SUFFICIENCY OF JETS

JEAN-JACQUES GERVAIS

We give a necessary and sufficient condition for the C^{∞} -sufficiency of a jet: this generalizes and improves some results of J. N. Mather and J. C. Tougeron. Our result, given in terms of G-sufficiency which is a generalization of the ordinary sufficiency, can be applied to many cases.

Notations. Let G be a q-dimensional Lie subgroup of $Gl_p(R)$. Let $G(n) = C_{0,e}^{\infty}(R^n, G)$ be the group of germs at 0 of smooth mappings g from R^n to G such that g(0) = e (where e is the identity of G) and Diff(n) the group of germs at 0 of smooth diffeomorphisms τ from a neighborhood of 0 in R^n on a neighborhood of 0 in R^n such that $\tau(0) = 0$. Let \mathscr{C}_n be the ring of germs at 0 of smooth functions from R^n to R and m its maximal ideal. For $f \in \bigoplus_p m$, $f^r(f)$ will denote the r-jet of f at 0. The set $\mathscr{C}(n) = G(n) \times Diff(n)$ is a group with the following multiplication: $(g_1, \tau_1) \cdot (g_2, \tau_2) = (g_1 \cdot (g_2 \circ \tau_1^{-1}), \ \tau_1 \circ \tau_2)$. Then we may define an action of $\mathscr{C}(n)$ on $\bigoplus_p m$ by the formula: for $(g, \tau) \in \mathscr{C}(n)$ and $f \in \bigoplus_p m$, $(g, \tau) \cdot f$ is the germ at 0 of the mapping $x \mapsto \widetilde{g}(x) \cdot (\widetilde{f} \circ \widetilde{\tau}^{-1}(X))$ where $\widetilde{g}, \widetilde{f}$, and $\widetilde{\tau}$ are representatives of g, f, and τ respectively.

DEFINITION 1. An r-jet z of an element of $\bigoplus_p m$ is G-sufficient if for any $f \in \bigoplus_p m$ such that $j^r(f) = z$ there exists $(g, \tau) \in \mathscr{G}(n)$ such that $(g, \tau) \cdot f = z$.

REMARK. When $G=\{e\}$ and p=1 the G-sufficiency is the ordinary C^{∞} -sufficiency of jets.

We will use the well known:

NAKAYAMA'S LEMMA. Let A be a commutative ring with identity and let I be an ideal in A such that 1+a is invertible for any $a \in I$. Let M and N be submodules of an A-module P such that M is finitely generated and $M \subset N + I$. M. Then $M \subset N$.

Jets G-sufficient. Let $\{A_1, \dots, A_q\}$ be a base over R of the Lie algebra T_eG of G. For every $g \in G(n)$ there exists $u = (u_1, \dots, u_q) \in \bigoplus_q m$ such that

$$g(x) = e^{\sum_{i=1}^{q} u_i(x).A_i} .$$

Hence we may identify G(n) with $\bigoplus_q m$.

Let \mathscr{G}^r be the analytic Lie group of the r-jets of the elements of $\mathscr{G}(n)$ and let X^r be the space of r-jets of the elements of $\bigoplus_p m$. The group action of $\mathscr{G}(n)$ on $\bigoplus_p m$ induces, for each r, a well defined group action of \mathscr{G}^r on X^r . One easily sees that this group action is analytic for each r.

For $f \in \bigoplus_{p} m$, let M_f be the \mathscr{C}_n -linear mapping:

$$M_f: \mathscr{C}_n^{p+q} \longrightarrow \mathscr{C}_n^p$$
,

where M_f is given by the $p \times (q + n)$ -matrix with $A_1 \cdot f$, \cdots , $A_q \cdot f$, $\partial f/\partial x_1$, \cdots , $\partial f/\partial x_n$ as columns. It is easily seen that for $f \in \bigoplus_p m$ the mapping

$$ar{M}_f^r : \bigoplus_{q+n} \left(rac{m}{m^{r+1}}
ight) \longrightarrow \bigoplus_p \left(rac{m}{m^{r+1}}
ight)$$
 ,

derived from M_f , is the tangent mapping at the idendity of the mapping

$$\mathcal{G}^r \ni \gamma \longrightarrow \gamma \cdot j^r(f) \in X^r$$
.

THEOREM 1. Let $z \in X^r$. The following statements are equivalent:

- (i) z is G-sufficient.
- (ii) For any homogeneous jet w of degree r+1 we have $m \cdot \operatorname{Im} M_{z+w} \supset m^{r+1} \cdot \mathcal{E}_n^p$ (where $\operatorname{Im} M_{z+w}$ is the range of M_{z+w}).

Proof.

(i) \Rightarrow (ii) Let w and w' be two homogeneous jets of degree r+1. Since z is G-sufficient, there exist (g, τ) and $(g', \tau') \in \mathscr{G}(n)$ such that $(g, \tau) \cdot z = z + w$ and $(g', \tau') \cdot z = z + w'$; hence $(g', \tau') \cdot (g, \tau)^{-1} \cdot (z + w) = z + w'$.

Consequently, if we put $\gamma=j^{r+1}((g',\,\tau')\cdot(g,\,\tau)^{-1})$, we have $\gamma\cdot(z+w)=z+w'$. We have thus shown that for any homogeneous jet w of degree r+1 the \mathscr{G}^{r+1} -orbit of z+w in X^{r+1} contains $\{z+w'\mid w' \text{ is a homogeneous jet of degree } r+1\}$. Since the tangent mapping at the identity of the mapping $\mathscr{G}^{r+1}\ni\gamma\mapsto\gamma\cdot(z+w)\in X^{r+1}$ is

$$\overline{M_{z+w}} : \bigoplus_{q+n} \left(rac{m}{m^{r+z}}
ight) \longrightarrow \bigoplus_{p} \left(rac{m}{m^{r+z}}
ight)$$
 ,

derived from M_{z+w} , we have Im $\overline{M_{z+w}^{r+1}} \supset \bigoplus_p (m^{r+1}/m^{r+2})$, i.e., $m \cdot \text{Im } M_{z+w} + m^{r+2} \cdot \mathcal{E}_n^p \supset m^{r+1} \cdot \mathcal{E}_n^p$. From the Nakayama's lemma, we

conclude that $m \cdot \operatorname{Im} M_{z+w} \supset m^{r+1} \cdot \mathscr{C}_n^p$.

$$(ii) \Rightarrow (i)$$

(a) Let w_1, \dots, w_k be homogeneous jets of degree $r+1, \dots, r+k$ respectively and put $z' = \sum_{i=1}^k w_i$. Let $t_0 \in [0, 1]$. By hypothesis,

$$m \cdot \text{Im } M_{z+t_0 w_1} \supset m^{r+1} \cdot \mathscr{C}_n^p$$
.

Hence we have

$$m^{r+1} \cdot \mathscr{C}_n^p \subset m \cdot \operatorname{Im} M_{z+t_0w_1} \subset m \cdot \operatorname{Im} M_{z+t_0z'} + m^{r+2} \cdot \mathscr{C}_n^p$$
.

Nakayama's lemma implies

$$m^{r+1}\cdot\mathscr{C}_n^p\subset m\cdot \operatorname{Im} M_{z+t_0z'}$$
.

Then the range of the mapping $\mathscr{G}^{r+k}\ni\gamma\mapsto\gamma\cdot(z+t_0z')$ contains all r+k-jets z+z'', where z'' is an r+k-jet in a neighborhood of t_0z' such that $j^r(z'')=0$. In particular, there exist $t_1< t_0< t_2$ such that for all t' and $t''\in [t_1,t_2]$, there exists $(g,\tau)\in\mathscr{G}(n)$ such that $j^{s+k}((g,\tau)\cdot(z+t'z'))=z+t''z'$. Since [0,1] is compact, it follows that there exists $(g,\tau)\in\mathscr{G}(n)$ such that $j^{s+k}((g,\tau)\cdot(z+z'))=z+0\cdot z'=z$.

(b) Let $f \in \bigoplus_{r} m$ such that $j^{r}(f) = z$, we must prove that there exists $(g, \tau) \in \mathcal{G}(n)$ such that $(g, \tau) \cdot f = z$. We have

$$m^{r+1} \cdot \mathscr{C}_n^p \subset m \cdot \operatorname{Im} M_{i^{r+1}(f)}$$
 .

Hence

$$m^{r+1} \cdot \mathscr{C}_n^p \subset m \cdot \operatorname{Im} M_{r+1} \subset m \cdot \operatorname{Im} M_f + m^{r+2} \cdot \mathscr{C}_n^p$$
.

Nakayama's lemma implies

$$m^{r+1} \cdot \mathscr{C}_n^p \subset m \cdot \operatorname{Im} M_f$$
 .

It follows from a result of J. C. Tougeron [2, Théorème VIII 3.6] that there exists $N \in N$ such that $j^N(f)$ is G-sufficient. If $N \leq r$ the proof is finished. Suppose N > r. By(a), there exist $(g_1, \tau_1) \in \mathcal{G}(n)$ and $\phi \in m^{N+1} \cdot \mathcal{C}_n^p$ such that

$$z=(g_{\scriptscriptstyle 1},\, au_{\scriptscriptstyle 1})\!\cdot\! j^{\scriptscriptstyle N}(f)+\phi; \ \ {
m hence}$$
 $z=(g_{\scriptscriptstyle 1},\, au_{\scriptscriptstyle 1})\!\cdot\! [j^{\scriptscriptstyle N}(f)+(g_{\scriptscriptstyle 1},\, au_{\scriptscriptstyle 1})^{-1}\!\cdot\!\phi]$.

Since $\phi \in m^{N+1} \cdot \mathcal{C}_n^p$, $(g_1, \tau_1)^{-1} \cdot \phi \in m^{N+1} \cdot \mathcal{C}_n^p$. But $j^N(f)$ is G-sufficient, consequently there exists $(g_2, \tau_2) \in \mathcal{C}(n)$ such that

$$j^{N}(f) + (g_{1}, \tau_{1})^{-1} \cdot \phi = (g_{2}, \tau_{2}) \cdot f$$
.

Hence

$$z = (g_1, \tau_1) \cdot (g_2, \tau_2) \cdot f$$
.

DEFINITION 2. Let $f \in m$. We say that f is r-determined if $j^r(f)$ is C^{∞} -sufficient (i.e., G-sufficient with $G = \{e\}$).

From Theorem 1 we deduce the following two results of J. N. Mather [1], stated as follows in [3, Theorem 2.6 and Corollary 2.10]:

THEOREM 2. Let $f \in m$ and I_f be the ideal generated in \mathcal{E}_n by the partial derivatives of f. If

$$m^r \subset m \cdot I_f + m^{r+1}$$
 ,

then f is r-determined.

Theorem 3. Let $f \in m$ be r-determined. Then

$$m^{r+1} \subset m \cdot I_f$$
 .

REFERENCES

- 1. J. N. Mather, Stability of C^{∞} mappings: III Finitely determined map-germs, Publ. Math. IHES, **35** (1968), 127-156.
- 2. J. C. Tougeron, *Idéaux de Fonctions Différentiables*, Ergebnisse Band 71, Springer-Verlag, New York, 1972.
- 3. G. Wassermann, Stability of Unfoldings, Springer Lectures Notes 393, New York, 1974.

Received February 10, 1977.

Université Laval Quebec, G1K 7P4, Canada