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CHARACTERS OF P' -DEGREE
IN SOLVABLE GROUPS

THOMAS R. WOLF

We prove that \IP(G)\ = \IP(N(P))\ for PeSyl(G), for
solvable G. Here p is a prime and IP(G) is the set of ir-
reducible characters f such that (f(l), p) = 1.

1Φ Introduction. The groups considered are finite and the
group characters are defined over the complex numbers. McKay
conjectured \IP(G)\ = \IP(N(P))\ where Pe Syl(G) for simple G and
p == 2 [6]. I. M. Isaacs has proven the result when |G| is odd and p
is any prime (Theorem 10.9 of [4]). We prove the result for solvable
G. In fact we generalize this slightly to sets of primes and nor-
malizers of Hall subgroups.

For characters χ and ψ of G, we let [χ, ψ] denote the inner
product of χ and ψ. Let N^2G and θeIRR(N). We write Iff(0) to
denote the inertia group {geG\θ9 = 0}. We also write IRR(G\Θ) =
{χ 6 IRR(G) I IXv, 0] ^ 0}. Of course, character induction yields a one-
to-one map from IRR{IG{Θ)\Θ) onto IRR(G\Θ). If χeIRR(G\g); we
say χ (or #) is fully ramified with respect to G/N if χ^ = eθ and
e2 = |G:• JNΓ|. This will occur if IG{Θ) = G and χ vanishes off JV.

Suppose that K/L is an abelian chief factor of G; ΎβΙRR(K);
φ e IRR(L); and [7Z, 0] Φ 0. If K-IG(ψ) = G, then one of the following
occur:

(a) τL = ^;
(b) 7 and ^ are fully ramified with respect to K/L, or
( C ) φ κ = Ύ.

We note that K IG(φ) = G whenever IG(Ύ) = G. The results of these
last two paragraphs are well known (e.g. see Chapter 6 of [5]); and
we will use them without reference. In Theorem 3.3, we use known
results about character triple isomorphisms (see § 8 of [4] or Chapter
11 of [5]); otherwise, everything should be self-explanatory.

I would like to thank E. C. Dade for his preprint [1],

2 Extendability. A straightforward proof of Lemma 2.1 may
be found in Lemma 10.5 of [4].

LEMMA 2.1. Assume N^lG, H^G, NH = G, and N Π H = M.
Assume φ e IRR(N) is invariant in G and φM e IRR(M). Then
%*^%H defines a one-to-one correspondence between IRR(G \ φ) and
IRR{H\φχ).
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Theorem 2.2 is a generalization of a result of Dade. He proves
the theorem when E is an extra-special p-group and when p + \L\
(see Theorems 1.2 and 1.4 of [1]). We use his result to prove this.

THEOREM 2.2. Assume (i) G is the semi-direct product EH,
E^G.

(ii) 1 < Z(E) ̂  Z(G) and Z(E) is cyclic;
(iii) E/Z(E) is an elementary abelian p-group for some prime

p;
(iv) [L, E/Z(E)] = E/Z(E) for some L/CH(E) ^ H/CH(E) such

that p + \L/CH(E)\; and
(v) Λe IRR(E) is faithful.
Then A extends to an irreducible character ψ of G such that

CG{H) ^ ker (ψ).

Proof. We may extend A to an irreducible character of
E x CH(E) with kernel CH(E). It is no loss to assume CH(E) = 1.
If E' = Z(E), we finish by Dade's result. We assume Ef < Z(E).

Fittings lemma (Theorem 5.2.3 of [3]) implies E\Ef = FjEr x
CE/E,(L) where F\E' = [E/Ef, L]. As p + |L|, the hypotheses yield
Z{E)\E' = CE/E,(L). Note J5" = Z(F) and E/Z(E) is isomorphic to

Let ^ be the irreducible constituent of AziE). As φE, eΙRR(E'),
Lemma 2.1 yields AFeIRR(F). By induction on |G|, ΛF extends to
some βeΙRR(FH). If IG(A) = G, we have by Lemma 2.1 that
β = ψFH for some ψ* e IRR(G/A). Furthermore, ψ(l) = yl(l). We are
done as long as IG(Λ) = G. Note that AF and ζ3 are iϊ-invariant. So,
if h e H, Ah = α/ί for a linear α 6 IRR(E/F). This implies ^ = aZ(i)^
and α:z(jE) = lztsj- So a = 1E, completing the proof.

The following theorem also generalizes a result of Dade (see
Theorem 5.10 of [1]).

THEOREM 2.3. Assume (i) G = EH, E<\G, En H=Z(E) is in Z(G);
(ii) 1 Φ Z(E) is cyclic;
(iii) E/Z(E) is an elementary abelian p-group for a prime p;
(iv) [L, E/Z(E)] = E/Z(E) for some CH(E) ^ L^H such that

p + \L/CH(E)\; and
( v) λ is a faithful character of Z(E).

Then there exists a one-to-one correspondence T:IRR(G\X)~+ IRR(H\X)
such that for χ e IRR(G\X), χ(l) = β[(χΓ)(l)] where e = \E: Z(E)\1/2 e Z.

Proof. Let AeIRR(E\X). As E is nilpotent and X is faithful, A
is faithful. If Z{E) < T < E with |Γ: Z(2£)| prime, Aτ has each ex-
tension of X to Γ as a costituent. It follows that A vanishes on
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E - Z(E). So A and λ are fully ramified with respect to E/Z(E)
and IG(Λ) - G.

Let H1 be an isomorphic copy of if; say σ\H-^Hι is an
isomorphism. Say Z(E) — (x) and σ(x) = xx. From the semidirect
product G, = E-H,. Note, by Theorem 2.2, Λ extends to f e IRR{G,).

Let Zo = <x> x <«!> ^ Gt. Define λx 6 IRR{(xx)) by λ^ajj = λ(»).
Define τiG^G by τ(tg) = t σ~Xg) for ίeE', g e i ^ . Then r is a
homomorphism onto G with kernel Zx < Zύ. So τ: G/Zt —• G is an
isomorphism, τ((x) x <α?1>) = Z(JS), and (λ x λx)

Γ = λ, viewing τ as
mapping IRR(ZJZγ) to IRR{Z{E)).

Hence, we need just show there is a one-to-one correspondence
T: IRRfalX x \) — IRRiH^X,) such that χ(l) = β[(χΓ)(l)].

If βeIRR{H^)y then /3 is /S* restricted to Hλ for a unique
β* eIRR(GJE). Now /9—>/3*α^ defines a one-to-one correspondence
from IRR(Hi) onto IRRiG^Λ) = IRRiG^X). As <f(l) = e, it suffices
to show for /3 6 IRRiH,) that /9 6 IRR(HX \ λ j if and only if Zx ^
ker (/S* ψ ). If /̂  is the irreducible constituent of /β restricted to
0 0 , then β* ψ(x, XΪ1) = eβ(l)\(x)μ-χx). So Zx ^ ker (/3* ψ) if and
only if μ = \, completing the proof.

3* The McKay conjecture* If π is a set of primes, let Iπ(G) —
{χ e IRR{G) \ (p, χ(l)) = 1 for all p e TΓ}. NOW G is π-solvable if G has
a normal series where each factor is either a π'-group or a solvable
τ-group. If G is π-solvable or Tzr'-solvable, the Schur-Zassenhaus
theorem implies G has a Hall-π-subgroup and that any two Hall-ττ-
subgroups are conjugate in G (see 6.3.5 and 6.3.6 in [3]). Proof of
the following lemma, due to Glauberman [2], requires the conjugacy
part of the Schur-Zassenhaus theorem and thus uses the Odd-Order
theorem to ensure the solvability of either A or G.

LEMMA 3.1. Assume A ads on G by automorphisms and
(\A\, \G\) = 1. Assume A and G act on a set T such that G is
transitive on T and (t-g)-a = (t*a)-ga for all teT, geG, aeA.
Then

(a) A fixes an element of T, and
(b) CG(A) acts transitively on the fixed points in T of A.

Proof. See [2] or 13.8 and 13.9 of [5].

COROLLARY 3.2. Assume A acts on G by automorphisms, N^2G
is A-invariant, (\G: N\, \A\) = 1, and CG/N(A) = 1. Let χeIRR(G)
and φeIRR(N) be A-invariant. Then

(a) χN has a unique A-invariant irreducible constituent', and
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(b) If G/N is abelian, φG has a unique A-invariant irreducible
constituent.

Proof. Now A and G/N act on the irreducible constituents of
χN and G/N is transitive. Thus, part (a) follows form Lemma 3.1.

For (b), note A and IRR{G/N) act on the irreducible constituents
of φG and IRR(G/N) is transitive in this action. We are done by
Lemma 3.1 if A acts fix point free on IRR(G/N). If ψeIRR(G/N)
is A-fixed, then A centralizes G/Ker (ψ) and Ker (ψ) = G. This com-
pletes the proof.

THEOREM 3.3. Assume that G is π'-solvable with a Hall-π-sub-
group S; N = N0(S); K, L <3 G; H — LN; K/L is an abelian π'-group;
KH-=G;andKΓ\H= L. Let Θ e 1RR(K) such tha S £ IG(θ). Then

(a) ΘL has a unique S-invariant irreducible constituent φ; and
(b) There is a one-to-one and onto map T: IRR(G\θ)—*IRR(H\φ)

such that χ(l)/(χΓ)(l) is an integer dividing \G: H\.

Proof. As CK/L(S) — 1, part (a) is a consequence of Corollary
3.2. To prove (b), induct on |G|. By induction, it is no loss to
assume K/L is chief in G and H is maximal in G. Note KN = G.
For neN, θn and φn are S-invariant. If R = IG(Θ), it then follows
from Corollary 3.2 that R n H = IH(ψ). Now character induction
yields one-to-one maps from IRR(R\Θ) onto IRR(G\Θ) and from
IRR(RnH\φ) onto IRR(H\φ). As \G: R\ = \H: HΠ R\, we finish by
induction on ]G| if R < G.

So, we assume Iσ(0) = G and 1 (̂0) = H. If Jff(0) = if, φκ = θ
and character induction defines a one-to-one map from IRR(H\φ) onto
IRR(G\φ) = IRR(G\Θ). As i ϊ i s maximal in G; we assume IG(^) = G.

If 0£ = ̂ , we are done by Lemma 2.1. With no loss, we assume
ΘL = eφ and e2 = |iΓ: L|. Replace (G, L, ̂ ) by an isomorphic character
triple (G*, L*, φ*) where ^* is faithful and linear (8.2 of [4]). Now
θ* is fully ramified with respect to K*/L* and consequently vanishes
off L*. So Z(K*) = L* ̂  Z(G*). Note SL^H and that Fitting's
lemma (5.2.3 of [3]) implies [iΓ/L, S] - ίΓ/L. Also, G*/L* = G/L.
For χeIRR(G\φ) and ψeIRR(H\φ); χ * ( W ( l ) - (χ*(l)/^*(l)) x
(^*(l)/ψ *(l)) = χ(l)/t(l) As IRR{G\Θ) - IRR(G\φ); the character
triple isomorphism and Lemma 2.3 yield here a one-to-one and onto
map F:IRR(G\θ)->IRR(H\φ) such that χ(l) - β(χF)(l) This com-
pletes the proof.

THEOREM 3.4. Let G be π'-solvable and let P be a Hall-π-sub-
group of G. Then \Iπ(G)\ = \Iπ(NG(P))\.



CHARACTERS OF P'-DEGREE IN SOLVABLE GROUPS 271

Proof. Induct on \G\. Let N = NG(P) and K = Oπ'%G). We
assume KΦl, else N = G. The Frattini argument yields ϋΓN = G.
Let K/L be a chief factor, so that K/L is an elementary abelian
g-group for a prime qeπ'. Let i ϊ = LN, so that G = KH. By
definition of 1£, CK/L(P) = 1. So i ϊ Π if = £. It suffices via induction
to show 11,(0)1 = 12,(101.

Corollary 3.2 gives us a one-to-one correspondence between all
P-invariant irreducible characters θ of K and all P-invariant irreduci-
ble characters φ of L, in which θ and φ correspond if and only if
\βL, φ] Φ 0 or, equivalently [θ, Φκ] Φ 0. Furthermore, this cor-
respondence is invariant under conjugation by N. Since G — KN
and H = LiV, we conclude that this correspondence carries G-con-
jugacy classes of θ's one-to-one and onto the ϋ-conjugacy classes of
Φ's.

Let S1 = {χ 6 IRR(G) \ χκ has a P-invariant irreducible constituent}
and S2 = {ψeIRR(H)\ψL has a P-invariant irreducible constituent}.
The last paragraph and Theorem 3.3 yield a one-to-one and onto map
F: St^S2 such that χ(l)/(χF)(l) is an integer dividing \G: H\ = |ίΓ:L|.
If χ e 7i2i2(G) (or χ G IRR(H)) and pχ(l) for all p e π; then χ e ^ (re-
spectively, χeS2). Hence χ e IS(G) if and only if χ e S1 and (χF) e IJJH).
The proof is complete.

Actually the above results yield a one-to-one map T: Iπ(G) —• Ĵ iSΓ)
such that χ(l)/(%T)(l) divides |G: JV|. In the case π = {2?}, the above
theorem states precisely that \IP(G)\ = |2p(iV(P))| for G solvable, where
PeSyUG).
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