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THE PRESERVERS OF ANY ORTHOGONAL GROUP

E. P. BOTTA AND STEPHEN PIERCE

Let L be an invertible linear map on the space M(n, k) of
n -square matrices over a field k of characteristic not 2. In this
paper we classify all such L which preserve a particular
orthogonal group of a nonsingular symmetric bilinear
form. We use some elementary facts about algebraic groups
and an idea of Dieudonne's. There is some indication that our
use of an algebraic geometric setting is the proper one for many
problems of this type.

There are a considerable number of results which may be
paraphrased as follows: "let L: M(n, /c)->M(n, k) be a linear
transformation that preserves some property related to matrix
multiplication. Then L is almost an inner automorphism of
M(n, /c)." While the statement of these results exhibits a large
degree of similarity, an examination of the proofs reveals almost
no similarity. The property in question could be determinant,
nonsingularity, or orthogonality.

For examples of such results, see [4,5,6,7,8,10]. In particular, an
excellent survey is in [6].

We remark that we must assume L is invertible, since Wei's results
[10] show that if singular maps are allowed, then pathological cases can
occur.

1. Notation. Let K be an algebraically closed field of charac-
teristic not 2. If n is a positive integer, Kn will be the vector space of
n-tuples of elements of K, M(n, k) the algebra of n-square matrices over
K, GL(n, K) the group of matrices in M(n, K) with nonzero determinant,
and 1C[JCI, , xn] the algebra of polynomials in n variables with coeffi-
cients in K.

2. Algebraic groups. A subset V of Kn is called an alge-
braic set if there exists an ideal y(V)C K[x1 xn\ such that

V = {pEKn: f(p) = 0 for all / G /(V)}.

The ideal j(V) is called the ideal of V. If / is an ideal in K[xly , JCΠ]
then the ideal rad(/) = {/ G K[xu , xn]: f G / for some non-negative
integer r} is called the radical of /. We say V is an irreducible algebraic
set if rady(G) = j{G). lί p <Ξ V then Mp = {f G K[xx •••*„]: f(p) = 0} is
a maximal ideal and if p = (α,, , an) we have Mp =
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(JCI — fli, , xn - an). Conversely, given a maximal ideal M in
K[xx - - JCΠ], we have that there exists a unique point p G Kn such that
M = MP.

If VCKn and WCKm are algebraic sets then a function
F: V—> W is called a polynomial function if there exist Fu ,Fm G
K[jc,, ,jcn] such that for all v G V F(v) = (F^v),- ,FM(ϋ)). The
algebra of all polynomial functions /: V—>K is called the co-ordinate
ring of V and is denoted by jfC[V]. It is easy to see that

and the isomorphism is given by f**F + j(V) where f E K[V] and
F G K[xλ xn] is such that /(t>) = F(v) for all t; G V.

If VQKn and I V C Γ are algebraic sets and F: V-> W a
polynomial function define F: K[ W]-» 1C[ V] by F(/) = / ° F It is easily
verified that F is an algebra homomorphism. If φ: 1C[ W] -»JK"[ V] is an
algebra homomorphism define φ: V—> W as follows: If p G V let Mp be
the maximal ideal associated with Mp and Mp the image of Mp in
K[ V]. Then Mp is a maximal ideal in K[V] and φ'ι(MR) is a maximal
ideal in K[W] so φι(Mp) = Mq for some qEW. Set φ'(p)A=q. One
verifies that φ is a polynomial function. Further φ = φ and
F = F

If G ^GL(n, K) we shall say G is an algebraic group if G is a
subgroup of GL(n, K) and G is an algebraic set. If g G G and
x G M(n, K) we say that JC is tangent to G at g if

f = 0

= 0 foral l/e/(G).

The set of all tangents to G at g is called the tangent space to G at g and
is denoted by Tg(G) or simply Tg if G is understood. If 1 is the identity
matrix we write Γj(G) = Ω and call Ω the tangent space to G. As is well
known Ω is a Lie algebra and Tg = gΩ.

3. Linear mappings on algebraic groups. Let G be an
algebraic group and suppose L: M(n, K)—> M(n, K) is a linear mapping
with the properties that L is nonsingular, L(l)= 1 and L(G)^ G.

PROPOSITION 3.1. If g E G then L(Tg)= TL(g). Hence L(gΩ) =

Proof Clearly L is a polynomial function and since
clearly FGj(G) implies F°L Ej(G). Now suppose x G Γg. Then

= 0 for a l l /£; (G) .
ί=0
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Now, if FEj(G) we have

£tF((L(g)+tL(x)))
ί = 0

t=0

= 0 since F°L ej(G),x E Tg.

Hence L(JC)E TL{g). Since g and L(g) are nonsingular, we may con-
clude that dim(Ω) = dim (gΩ) = dim (L(g)Ω); and then since L is
nonsingular, we may conclude that L(gΩ) = L(g)Ω.

PROPOSITION 3.2. // g E G then L(gΩ Π Ω) = L(g)Ω Π Ω.

Proof. Clearly L(gΩ Π Ω)C L(gΩ) Π L(Ω) = (by 3.1) L(g)ΩΠΩ.
Conversely, suppose u EL(g)ΩΠΩ. Then L~λ{u)E. L~ι(L(g)ΩΠΩ)
= (by 3.1) L 1 ( L ( g Ω ) l Ί L ( Ω ) ) = (s ince L i s a b i j e c t i o n ) g Ω Γ Ί Ω .

DEFINITION 3.3. Let r be a nonnegative integer and define

G(r) = {g<ΞG: dim(gΩ Π Ω) = r}.

PROPOSITION 3.4. L(G(r))C G(r).

Proof If g E G(r), dim(gΩ Π Ω) = r; however we have
L(gΩΓ\Ω) = L(g)ΩΓ)Ω and since L is nonsingular it follows that
r = dim(gΩ Π Ω) = dimL(gΩ Π Ω) = dim(L(g)Ω Π Ω).

4. Extensions of fields and related algebraic groups.

PROPOSITION 4.1. Let k CK be fields. Suppose G ^GL(n,k) is
an algebraic group and L: M(n, fc)—> M(n, fc) a nonsingular linear map-
ping with the property that L(G)C G. Let Gκ be the smallest algebraic
subgroup of GL(n, K) containing G. Then

(a) Gκ Γ)M(n,k)=G
(b) there exists a nonsingular linear mapping

Lκ:M(n,K)->M(n,K) with the properties that LK(GK)CGK and
Lκ\M(n,k) = L.

Proof. Part (a) follows from Chevalley [2], Ch. II, Theorem 3. To
establish part (b) choose a basis for M(n, K) out of M(n, fc) and let Lκ be
the linear mapping of M(n, K) defined by the matrix of L with respect to
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this basis. Since the determinants of L and Lκ are the same Lκ is
nonsingular and clearly Lκ |M(n, k) = L. It only remains to show that
LK(GK)CGK. It is known [Chevalley (loc. cit.)] that the ideal as-
sociated with Gκ is the ideal formed by all linear combinations of
elements of j{G) with coefficients from K. Now suppose / belongs to
j{Gκ) and g belongs to Gκ. Then / = ΣΓ=i a^ for some a, in K and f in
j(G)\ hence

since L(/ t)E j(G)Cj(Gκ) and Lκ(fι) = L(fι) since fEj(G).
Therefore L κ (g) belongs to G κ .

5. The orthogonal groups

DEFINITION 5.1. Let A be an inυertible symmetric matrix in
M(n, k). Then G is an orthogonal group if G = {X\XΆX = A}.

PROPOSITION 5.2. Let L: M(n,k)->M(n,k) be linear and let
L{G) = G where G is an orthogonal group. IfK is the algebraic closure of
k, then LK(GK)=GK.

Proof Clear from Proposition 4.1.

DEFINITION 5.3. Let K be algebraically closed and G an orthogonal
group in M(n, K). Let O(n, K) = {X\XTX = In}. If L(G) = G, define
a linear map L: O(n, K)-> O(n,K) by the diagram

O(ny K)-^» G ^ G ^ O(n, K).

In the diagram, B is conjugation by a matrix B such that BGB1 =
O(n, K). Such a matrix B exists because K is algebraically closed, and
we may write A = B TB.

PROPOSITION 5.4. L is a G-conjugation if and only if L is an
O(n, K)~conjugation. If L is the transpose map, then L is the transpose
map followed by similarity by A.
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Proof. The first part is clear from the diagram. In the second case,
let A be the matrix of Definition 5.1. Write A = BTB. Then B is the
matrix we need. Let U E G. If L is the transpose map,

L(U) = BLB\U) = BιBιTUτBτB =A~lUTA.

Clearly, since U E G, A~x UTA E G.

6. The main theorem. Let K be any field of characteristic
7^ 2, and let G be any orthogonal group in M(n, K). If L is an invertible
linear map on M(n,K) such that L(In) = !„, and L(G)= G, then L is
conjugation by a matrix in M (rc, K) where K is the algebraic closure of K,
or L is such a conjugation followed by the transpose map.

REMARK 6.1. By §5, we will assume henceforth that K is alge-
braically closed and that G = O(n,K).

REMARK 6.2. The assumption L(In) = In is just a normalization of
the problem. The Main Theoτem can be modified slightly and then
L(In) = In can be dropped.

7. The characterization of symmetries. Recall that a
symmetry in G is an involution sending a nonisotropic vector υ to - v
and fixing pointwise the orthogonal compliment of υ.

We wish to characterize symmetries and their negatives in a manner
which will be invariant under L. Let Ω be the tangent space of G in
this case, since G = O(n,K), Ω is all skew symmetric matrices. Let
V = Kn be the underlying vector space.

PROPOSITION 7.1. Let A E G, A / ± In n ̂  3. Then

(1) dim(Λ Ω Π Ω) ̂  (n - l)(n - 2)/2

with equality if and only if A = ± a symmetry.

REMARK 7.2. In view of 3.4 and 7.1, any L satisfying L(G)C G
also sends symmetries to ± symmetries. This fact enables us to use the
fundamental theorem of projective geometry in proving the main
theorem for n =^3. The main theorem has to be proved separately for
n = 2. Our proof of 7.1 will be by induction on n.

Now suppose equality holds in (1). We consider three cases.

Case 1. A has a non-isotropic eigenvector v. Let Av = λv. Clearly
A = ± 1 . We are trying to show that ± Λ is a symmetry, so assume
A = - 1 . Now v is nonisotropic; thus A is G-conjugate to a matrix
B = -1 + Bx. If Bx = In_!, we are done; if not, we show Bx is the
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negative of a symmetry. Let Ω] be the (n - 1) x (n - 1) skew-symmetric
matrices. By induction

dim(B,n, U Ω,) ^ (n - 2)(n - 3)12.

Put

0

A

X

εa

Then B W e Ω if and only if BλWλ^Vίλ and 5 ^ ' = - * ' . The set of all

jt' such that Bjx ' = - x' has dimension no larger than n - 2 and hence

d i m ( B Ω Π Ω) ^ (n - 2){n - 3)/2 + (n - 2)

with equality holding if and only if B3 is - a symmetry. This establishes
Case 1.

In the final two cases we assume all eigenvectors of A are isotropic.

Case 2. A has two isotropic eigenvectors υ, w which generate a
hyperbolic plane. Let Av = λϋ, Aw = μw, with (w, w) = (υ, υ) = 0, and
(w, ϋ ) = l . Thus, λμ = 1. Since G acts transitively on hyperbolic

+ Bjplanes, A is G-conjugate to a matrix B of the form B =

with , having eigenvalues λ, μ.

If b or c = 0, B has non-isotropic eigenvectors. Thus,

Let W G ί l and write

W =

0

— w

-

w

0
X

where JC = ί X ' " %n 1. If BWGfί, we must have w = 0 and BιWι

skew. The set of all W} for which this is true has dimension

< (n - 3)(n - 4)/2 because B ! has no non-isotropic eigenvectors. Since

be 7^ 0, there is, for each / = 3, , n, a dependence relation between y<

and all x,. It follows that
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Π Ω) < ί?LziK5JlD + n _ 2

if n ^ 3. This finishes Case 2.

Case 3. All eigenvectors of A are isotropic and any two eigenvec-
tors of A are orthogonal. It follows that the subspace U of V spanned
by the eigenvectors of A is totally isotropic and hence its dimension is

Now if W and AW<ΞΩ, then (AW)'= -AW, i.e., AW- WA'=
0. Thus the map H = / Λ 0 A - A ( g ) / B has W in its null

2

space. Therefore, we must show that the restriction of H to Λ V has
nullity < (n - \){n - 2)/2. Call this restriction H. Clearly this nullity
is maximized if all eigenvalues of H are the same, say all are 1.

Let (A - 1)"\ i = l, ,r, be the elementary divisors of H. For
v,wEV, put v°w=(v<g)w + w(g) υ)/2. The span of all υ ° w is V(2\

2

the symmetric tensors. Clearly H\ Λ V ^ V ( 2 ) . If (λ - \)m is an
elementary divisor of A, pick υu , υm E V such that Aϋi = vu Aυt =
υ, + t .-i, ί = 2, ,m. By looking at H(v{AVi), we see that
U! ° ϋi, , Vι ° vm-x G rng H. Suppose (λ - l)p is another elementary di-
visor of A and pick wu , wp E V as we did the t>,. By looking at
H(ϋiΛW,) and H(D,AW,), we note that ϋ,p ιv, and υj°wλE.τngH for
/ = 1, , p - 1, / = 1, , m - 1. It follows that the rank of H is at least

= r(n-(3r- l )/2) .

A little calculus shows that this value is minimized when r is at its
extremes, i.e., when r = 1 or [n/2]. When r = 1, we get rank H^
n-1. When r = [n /2], we get rank H > n2/8 + n /4.

If r = 1, let Av{ = vu Avt = ϋf _i, i = 2, , n. Look at H(v2/\ v3)
(n^3) to see that rank H ^ n. Then nullity H ^(n2-n)/2-n <

If r = [n/2], then nullity H ^ ( n 2 - n)/2 - n2/8- n/4<
(n - l)(n - 2)/2, unless n = 3 or 4. If n = 3, then r = 1, and we are
done. Let n = 4. If (λ - 1), (λ - I)3 are the elementary divisors of A,
pick a basis υ, w, x, y of V with Aυ = υ, Aw = w, AJC = JC + w,
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Ay = y + x. It is easy to show that (v,w,x) is totally isotropic. If
(λ - I)2, (λ - I)2 are the elementary divisors of A, pick a basis υ, w, x, y of
V with Av = υ, Aw = w + υ, Ax = x, Ay = y + JC. Then direct compu-
tation shows that τngH = (v ° v, x °JC, v °x, w °x - v °y). Thus, rank
H = 4 and nullity H = 2 < ( 4 - 1)(4- 2)/2.

We still have to do cases 1 and 2 when n = 3. Then these two cases
coincide. Let υ be a nonisotropic eigenvector and assume Av = v. If
A^ ±I3 nor ± a symmetry, there are two possibilities for (v^: (v)1 =
(w, w) and Aw = λw, Aw = Λ"1w, λ ^ λ " 1 , or A w = ± w , Aw =
± w -h M. In the first case, i ί has nullity 0. In the second case, V is
degenerate. This concludes the proof of 7.1.

8. The fundamental theorem of projective
g e o m e t r y . We now know that L maps every symmetry to another
symmetry or its negative. Thus, since L maps G onto itself, L sets up a
1 - 1 correspondence φ between the nonisotropic lines of V. We will
extend φ to all lines of V.

PROPOSITION 8.1. There is an extension of φ to all lines of V such
that φ satisfies the hypothesis of the Fundamental Theorem of Projective
Geometry.

REMARK. Recall the Fundamental Theorem of Projective
Geometry. If P( V) is projective space, and φ is a bijection of the points
of P(V) preserving collinearitry, then φ is induced by a semilinear map
on V.

Let Lu L2, L3 be nonisotropic lines and let M, = φ{L{). We need to
show that φ preserves orthogonality and coplanarity among L b L2,
L3. If n ̂  4, the proof will then follow from the same procedure as in
[3, p. 48]. If n — 3, we do things a little differently.

Let σx be the symmetry of L, and r, the symmetry of M(, i = 1,2,3.
We now prove the following.

PROPOSITION 8.2. // σ1? σ2, σ3 and Lu L2, L3 are as above, then

d i m ^ Ω Π σ2Ω Π σ3Ω Π Ω) ̂  (n - 2)(n - 3)/2

vv/r/i equality if and only if L b L2, and L3 //e m ί/ie same p/ane.

Froo/. Pick an orthonormal basis υu — -,vn such that (v{) = Lu and

Li, L2 E (ϋ l 5 f 2, ι̂ 3) ((Li, L2) may be degenerate). Represent (TJ with

ς , . L where

R is 3 x 3. If
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wx w2
w =

-w2 w4

is a skew matrix such that AXW and A2W are skew, then an easy
computation shows that the first row and column of W are 0 and that
BW2 = W2. Thus, dim(Ω Π σxίl Π σ2Ω) = (n - 2)(n - 3)/2 and we are
done in one direction.

Now if A3W is also skew, for all W E Ω Π σxd Π σ2Ω, then we
obtain U = Jn_3, 5 = 0 and RW2= W2. It follows that σu σ2, σ3 have a
common fixed (n — 2)-dimensional subspace and thus L b L2, L3 are in the
same plane. This proves our result.

We now need to show that φ preserves orthogonality of noniso-
tropic lines.

PROPOSITION 8.3. Suppose dim V = 2 and σu σ2 are distinct
symmetries. If for every symmetry σ3 ^ σλ or σ2, σx + σ2— σ3 is also a
symmetry, then σλ and σ2 reflect in orthogonal lines.

Proof. Let σιvί= - υ{ and pick v2 so that Vι±υ2. Let σ2υx =
aυx + bv2, σ2v2 = bvλ - av2, and a2 4- b2 = 1. If σ3 is any other symmetry,
we have σ3vx = cυλ + dv2, σ3υ2 = dυλ - cv2. Thus, for all c and d such
that c2+ d2 = 1, we have

This can happen only if a = - 1.

COROLLARY 8.4. Let σu σ2 be two symmetries in an n-dimensional
nondegenerate space V, n ^ 3. Let Lu L2 be the corresponding lines. If
for every symmetry σ3 ^ σx or σ2, whose line of reflection is in the plane
determined by L b L2, σλ +σ2— σ3 is a symmetry, then Lx is orthogonal
to L2.

The next result finishes Proposition 8.1.

PROPOSITION 8.5. The map φ preserves orthogonality.

Proof Let σu σ2 be orthogonal symmetries. Let σ3 be any
symmetry whose line is in the plane corresponding to σx, σ2. Let r, be
the images. By Proposition 8.2, the lines of τu τ2, τ3 lie in a plane. We
now apply Corollary 8.4 to finish.
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We can now follow the procedures of Dieudonne to extend φ to all
lines of V. This extension satisfies the hypotheses of the Fundamental
Theorem of Projective Geometry and also preserves orthogonality. To
φ, we associate a map ψ in the projective space P( V), and conclude that
ψ is induced by a semilinear map g : V -» V. Let p be the automor-
phism of K corresponding to g. We can also show that for all u, υ E V,

where λ is independent of u and v. It follows that if A is a symmetry,
then

(3) L(A)= ±gAg'\

Now L is linear; thus p = identity and g is linear.

PROPOSITION 8.6. The ± sign is always + , that is, symmetries are
mapped to symmetries.

Proof. Let σx be a symmetry. Let cr2, , σn be symmetries such
that the n associated lines are pairwise orthogonal. Then Σcη =
(n - 2)Im and since L(/n) = Jn, we are done.

Fix the standard basis E = {eu , en) and represent the symmetries
as matrices with respect to E. The linear span of the symmetries is the
space S of all symmetric matrices in M(n, K). Thus, on 5, the map L is
conjugation. Hence, in Chapter 10, we will assume that L fixes S
pointwise.

9. T h e c a s e s n = 2,3- We must handle n = 2,3 separately.

PROPOSITION 9.1. The main Theorem is valid when n = 2.

Proof. Every member of G is in one of two subspaces of M(2, K)

V7 =

Now ( ( i π ) ) is the tangent space and hence is invariant under

L. Thus, L(Vι)= Vι and hence L(V2) = V2. Since skews are mapped

to skews, L ί ( 1 0 ) ) = ± ( _ 1 o ) Conjugate with L _ j j i f

necessary to assume that Vx is pointwise fixed.

1
.0

1
0

0
1

—

) '

0)
1

( °
(-1

1 /0
'' 1

1
0

1
0
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τ + τ /I 0\ la b\ c . la b\.
Let L ( ^ i ) = ( L _ ) Since I , _ I is a symmetry, it is

G-conjugate to ( n 1 ) and hence we may assume ( n ) is fixed
\u — i / \u — 1 /

and Vi is still pointwise fixed, by taking the transpose if necessary.

P u t L 1 n = k T h e n i. 1

\ 1 0 / \fc - α / \ b - a - l
V2G. Thus, α = 0 , fe=±l. If b = 1, we are done. If & = - 1,
conjugate with (^ 1 and then apply the transpose map.

PROPOSITION 9.2. // n = 3, ί/ie restriction of L to the symmetric
matrices is a G-conjugation.

Proof. By Proposition 8.6, every symmetry σ is mapped to a
symmetry. Let (i^) be the line of reflection of σ and let vu v2, v3 be an
orthonormal basis of V. We may assume L(σ) = σ. Since L preserves
orthogonality, (Proposition 8.5 works when n = 3) any symmetry reflect-
ing in (υ2, v3) is mapped to a symmetry reflecting in (υ2, v3). Thus, from
Proposition 9.1, we have that the space

is acted upon by L by G-conjugation. Hence, we assume this space is
fixed pointwise.

Consider the image B of the symmetry

Since orthogonality of nonisotropic lines is preserved, B commutes with
diag(c, c, - c) for all c. Thus

ί° ί °\
L(B)= 1 0 0 .

\0 0 1/
A similar argument on

finishes the proof.
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10. The tangent space. We have Ω = the tangent space of
G, i.e., Ω is the space of skew-symmetric matrices. We need to show
that L |Ω = ± identity. For i </, let Fv be the n x n matrix whose (/,/)
entry is 1, whose (/, 0 entry is - 1 , and all other entries are 0.

PROPOSITION 10.1. If for all i<j, L(Flj)= ±Fιp then L\Ω, is

± identity.

Proof. Use induction on n. We are done if n = 2. Let
Λ , G M ( π - l , K ) , A, skew. Then 0 +A,->0+B,, J5,e
M ( n - l , K ) . By induction, B, = A, for all skew A,. Suppose
L(F ! 2)= -Fn. Note that

° V2 V2

1
V2

1
V2

1

2

1

2

eG.

However, all symmetric matrices are fixed, and hence the above matrix is
mapped to

V2
0 " ^ V!

1
V2

1
V2

1
2

j.
2

1
2

1
2

The above argument may be repeated for all Fψ

PROPOSITION 10.2. For all i </, L(Fιj)= ±Fιj.

Proof. Let A = diag(e,, , €,-_!,0, ei+1, ,€H,0}e/+1, ,6n) where
the ek run through ±1 . Put B = L(Fή). Now A ±B EG. Thus,

It follows that B has the appropriate form and the proposition is
proved. This also concludes the proof of the main Theorem.
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