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CHARACTERS OF P’-DEGREE
IN SOLVABLE GROUPS

THOMAS R. WOLF

We prove that |[,(G)| = I|L,(N(P))] for PeSyl(G), for
solvable G. Here p is a prime and I,(G) is the set of ir-
reducible characters ¥ such that (v¥(1), p) = 1.

1. Introduction. The groups considered are finite and the
group characters are defined over the complex numbers. McKay
conjectured |, (G)| = |[L(N(P))| where PeSyl(G) for simple G and
» =2 [6]. I. M. Isaacs has proven the result when |G| is odd and p
is any prime (Theorem 10.9 of [4]). We prove the result for solvable
G. In fact we generalize this slightly to sets of primes and nor-
malizers of Hall subgroups.

For characters ¥ and + of G, we let [x, 4*] denote the inner
product of y and 4. Let N<IG and 6 IRR(N). We write I;(0) to
denote the inertia group {g€G|6’ = 6}. We also write IRR(G |§) =
{x € IRR(G)|[«x, 0] # 0}. Of course, character induction yields a one-
to-one map from IRR(I6)|6) onto IRR(G|6). If yeIRR(G|g); we
say y (or 6) is fully ramified with respect to G/N if y, = e¢f and
¢’ = |G: N|. This will occur if I;(f) = G and ) vanishes off N.

Suppose that K/L is an abelian chief factor of G; Y€ IRR(K);
é6€ IRR(L); and [V, 8] # 0. If K-I(¢) = G, then one of the following
oceur:

(a) 7.=4;
(b) v and ¢ are fully ramified with respect to K/L, or
(e) ¢5=7.

We note that K-Iy(¢) = G whenever I,(7) = G. The results of these
last two paragraphs are well known (e.g. see Chapter 6 of [5]); and
we will use them without reference. In Theorem 3.3, we use known
results about character triple isomorphisms (see §8 of [4] or Chapter
11 of [5]); otherwise, everything should be self-explanatory.

I would like to thank E. C. Dade for his preprint [1].

2. Extendability. A straightforward proof of Lemma 2.1 may
be found in Lemma 10.5 of [4].

LEMMA 2.1. Assume N< G, H<G, NH=G, and NN H= M.
Assume ¢6€IRR(N) s wnvariant in G and ¢, € IRR(M). Then
L oy defines a ome-to-ome correspondence between IRR(G|¢) and
IRE(H|gy)-
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Theorem 2.2 is a generalization of a result of Dade. He proves
the theorem when E is an extra-special p-group and when p + |L]
(see Theorems 1.2 and 1.4 of [1]). We use his result to prove this.

THEOREM 2.2. Assume (i) G s the semi-direct product EH,
E<ZQG.

(ii) 1< Z(E) £ Z(G) and Z(E) is cyclic;

(ili) E/Z(E) is an elementary abelian p-group for some prime
;5

(iv) |[L, E/Z(E)] = E/Z(E) for some LJ/C,(E)< H|Cy(E) such
that p + |L/Cx(E)|; and

(v) Ae€lIRR(E) is faithful.

Then A extends to an irreducible character « of G such that
Cy(H) = ker (y).

Proof. We may extend A to an irreducible character of
E x Cy(F) with kernel Cy(E). It is no loss to assume C,(E) = 1.
If B' = Z(E), we finish by Dade’s result. We assume E' < Z(E).

Fittings lemma (Theorem 5.2.3 of [3]) implies E/E’ = F/E' X
C,,-(L) where F/E' =|E/E',L]. As p + |L|, the hypotheses yield
Z(E)/E" = Cy/z(L). Note E' = Z(F') and E/Z(FE) is isomorphic to
F/E".

Let ¢ be the irreducible constituent of A;y. As ¢, € IRR(E'),
Lemma 2.1 yields 4,e IRR(F). By induction on |G|, 4, extends to
some BelIRR(FH). If I 4) =G, we have by Lemma 2.1 that
B = rry for some + € IRR(G/4). Furthermore, (1) = A(1). We are
done as long as I;(4) = G. Note that A, and ¢ are H-invariant. So,
if he H, A/* = a/ for a linear @ ¢ IRR(E/F). This implies ¢" = ;59
and @z = lz;. So @ = 1., completing the proof.

The following theorem also generalizes a result of Dade (see
Theorem 5.10 of [1]).

THEOREM 2.3. Assume (1) G=EH, E<|G, ENH=Z(E) is in Z(G);
(ii) 1=+ Z(FE) s cyclic;
(iii) E/Z(E) is an elementary abelian p-group for a prime p;
(iv) [L, E/Z(E)] = E/Z(E) for some C,E)< L<H such that
p + |L/Cy(E)|; and
(v) N 18 a faithful character of Z(E).
Then there exists a one-to-one correspondence T: IRR(G|\)— IRR(H|\)
such that for y € IRR(G|\), x(1) = e[(x T)(1)] where e = |E: Z(E)|"* € Z.

Proof. Let A€ IRR(E|\). As E is nilpotent and \ is faithful, 4
is faithful. If Z(F) < T < E with |T: Z(FE)| prime, 4, has each ex-
tension of N to T as a costituent. It follows that A4 vanishes on
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E — Z(E). So A and A\ are fully ramified with respect to E/Z(E)
and I, (4) = G.

Let H, be an isomorphic copy of H; say o:H— H, is an
isomorphism. Say Z(F) = {(x) and ¢(x) = z,. From the semidirect
product G, = E-H,. Note, by Theorem 2.2, 4 extends to 4 € IRR(G,).

Let Z, = (x) X {x,) £ G,. Define N, € IRR({x.>) by N(z,) = Mzx).
Define 7:G,— G by z(tg) = t-07%(g) for tc K, ge H,. Then 7is a
homomorphism onto G with kernel Z, < Z,. So t:G/Z,— G is an
isomorphism, ({x) X <{x,») = Z(&), and (A X \,)° = \, viewing 7 as
mapping IRR(Z,/Z,) to IRR(Z(H)).

Hence, we need just show there is a one-to-one correspondence
T: IRR(G,|» X N,) — IRR(H,|\,) such that x(1) = [(x T)(1)].

If SecIRR(H,), then B is B* restricted to H, for a unique
B* ¢ IRR(G,/E). Now B— B*+ defines a one-to-one correspondence
from IRR(H,) onto IRR(G,|4) = IRR(G,|N\). As +(1) = e, it suffices
to show for B e IRR(H, that SeIRR(H,|»\,) if and only if Z, <
ker (8*+). If p is the irreducible constituent of B restricted to
{x,y, then B* ¥z, 27") = eBAN @)1 (x). So Z, < ker (8*+) if and
only if g =\, completing the proof.

3. The McKay conjecture. If 7 is a set of primes, let I(G) =
{x € IRR(G)|(p, x(1)) = 1 for all pexm}. Now @G is m-solvable if G has
a normal series where each factor is either a #’-group or a solvable
z-group. If G is w-solvable or 7n’-solvable, the Schur-Zassenhaus
theorem implies G has a Hall-z-subgroup and that any two Hall-z-
subgroups are conjugate in G (see 6.3.5 and 6.3.6 in [3]). Proof of
the following lemma, due to Glauberman [2], requires the conjugacy
part of the Schur-Zassenhaus theorem and thus uses the 0dd-Order
theorem to ensure the solvability of either A or G.

LEMMA 38.1. Assume A acts on G by automorphisms and
(A, |Gy =1. Assume A and G act on o set T such that G 1is
transitive on T and (t-g)-a = (t-a)-9° for all teT, ge@, acA.
Then

(a) A fixes an element of T, and

(b) C4(A) acts transitively on the fixed points tn T of A.

Proof. See [2] or 13.8 and 13.9 of [5].

COROLLARY 3.2. Assume A acts on G by automorphisms, N <IG
is A-invariant, (|G:N|, |A]) =1, and C;y(A) =1. Let yeclIRR(G)
and ¢ IRR(N) be A-invariant. Then

(a) 7y has a unique A-invariant irreducible constituent; and
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(b) IfG/N is abelian, ¢° has a unique A-invariant irreducible
constituent.

Proof. Now A and G/N act on the irreducible constituents of
Y~y and G/N is transitive. Thus, part (a) follows form Lemma 3.1.

For (b), note A and IRR(G/N) act on the irreducible constituents
of ¢ and IRR(G/N) is transitive in this action. We are done by
Lemma 3.1 if A acts fix point free on IRR(G/N). If e IRR(G/N)
is A-fixed, then A centralizes G/Ker (4) and Ker (4+) = G. This com-
pletes the proof.

THEOREM 3.3. Assume that G s ©'-solvable with ¢ Hall-w-sub-
group S; N = Ng(S); K, L < G; H = LN; K/L is an abelian ©'-group;
KH=G;and KNH=L. Let6clRR(K) such tha S < I,0). Then

(a) 60, has o unique S-invariant trreducible constituent ¢; and

(b) There is a one-to-one and onto map T: IRR(G|0)— IRR(H|)
such that y(V)/(xT)A) is an integer dividing |G: H|.

Proof. As Cy,(S) =1, part (a) is a consequence of Corollary
3.2. To prove (b), induct on |G|. By induction, it is no loss to
assume K/L is chief in G and H is maximal in G. Note KN = G.
For neN, 6 and ¢" are S-invariant. If R = I (6), it then follows
from Corollary 3.2 that RN H = Iy(¢). Now character induction
yields one-to-one maps from IRR(R|6) onto I[RR(G|6) and from
IRR(R N H|p) onto IRR(H|¢). As |G: R| = |H: HN R|, we finish by
induction on |G| if R < G.

So, we assume I(0) =G and I,(¢) = H. If I ¢)=H, ¢“=20
and character induction defines a one-to-one map from IRR(H|¢) onto
IRR(G|¢) = IRR(G|60). As H is maximal in G; we assume I (¢) = G.

If 0, = ¢, we are done by Lemma 2.1. With no loss, we assume

. = ep and ¢* = |K: L|. Replace (G, L, ¢) by an isomorphic character
triple (G*, L*, ¢*) where ¢* is faithful and linear (8.2 of [4]). Now
6* is fully ramified with respect to K*/L* and consequently vanishes
off L*. So Z(K*)= L* < Z(G*). Note SL <J H and that Fitting’s
lemma (5.2.8 of [3]) implies [K/L, S] = K/L. Also, G*/L* = G/L.
For yelIRR(G|¢) and +elIRR(H|g); x*L)/y*1) = (*1)/¢*(1)) X
(¢*Q)/+*Q)) = x(L)/4v(1). As IRR(G|6) = IRR(G|¢); the character
triple isomorphism and Lemma 2.3 yield here a one-to-one and onto
map F: IRR(G|0)— IRR(H|¢$) such that y(1) = e(xF')(1). This com-
pletes the proof.

THEOREM 3.4. Let G be w'-solvable and let P be o Hall-w-sub-
group of G. Then |I(G)| = |L(Ny(P)).
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Proof. Induct on |G|. Let N = NgP) and K = 07 (G). We
assume K # 1, else N = G. The Frattini argument yields KN = G.
Let K/L be a chief factor, so that K/L is an elementary abelian
g-group for a prime gen’. Let H = LN, so that G = KH. By
definition of K, Cx,.,(P) =1. So HN K = L. It suffices via induction
to show |L(G@)| = |I.(H)|.

Corollary 3.2 gives us a one-to-one correspondence between all
P-invariant irreducible characters 6 of K and all P-invariant irreduci-
ble characters ¢ of L, in which 6 and ¢ correspond if and only if
[0z, 6] # 0 or, equivalently [6, ¢¥] 0. Furthermore, this cor-
respondence is invariant under conjugation by N. Since G = KN
and H = LN, we conclude that this correspondence carries G-con-
jugacy classes of #’s one-to-one and onto the H-conjugacy classes of
é’s.

Let S, = {x € IRR(G)| X% has a P-invariant irreducible constituent}
and S, = {v+€ IRR(H)|+, has a P-invariant irreducible constituent}.
The last paragraph and Theorem 3.3 yield a one-to-one and onto map
F: S, — S, such that y(1)/(xF)(1) is an integer dividing |G: H| = |K:L|.
If x e IRR(G) (or y € IRR(H)) and py(1) for all pex; then xS, (re-
spectively, y € S,). Hence y € I(G) if and only if y € S, and (xF') € I.(H).
The proof is complete.

Actually the above results yield a one-to-one map 7T: I(G) — I(N)
such that y(1)/(xT)1) divides |G: N|. In the case w = {p}, the above
theorem states precisely that |I,(G)| = |[[(N(P))| for G solvable, where
P e Syl, (@).
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