ — for m ^ l .
m n

Thus ^i4-r+1 — »< ̂  X/w for w sufficiently large.
Now we sum (20) over all such sets and use this to get

(22) K[γ](jjf)jE*(f) ^ ? (*ί+r+ι - xt)f[xt,
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Clearly there is K2 > 0 for which

(23) E,(f) ^ - ^ £ (!C1+,+1 - Xt)f[Xt, •", %i + r+1]

nr+i "T

< 2K2M*

where If* = max {| f[t0, , tr] \: - 1 ^ ί0 < < tr ^ 1}. This proves
Theorem 3.1.

For the proof of Theorem 3.2 we use (12) and (13) and the fact
that f{r~1] is of bounded variation. The proof proceeds as above
except that f[xi9 , # i + r + 1] is written in terms of (r — l)st order
divided differences and therefore in terms of / ( r~1 ). We omit the
details here.

Corollary 3.2 is a simple consequence of Lemma 4.2 and Theorem
3.2.

For the proof of Theorems 3.3 and 3.4 we may as well assume
that ω is concave in view of (8). The proofs will be done simulta-
neously. We will work on [ — 2, 2] here instead of on [ —1, 1].

Proofs of Theorem 3.3 and Theorem 3.4. Let e > 0 be given
and let ω be any concave modulus of continuity. Define

fε(x2 + 5x + 1) on [-2, -1]

g(x) = 1(3 _ i ) * + \χ\ + (5 + Zε)x on [-1, +1]

(3(2 + ε)x2 + ω(l) - ω(2 - x) on [1, 2] .

g is easily seen to be continuous, increasing, and convex on [ — 2, 2].
Moreover, g\ϋ) does not exist.

Let gr be an rth order integral of g. Then greCr[—2,2] and

gr[t0, •• ίr+1] ^ -———
(r + 1)!

for

and

for
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- 2 ^ t0 < . . . < tr+ί < tr+2^2 .

We will show that there are infinitely many n for which we
do not have pγ+ί\x) ^ 0 on [ — 2, +2] and infinitely many n for
which we do not have pir+2>(x) ^ 0 on [ — 2, +2], where pn is the
polynomial from Hn of best approximation to gr. This will be
sufficient for the proofs of both theorems in view of the fact that
f or 0 ̂  h ̂  1

(24) ω(h) ^ ω(g, h) ̂  Kω(h) ,

which is easy to show. The proof of (24) is essentially the same
as the proof of (16) in [12], It is easy to see that on [ — 1, +1]
we have gr(x) = Cx'++1 + Dqr(x) where qr e Hr+2, and where C depends
only on r. In view of this and Lemma 4.5 we have

(25) EM KEM ^

where Kr depends only on r.
If - 2 ̂  ί0 < < ίr+1 ^ - 1 then

(26) gr[t0, . . . f ί r
(r + 1)!

and if - 2 ̂  tQ < < tr+2 ^ —1 then

2ε(27) flrr[ί0, . . . , tr+2] = (r + 2)!

Now assume that pir+1>(x) ^ 0 on [ — 2, +2] for n sufficiently
large. Then as in the proof of Theorem 3.1 we choose a Chebyshev
alternation for such n

- 2 ^ xQ < x, < . . . < xn+ί £ 2

and for gr and obtain

(28) flf^a?,, , xi+r+1] ^ σEn(gr)y[xif , x i + r + 1]

where σ = ± 1 is independent of i, and 7/ is any function for which
y(xt) = ( - l ) ' ί = 0, 1, . . . , ^ + 1.

Now by Lemma 4.3 there is a sequence {%}JLo for which
l i m ^ dnj = 0. Thus for i sufficiently large 1/4 of the n5 + 2
Chebyshev alternation points for gr lie in [ — 2, —1]. Thus there is
a constant if depending only on r such that for j sufficiently large
there are r + 2 alternation points a?o •••, x<+r+i in [ — 2, —1] with
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(29) Xi+r+ί - X, ^~^—r

n3- + 1

and for which

(30) σy[xi9 •••, x ί + r + ί \ ^ 0 .

An application of (11) now gives

(31) σy[xi9 , xί+r+ι] ^ ( - ^ # ( % + D r + 1 .

Thus from (26), (28), and (31) we get for j sufficiently large

< 3 2 ) J t " t o ' ) s f r W
This together with (25) gives

Q J'r+ί

Kr < - M ε .
(r + 2)!

But for ε sufficiently small this can easily be violated. Thus we
have a contradiction.

To show that we cannot have pir+2>(x) ^ 0 for n sufficiently
large we proceed in similar fashion. We use (27) and obtain a
sequence {nd}γ=0 for which

(33) Enj(gr

 ΔL ε

njX*r/ - (r + 3)! (n, + l)r+2

This together with (25) gives an obvious contradiction. We omit
the proof of (33) since it is the same as the proof of (32).

We remark that the existence of a geC[~2, 2] such that (24)
holds implies the existence of A > 1, B > 0 such that

ω(h) <; ω(Ag, h) g Bω(h) ,

for 0 <£ h ^ 4. Thus both theorems are proven.
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