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PRINCIPAL IDEAL AND NOETHERIAN GROUPS
S. FEIGELSTOCK AND Z. SCHLUSSEL

Let II be a ring property. An additive group G is said to
be an (associative) strongly I1-group if G is not nil, and if every
(associative) ring R with additive group G such that R is not a
zeroring has property II. The (associative) strongly principal
ideal groups, and the (associative) strongly Noetherian groups
are classified for groups which are not torsion free. Some
results are also obtained for the torsion free case.

(i) Allgroups considered here are abelian, with addition the group
operation. Rings are not necessarily associative.

Let 7 be a ring property. A group G is said to be an (associative)
m-group, denoted by (A )m-group, if there exists an (associative) ring R
with additive group G such that R is not a zeroring, and R has property
. G is an (associative) strongly -group, denoted by (A )Sw-group. if
G is an (A)w-group, and every (associative) ring with additive group G
which is not the zeroring on G has property .

If the only (associative) ring with additive group G is the zeroring,
then G is said to be an (associative) nil group, denoted by (A ) nil group.

The two ring properties 7 considered in this paper are:

1. every two-sided ideal is principal, denoted by PI,

2. every two-sided ideal is finitely generated, denoted by N.

In (i1) a complete characterization of the torsion (A )SPI groups will
be given. It will be shown that there are no mixed (A)SPI
groups. Some results concerning torsion free (A)SPI groups will be
obtained. In (iii), the torsion, and mixed SN groups will be completely
characterized. Some results concerning torsion free SN groups will be
given.

(ii) If X is a nonempty subset of a group or ring, (X) denotes
the additive subgroup generated by X, and (X) denotes the ideal
generated by X.

If G = G,@ G, is a group, g, is the natural projection of G on G,
for i =1,2.

Lemma 1. Let G=H@PK H#0,K#0, be an ASPI-group. Then
H and K are either both cyclic or both A nil.
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Proof. Suppose that H is not A nil. Let S be an associative ring
on H which is not the zeroring on H, and let T be the zeroring on
K. The ring direct sum R = S@ T is an associative ring on G, which is
not the zeroring on G. T is an ideal in R, and hence T = (x). Clearly
K = (x). Therefore K isnot A nil. The above argument, interchang-
ing the roles of H and K, yields that H is cyclic.

CoroLLARY. Let G=H@K,H#0,K#0 be an SPI-group. Then
H and K are cyclic.

Proof. It suffices to negate that H and K are both A nil. Suppose
this is so. Let R be a ring on G which is not the zeroring on G.

(1) Suppose that R*C K. There exist h,€ H, k,€ K such that
R =(hy+ ko). Let h € H. Since h € R, there exists an integer n, and
x € R?such that h = n(ho+ ko) + x. However, x € K. Hence h = nh,,
and H is cyclic, contradicting the fact that H is A nil.

(2) Suppose that R*Z K. For all g,,8,€ G, define g, xg,=
mu(g:82). Then S = (G, X) is a not necessarily associative ring on G,
which is not the zeroring on G, satisfying S?C H. The argument
employed in (1) yields that K is cyclic, contradicting the fact that K is A
nil.

THEOREM 1. Let G be a nonzero torsion group. The following are
equivalent:

(1) Either G is cyclic, or G = Z(p)® Z(p) for a prime p.

(2) G is SPIL

(3) G is ASPL

Proof. (1) > (2): Nontrivial cyclic  groups are clearly
SPI. Suppose that G = (x,) (x,) with |x;| = p aprime, i =1,2. LetR
be a ring on G which is not the zeroring on G, and let | be a proper ideal
in R. Then |I/|=0 or p, and hence | is generated by a single
element. It therefore suffices to show that R is generated by a single
element. We may assume that R#(x,), and that R# (x,). Hence
(x;)=(x;) for i =1,2. This implies that

x ={k,»x,-,0<k,-<p, ifl:j,izl’z
iXj 0 if i7£].,i,].=1,2.

Put [ =(x,+x;). Let r,s be integers such that rk,+sp =1. Then
rx,(x,+x;)=rkyx;=(1-sp)x;=x,, Hence x,E€Il and so (x,+x;)—
x,=x,E [l Therefore | = R.

(2) = (3): Let G be a torsion SPI group. It suffices to show that G
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admits an associative, nonzero multiplication. If G is indecomposable
then G=Z(p"),p a prime, and n a positive integer or % [1, Corollary
27.4). If n =othen G isnil. If n is a positive integer then G admits a
ring structure is isomorphic to Z,- the ring of integers modulo p". If G
is decomposable, then by the Corollary to Lemma 1, G =
Z(n)@Z(m). Hence G admits a ring structure isomorphic to the ring
direct sum Z, P Z,.

(3) = (1): Suppose that G is ASPI. If G is indecomposable, then
G =Z(p*),p aprime, 1=k =, [1, Corollary 27.4]. However Z(p®)
is A nil [3, Satz 1, and Zusatz]. Hence G is cyclic. By Lemma 1 and
[1, Theorem 120.3] we may assume G = (x;)@P(x,) with |x,|=n,i=
1,2. If (n, n;)=1, G is cyclic; otherwise, let p be a prime divisor of
(n;,n;). Then G = (y)PD(y.)PH, with |y, |=p™i=1,2,and 1 =m, =
m,. Since (y)@P(y) is neither cyclic nor A nil, H =0 by Lemma 1.

Now let R be the ring on G with multiplication defined by
yy; =p™ 'y, fori,j =1,2. Then R is an associative ring on G which is
not a zeroring, so R = (s,y, + s,y,) for some s,,5,€ Z. Every x € R has
the form x = k,s,y, + (k.s, + m,p™")y,, for some k,, m, € Z. In particu-
lar, y,=k,sy,, and y,=(k,s,+ m,p™")y,. Hence if m,>1k,s,=
1(modp), k,s,+m,p™'=1(modp), so p t k,, and p £ s,. However
ks, +m,p™'=0(modp), so that either p|k,, or p|s,, This is a
contradiction, so m,= 1= m,.

THEOREM 2. There are no mixed ASPI-groups.

Proof. Let G be a mixed ASPI-group. G is decomposable, [1,
Corollary 27.4], soby Lemma 1, G = HP K, H# 0, K# 0, with H and K
either both cyclic or both A nil.

(1) Suppose that H and K are both A nil. There are no mixed A
nil groups [4, hilfssatz 9] so we may assume that H is a torsion group, and
that K is torsion free. Let R be an associative ring on G, such that R is
not a zeroring. Clearly H is an ideal in R, and so H =(h). Let
m = |h|,so mh =0. There are no nontrivial, bounded A nil-groups [3,
Satz 1 and Zusatz], a contradiction.

(2) Suppose that H = (x), and K = (e) with [x|=n <, and |e|=
. Let R be the ring on G with multiplication induced by x*= xe =
ex =0,e*=ne. Clearly, R is an associative ring on G, and R is not a
zeroring. Hence R =(sx t+te),s,t €EZ. Every y €R is of the form
y =mysx +(m, + un)te,m,,u, €EZ. In particular, (m, +un)t=1.
Hence t = =1. Therefore m, + u,n =0, so that n|m,. However x =
m,sx =0, a contradiction.

THEOREM 3. Let G be a torsion free, ASPI-group. Then G is either
indecomposable, or the direct sum of two A nil-groups.
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Proof. By Lemma 1, it suffices to negate that G =
(x1)PD(x2),x;#0,i =1,2. Suppose this is so. Let R be the ring on G
with multiplication induced by

x={3x,- ifi=ji=1,2
El0 it iAf0j=1,2

Then R =<(k,x,+ k,x,),k, € Z,k;#0,i =1,2. Every x €ER is of the
form

x =(r. +3s)kx, + (r. +3t)koxs, 1,5, 8, € Z.

r.+3s,= =1, so that r, = = 1(mod3). However, r,+3t,=0, so that
r., =0(mod 3), a contradiction.

CoROLLARY. Let G be a torsion free SPI-group. Then G is inde-
composable.

Proof. Theorem 3, and the Corollary to Lemma 1.

The above Corollary yields that if G is a torsion free SPI-group then
either G = Q, the group of rational numbers, or G is reduced, [1,
Theorem 21.3].

THEOREM 4. Let G be a nonzero torsion group. The following are
equivalent:

(1) G is bounded.

(2) G is an API-group.

(3) G is a PI-group.

Proof. (1) = (2): Suppose that nG =0, n a positive integer. Then
G = D,.[D.Z(p*)], p a prime with p*|n, and @, a cardinal number, [1,
Theorem 17.3, and Theorem 8.4]. For each p*|n, put Hy =
D.Zp*). Then G =@, H,-: There exists an associative unital PI-
ring R« on H,, for all p*|n, [1, Lemma 122.3]. The ring direct sum
R =@, .R,« is an API-ring on G which is not the zeroring on G [5,
Chapt. 4, Theorem 33].

(2) = (3): Obvious.

(3) = (1): Let R be a PI-ring on G which is not the zeroring on
G. Then R =(x). Let n=|x|. Clearly, nG =0.

CoroLLARY. Let G be a mixed group. If G is an (A)PI-group,
then T(G) (the torsion part of G) is bounded, and T/T(G) is an
(A)PI-group. Conversely, if T(G) is bounded, and if there exists a unital
(A)PI-ring on G/T(G), then G is (A)PL
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Proof. Let G be an (A )PI-group, and let R be an (A)PI-ring on G
which is not a zeroring. Since T(G) is an ideal in R, T(G) = (x), and
nT(G)=0,n=|x|. Clearly R/T(G) is an (A)PI-ring with identity on
G/T(G).

Suppose that T(G) is bounded, and that there exists an (A )PI-ring
with identity on G/T(G). Then G =T(G)D G/T(G), [1, Theorem
100.1]. There exists an API-ring R, with identity on T(G), [1, Lemma
122.3]. Let R, be a unital (A)PI-ring on G/T(G). Let R be the ring
direct sum R = R, R,, with ¢; the identity of R,,i =1,2. Let [ be an
ideal in R. Then I=(INR,)P(UNR,). Since |NR, is an ideal in
R,INR, =(x,),i=1,2. Clearly, (x;+x,)C Il However X =
e(x;+x)E(x;+x,) for i =1,2. Hence | ={(x,+ x,).

Additional information concerning PI-groups and the classification
of m-groups for other ring properties = may be found in [2].

Lemma 2. If a group G is finitely generated, then G is SN.
Proof. Obvious.

LemMMA 3. Let a group G=H@PK H#0,K#0, be SN. Then
either G is finitely generated, or H and K are both nil.

Proof. Suppose that H is not nil. Let S be a nonzeroring on H,
and let T be the zeroring on K. The ring direct sum R = S T is a ring
on G which is not the zeroring, with ideal T. Let t,,- - -, ¢, be a finite set
of generators for 7. Then K = (¢,,---,t,). This implies that K is not
nil. The same argument, interchanging the roles of H and K, yields that
H is finitely generated. Hence G is finitely generated.

THEOREM 5. Let G be a non torsion free group. G is SN if and only
if G is finitely generated.

Proof. By Lemma 2, it suffices to show that if G is non torsion free
and SN, then G is finitely generated.

(1) Suppose that G is a torsion group. If G is indecomposable
then G is cyclic [1, Corollary 27.4 and Theorem 120.3]. We may
assume, by Lemma 3, that G = HP K, H# 0, K# 0, with H and K both
nil. This implies that G is nil [1, Theorem 120.3]. A contradiction.

(2) Suppose that G is a mixed group. Then G is decomposable [1,
Corollary 27.3]. By Lemma 3, it suffices to negate that G =
HOPK H#0,K#0, with H and K both nil. Suppose that this is
so. By [1, Theorem 120.3] we may assume that H is a torsion group and
that K is torsion free. However, by [1, Proposition 126.2] H is bounded
and hence not nil, a contradiction.
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CoroLLARY. Let G be an SN group. Then T(G) and G/T(G)
are SN.

Proof. 1f G is torsion free then the statement is trivial. Otherwise,
G is finitely generated by Theorem 5, and so T(G) and G/T(G) are SN
by Lemma 2.

A torsion-free SN-group need not be finitely generated; e.g. Q the
group of rational numbers. However, we have the following:

THEOREM 6. Let G be an SN-group. Then G is either indecompos -
able, or finitely generated.

Proof. By Lemma 3, it suffices to negate that G =
H®PK,H#0,K#0,with H and K bothnil. Suppose thisisso. Let R
be a ring on G which is not a zeroring. Then R =(x;, " -, x,),n a
positive integer. Put x, =h,+k,h, €E H kK, EK,1=i=n.

(1) Suppose that R?’CK. Let h€H. Since hE€Rh=
(b +k)+x,r€Z1=i=nx € R?’ However R’CK. Hence
h = 2 rh, and H is finitely generated. This contradicts the fact that H
is nil.

(2) Suppose that R*Z K. For g,8€G define g, Xg,=
74 (8:82)- Then S =(G,X) is a ring on G which is not a zeroring
satisfying S>C H. The above argument yields that K is finitely gener-
ated, contradicting the fact that K is nil.
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