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ALGEBRA HOMOMORPHISMS AND THE
FUNCTIONAL CALCULUS

MARC THOMAS

Let b be a fixed element of a commutative Banach algebra
with unit. Suppose ¢(b) has at most countably many connected
components. We give necessary and sufficient conditions for
b to possess a discontinuous functional calculus.

Throughout, let B be a commutative Banach algebra with unit
1 and let rad (B) denote the radical of B. Let b be a fixed element
of B. Let ¢ denote the LF' space of germs of functions analytic
in a neighborhood of ¢(b). By a functional calculus for b we mean
an algebra homomorphism 6 from £ to B such that 6(z) = b and
0'(1) = 1. We do not require ¢ to be continuous. It is well.known
that if ¢ is continuous, then it is equal to 6, the usual functional
calculus obtained by integration around contours i.e.,

00f) = == | FOXE —b)de,
2me Ji

for f e, I' a contour about ¢(b) [1, 1.4.8, Theorem 3]. In this paper
we investigate the conditions under which a functional calculus ¢ is
necessarily continuous, i.e., when 6 is the unique functional calculus.

In the first section we work with sufficient conditions. If S is
any closed subspace of B such that 6S < S, we let D(b, S) denote
the largest algebraic subspace of S satisfying (b — \)D(b, S) = D(b, S),
all neC. We show that if ¢’ is a functional calculus for b and if
we let B =6 — 0, then B(¢”) S D(b, rad (B)). Hence if D(b, B) = (0),
then @ = ¢’. We show that this extends H. G. Dales earlier result
that if rad (B) is finite dimensional, § = 6’ [2, Theorem 1, application
()l

In section two we seek converse results to the above. In general,
if o is a clopen subset of ¢(b), we let E(c) denote the projection
0(e(0)) where ¢(o) is one on ¢ and zero elsewhere. If 7 is a connected
component of o(b) we let

S(t) = 1 N E()B,
o clopen, 627

which is a closed ideal. We first show that if D(b, S(z)) # (0) for
some connected component = of a(b), then there exists a discontinuous
functional calculus ¢ for b. If we let 8 =6 — 6 as before we may
choose B(<7) € D(b, S(r)). We next show that if ¢(b) has only countably
(or finitely) many components, then D(b, B)=(0) implies D(b, S(z))=(0)
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for some connected component v of ¢(b). Hence when g(b) has at
most countably many connected components we can give necessary
and sufficient conditions for a discontinuous functional calculus ¢ to
exist (Theorem 2.11). We note in passing that the techniques used
in this section are also useful in general for constructing new algebra
homomorphisms when one is given.

In the third and final section we give some counterexamples to
related conjectures. We show that the torsion free condition in the
technical Proposition 2.2 unfortunately cannot be dropped. Finally,
it might be hoped that every functional calculus 6 = 6+ 8,+ -+ + 8.
where B,(?) & D, S(t))i =1,2, -+, n, for some distinct connected
components 7, of g(b). We show that this need not hold, even when
o(b) is a convergent sequence.

1. We continue to use the notation of the Introduction, con-
sidering b to be some fixed element of the commutative Banach algebra
B. We give the formal definition of D(b, S) and make some observa-
tions.

DEFINITION 1.1. Let S be any closed subspace of B satisfying
bS<=S. Let D(b, S) be the largest algebraic subspace of S such that
(b—\)D(b, S)=D(b, S), all n € C. This exists since we may take D(b, S)
to be the span of all algebraic subspaces with the above property.
Now if we define Tx =bx for all x€ B, then T is a continuous linear
operator on the Banach space B and ¢(T) = o(b) since 1€ B. Hence
S is a closed T invariant subspace and D(b, S) is the largest T
divisible subspace in S. If p is any nonzero polynomial in C[x] then
p(T)D(b, S) = p(b)D(b, S) = D(b, S) since p factors into a product of
terms (z — \;) for various A;,. Also note if S is a closed ideal and
c€ B then ¢D(b, S) is contained in S, is also divisible and hence
¢D(b, S) < D(b, S). Hence D(b, S) is also an ideal, though it is never
closed unless it is trivial. Finally, we observe that S need not be
closed to form D(b, S) but we shall have no occasion to consider
noneclosed S.

LEMMA 1.2. Let B be a commutative Banach algebra with unit.
Let be B and S a closed subspace of B with bS = S. Then D(b, S) =
rad (B).

Proof. Let @ be the maximal ideal space of B and let d € D(b, S).
Let pe®. Then ¢(b) = )\, some v C. Hence there exists ec D(b, S)
such that d = (b — \)e. Applying ¢ to both sides, we obtain ¢(d) =
0-p(e) = 0. Since ¢ was arbitrary, this shows that d erad (B).
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Suppose ¢’ is a functional calculus for b. Let 8 =6 — 6. Note
that g8 is linear and

B(F9) = 6(f)B(9) + 0(@BU) + BB -

We shall call @ the o-derivation associated with 6. It is clear that
if p is a polynomial, 8(p) = 0. There are more restrictions on g3
however. If fe¢ and neo(b), then f = f(\) + (z — \)g for some
ge 2. Applying B we obtain B(f) =0 + B((z — Mg) = (b — MA(g).
If x¢a(b), then g = (f/z —N)e¢” and f = (2 — N)g. Again applying
B we obtain B(f) = (b — N)B(g). Hence we have shown that
b —NB(7) = B() for all xeC. Thus B(<) < D(b, B) < rad (B) by
Lemma 1.2. Hence 8(<”) < D(b, rad (B)). Now if ¢ is a clopen subset
of o(b) we will let e(o) denote the germ in ¢ which is one on ¢ and
zero elsewhere. We will let E(o) denote the idempotent 6(e(c)). It
is of some concern that 6'(e(¢)) is an idempotent also, and a priori
may not be equal to E(s). W. G. Badé has pointed out to us that
since 6(e(o)) and 6'(e(g)) commute, B(e(d)) = B(e(0))® = Ble(a))*", all n.
Since B(e(0)) € rad (B) this forces B(e(o)) = 0. Thus 8(e(d)) = 6'(e(0)) =
E(o). We sum up the above in the following lemma.

LemmA 1.8. Let B be a commutative Banach algebra with unit
and let be B. Let 6 be a functional calculus for b and B =6 — 6.
Then

(1) B is a linear function from <° to rad (B) vanishing on
C|zx].

(2) B(fg) =0(5)B9) + 6(9)B(f) + BB

(8) B() < D(b, rad (B)).

(4) If o is a clopen subset o(b), then B(e(o)) = 0.

We wish to note that H. G. Dales considers §—¢’ in [2], so (2) is
slightly changed and by considering B, (1) is proved in a different
manner [2, 2.2.3]. Now if D(b, B) = D(b, rad (B)) = (0), it follows
that 8 =0 and 6 = ¢, and we obtain the following.

THEOREM 1.4. Let B be a commutative Banach algebra with unit
and let be B. Let ¢ be a functional calculus for b. If D(b, B) = (0)
then 8 = 0.

This implies H. G. Dales result that if rad (B) is finite di-
mensional, then 6" = 6 [2, Theorem 1, application (a)], as follows.
If rad (B) is finite dimensional then 7T« = bx as an operator on
rad (B) is algebraic. Hence there exists a nonzero polynomial p such
that p(T)x = p(b)x = 0 all xerad (B). Then 0 = p(b)D(b, rad (B)) =
D(b, rad (B)). Hence =0 and 6 =¢'.
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2. Our first task is to obtain sufficient conditions for construecting
discontinuous funectional calculi. It will be necessary to begin in a
very algebraic framework and add the analysis as we proceed.

DErFINITION 2.1. Let A be a commutative algebra with unit 1
over C. Let M be an A module which is also a commutative algebra
over C, though not necessarily with unit. We always require 1m = m
for all me M. We will call M a commutative bi-module over A if
a(mm,) = m,(am,), for acA, m, m,e M. We will say that M is
solvable with respect to A provided

(1) d,eM,a,cA implies there is x € M such that

dy+ 2+ (a, + d)x* + -+ + (a, +d,)x"=0.

(2) If »eC,n# 0, then (\ + d) maps M one-to-one onto itself,
for all de M (in general (¢ + d) is the linear operator on M given
by (@ + d)ym = am + dm where ac A, d e M).

Finally, we call a linear function @ from A to M a o-derivation if

B(f9) = fBOg + 9B(f) + B(f)BR(g), for all f,ge A.

PRrROPOSITION 2.2. Let M be a commutative bi-module over A.
Let A, be a subalgebra of A containing 1. Suppose the following
conditions hold.

(1) M is torsion free, i.e., me M, ac A, am=0 and m>=0 implies
a=0.

(2) M is A divisible, i.e., a€ A, a = 0 implies alM = M.

(3) M is solvable with respect to A.

Then any o-derivation B, from A, into M extends to a o-derivation
B from A into M.

Proof. If M = (0), the conclusion is trivial. If M == (0) then A
1s necessarily an integral domain since fg = 0 implies fgM = (0) and
so fM = (0) or gM = (0), in which case f =0 or ¢ =0. By (1),
division in M by elements of A is unique. Let ge A~ A, and suppose
g is algebraic over A, i.e., there is P(x)e A,Jx] with P(9) =0 and
P(x) # 0. Let F and F, be the respective quotient fields of A and
A,. We can regard P(x) as a polynomial in F'[x] which is a Euclidean
ring. We can also regard g to be in F. Hence in FJx] there is a
unique monic minimal polynomial P, (x) with P,(9) = 0. By clearing
the denominators of the coefficients of P,(x) we can obtain a poly-
nomial P(x) in A,Jx] of minimal degree with the following property.
If Q(x)e A [x] and Q(g) = 0 then there exists R(x)ec 4,[xz] and a€ A4,
a # 0 such that aQ(x) = P(x)R(x). Let P(x) = Y7,ax°’. We need to
define B(g) so that B(P(g)) =0. To motivate this consider the following
formal manipulation using the o-derivation identity.
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8(Za0’) = 308 + 3 8a)g + 3, A@IB()
= 31 (@ + @B + 3, Badg -
By induction one easily sees that
1
2
=(g+B9)~—9g.

B(g") = 1g*7'B(g9) + ( >g"‘2,8(g)2 + - + Bg)

Hence the above is equal to
= 3 (@ + A@))ig"B9) + -+- + B@)) + 2 Balg -

Replacing B(g) by the variable y we obtain an equation of the following
form.

do+ | 3@ + B@De y + @+ Ay + o+ (e + Ay =0,

where n = 1,d,, d,, ---,d, e M, ¢, ¢, ---, ¢, € A.

Let a = X7, i(a;, + B(a,)g"™ = ¢ + d for some ce A, de M. Note
¢c=>7",1a,0°" and hence ¢ # 0, otherwise the minimality of the
degree of P(x) is contradicted. Suppose a =0. Then ¢ = —d,c#0 .
and hence by (2), there exists d, € M such that d = c¢d,. Then d =
ed, = —dd, and d(1 + d,) = 0. But (1 + d,) is a bijection on M which
implies that d = 0, so ¢ = —d = 0 also, a contradiction. Thus ¢ # 0
and ¢ +d=+0. Hence ¢c+d=c(l+d,) for some d,eM, cd, = d.
Thus @ = ¢ + d acts bijectively as an operator on M. Replace the
variable ¥ by az. Let d, = a*m, m,€ M, and solve the following
equation for ze M.

my + 2 + (¢, + d)2* + (ac; + ady)2> + --- + (a*%¢, + a**d,)z" =0 .
Applying a® to the above and letting ¥y = az we obtain
d, + ay + (Cz+d2)y7 + e+ (Cn 'lr'dn)yn =0,

as desired. Hence we wish to define B(g) =¥ and for Ji_, q.x* in
Alx], define

8(Zae) = S @ + 6@ + B — 9 + 3 8@
= 3@ + 8@ + BO) ~ 3 a0

and note this is an element of M by the cancellation of certain terms.
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Once this is well-defined we will have a o-derivation extension to
Alg[g, A,], the algebra generated by ¢g and A, as follows.

209 B(Xti97) + B 9x9%) 2itig7 + B(X 0:9")B(2 ti97)
= 209" (2 (&5 + B9 + B@) — X tig?)
+ (X (@ + Bl@)g + B@)* — 2 qug") i ti9°
+ (2 (g + B@)g + B@)" — 2 a.9")
X (X (t5 + B(E)) (9 + B(9)) — 3 t;97)
= — 2 Gtig" T — D autig" T + 3 qitio*
+ (22 (gx + B@)g + B@)")- (X &5 + B9 + B(9)))
= 2L (t; + BN + B@)g + B@N — 3 qut;g™*"
= 21 (tiqx + BEia))g + B@N* — X qutsg”"
= B qiti9"*)
= B(X qug*- 2 t597) -
Hence we need only show that g is well-defined. Suppose Q(x)e
Ax] and Q(9) = 0. Let Q) = >\ qix*. There is thenac4d,a #0
and R(x) € A,[x] such that aQ(x) = P(x)R(x). Let R(x) = 37, 7;a°.
Then P(x)R(z) = >, a,r;x't?. We have

Si(ar; + Blar))g + B@)H — 3 argtt
= 2\ (ar; + a:;8(r;) + Bla)r; + Bla)Br))g + B@)*,

since >} a,r;9'"7 = P(9)R(g) = 0. Continuing we get
= 25 (a; + Ba))g + B@) - 3 (r; + B(r))g + B9) .
Since >} a.,9° = P(9) = 0 we obtain

= (3l (a; + Bla)(ig™'B(g) + -+ + B(@)Y) + > Bla)g?)
(X (5 + Br))g + B9)7)

=0-CL(r; + Br)g + B(9)))

=0.

Since aQ(x) = P(x)R(x) this implies that
3% (age + B@g)g + B — Syaq.g" = 0.
Since aQ(g) = 0 this implies
0 = 3\ (aq, + A@g))(o + B(@)"
= (@ + B(0) 5 @ + B + B0) -
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Now, a = 0 so a + B(a) acts bijectively on M and we obtain

0= 3@ + 8@y + B@))
— BQ©) ,

since Q(g) = S0 qg* = 0. Thus B is well-defined and extends to
Alg[g, A]]. If g had been transcendental over A,, we could have
extended B by letting B(g) be arbitrary in M. Hence, an application
of Zorn’s lemma completes the proof, and @8 can be extended to all
of A.

Note that if M?® = (0) then it is trivially solvable and any o-
derivation @ from A into M is simply an ordinary derivation i.e.,

B(fg) = B9 + 9B8(f) .

Hence, if M is any A module, we may make it a commutative bi-
module over A by defining m,m, = 0, for all m,, m,e M. We imme-
diately obtain the following corollary, previously noted by A. M.
Sinclair [6, Lemma 8.6].

COROLLARY 2.3. Let A be a commutative algebra over C with
unit. Let M be an A module (we always require lm = m, all m e M).
Let A, be a subalgebra of A containing 1. Suppose the following
conditions hold.

(1) M is torsion free.

(2) M is A divisible. ‘

Then any derivation B, from A, into M extends to a derivation B
from A into M.

This corollary is also proved in a particular case by H. G. Dales
[2, Lemma 5]. In this paper a discontinuous functional calculus is
constructed by first taking a semisimple algebra and tacking on a
nilpotent radical of index two which contains such an M above. Then
a discontinuous derivation is constructed into M which when added
to the usual functional calculus gives a discontinuous functional
calculus [2, Theorem 2]. We will show this procedure can be gen-
eralized considerably. We will consider a fixed element b of a fixed
commutative Banach algebra B and look for subalgebras M of rad (B)
as in Proposition 2.2 into which we can construet discontinuous o-
derivations 8. Moreover, we need not require M to be nilpotent.
Actually, our methods will be applicable in the construction of algebra
homomorphisms ¢’ when one homomorphism ¢ is already given. It
is trivial that the difference ¢’ — @ of two algebra homomorphisms
is a o-derivation using ¢ as the module action, i.e.,
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(@ — P)f9) = p(f)P" — @)9) + P(9)@" — P)(f)
+ (@ — o)) (@ — P)9) ,

assuming the algebras are commutative. We need some definitions:

DEFINITION 2.4. Let M be a commutative bi-module over a
commutative algebra A with unit. We say that M is c-injective if
any o-derivation B3, on a subalgebra A, containing 1 of A extends
to a o-derivation on all of A. Hence the conclusion of Proposition
2.2 is that such an M is o-injective. Of course we will want M = (0).
In terms of diagrams, we are considering the following:

0— 4, — A

8 4
M

DEFINITION 2.5. Let A and C be commutative algebras with
units and v an algebra homomorphism from A into C (we always
require ¥(1) = 1). Then C becomes a commutative bi-module over A
with operation ac = v(a)e,a € 4,ceC. Let A, be a subalgebra of A
containing 1. We say an algebraic subspace M of C is A, divisible
provided aM = M for a € A,, a = 0. Note A, is necessarily an integral
domain if M = (0). Let I be an ideal in A. We define

AL = {ceC: Ie = (0)) .

Clearly A(I) is an ideal in C, which is invariant under the action of
A. Let A7 denote the group of units in A. Finally, if S is any
subspace in C invariant under the action of an integral domain 4,< 4
we let D(A4,, S) denote the largest A, divisible subspace of S. This
exists since we may take the span of all A, divisible subspaces in S.

COROLLARY 2.6. Let A be a commutative algebra with unit over
C. Let B be a commutative Banach algebra with unit. Let v be a
unital algebra homomorphism from A into B. Hence B is a com-~
mutative bi-module over A as in Definition 2.5. Suppose there exists
an ideal I Z A and a subalgebra A, = A, with 1€ A, = C, such that

Al ={au + I:ac A,,uc A7} .

Then,

(1) If D(A,, A(I)) is torsion free over A, (a +0 in A, me
D(A,, A(I)) and am = 0 implies m = 0), D(A,, A(I)) s o-injective over
A/l

(2) If D(A, A(I)) # (0), but has torsion elements, we further
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require that A, is a principal ideal domain whose primes are of
the form p, — N, for various N and fixed p,c€ A,. In this case there
exists a torsion free submodule M = D(A,, A(I)), M % (0), which is
a g-injective commutative bi-module over A/I and M* = (0).

Proof. Case (1). It is clear that D(A,, A(I)) is an A module as
follows. Let de D(A, A(I)) and pe A,. Then pde D(A, A(I)) by
definition. Let w e A™*. Then ud € A(I)and uD(A,, A(I))is A, divisible,
so wD(4,, A(I)) < D(A,, A(I)). Since the same is true of %' we must
have uD(A,, A(I)) = D(A,, A(I)). Since every element a of A is of
the form pu +s for pecA,ucA™ and sel, this shows that
aD(A,, A(I)) < D(A,, A(I)). Since I annihilates A(I), A(I) becomes an
A/I module by (a + I)b = ab,ac A, be A(I). By our remark above
that (¢ + I) = pu + I for pe A, uc A" it is clear that (¢« + I) = I
implies (e +I)D(A,, A(I))=D(A,, A(I)), i.e., D(A,, A(I)) is A/I divisible.
We are assuming M = D(A,, A(I)) is torsion free over 4, and it easily
follows that it is torsion free over A/I. Since

M2 = {g MMy My, Ny eM}

is also in A(I) and is A, divisible M*> < M, so M is a commutative
algebra. It is clear that M is a commutative bi-module over A/I,
hence by Proposition 2.2 it suffices to show that M is solvable with
respect to A/I. We may assume M = (0) in which case it is inter-
esting to note that A, and A/I are integral domains, so Iis a prime
ideal necessarily. Let de M. Choose a€ A, ~ C and let pe @, the
maximal ideal space of B. Let @(a) =\ and choose ec M so that
(@ —N)e=d. Applying ¢ one obtains ¢(d) =0. Since ¢ was arbitrary,
d and hence M < rad (B). Let neC,\n# 0. Then (A + d) is a unit
in Band W+ d)AI) S A), (M + d)*AI) < A), so (L +d) is a
bijection on A(I) and hence on M = D(4,, A(I)). Finally, let d;e M,
a;, + Ie A/I, then there exists y erad (B) satisfying

do + Y+ (dz =+ v(a2))y2 + e + (dn + ”(an))y” =0 ’

by [3, Lemma 3.2.8]. But then d, = (1 — 7)y for r e rad (B). Hence
y=010—-7r)'d,d,e M. But exactly as above, any unit in B maps
A(I) bijectively onto itself, and hence maps M bijectively onto itself.
Thus ye M. Hence M = D(A,, A(I)) is seen to be solvable over A/I
and hence is g-injective over A/I.

Case (2). We suppose D(A,, A(I)) # (0) but has torsion elements.
In this case we cannot simply let M equal D(A4,, A(I)), but must
choose something smaller. Since we are assuming A, is a principal
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ideal domain, D(A4,, A(I)) = D, @ D, where D, is the A, submodule
of all torsion elements in D(A4, A(I)) together with zero, and D;
is some nonunique torsion free submodule of D(A,, A(I)). We con-
sider D,. Let de D, = (0) and d, € D(4,, A(I)). There is a nonzero
ac A, with ad =0 and d,e D(4,, A(I)) with ad, =d,. Thus dd, =
ad,d =0 and so D(A4,, A(I))-D, = (0). In particular D?= (0). By
continuity of multiplication we must have (D, = (0). (X*® shall
always denote finite sums of products of two elements in X.) Now
A(I) is certainly a closed ideal, so D, & A(I). Let ueA™'. Then
uD, E D, and w'D, < D,. Hence wD,< D, and w™'D, Z D,, thus u
is bijective on D,. It is clear that D, is an A/I module, as is D,,
and it has an A/I divisible submodule D, # (0), since

Al ={pu+ L.pcA,ucd}.

‘We claim that A/I is also a principal ideal domain. Let K be an
ideal in A/I, then its pre-image K, is an ideal in A containing I.
Now K,N A4, is an ideal in A, hence K, N 4, = q4, for some g¢
(K, N 4, since we are assuming A, is a principal ideal domain. Let
k+ IcK, where k¢ K,. Thereisac A,and uc A'such that k+ I=
aw + I. Hence auc K, and a € K, since u is a unit. Hence a ¢ K, N A4,
and a = cq for some ce A,. Thus (k + I) = (cu + I)(g + I) and hence
every ideal in A/I is principal. Of course A/l is an integral domain
since it has a nontrivial divisible module D(4,, A(I)). By the theory
of modules over principal ideal domains, there exists a largest A/l
divisible submodule D of D,. Furthermore D = M,@® M where M,
is the torsion submodule of D and M is torsion free and divisible
(actually it can be shown that M, = D,, though we do not need this
fact). We claim that M = (0). Let T be the continuous linear
operator on B defined by Tx = y(p,)x, where p, is as described in
(2). It is clear that every element of A/I is of the form

(Do = M)+I) + - (00 — M) + D(u + 1),

where N, eC,uc A™'. Hence the largest T divisible subspace of D,
is D. Also, all vectors in M, are torsion vectors for 7. A. M.
Sineclair has proved that if a continuous linear operator on a Banach
space has a nontrivial divisible subspace, then it also has a non-
trivial torsion free divisible subspace [5, Theorem 3.3]. Hence
M = (0). Since M < D,, we also have that M? = (0). Thus, as we
noted before in Corollary 2.3, it is trivial that M is solvable and
hence o-injective over A/I. This completes the second case.

Note that if #: A — A/I canonical and B: A/I — M is a o-derivation,
then Box is also a o-derivation from A into M. We now apply the
above to the problem of constructing a discontinuous funectional
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caleculus. We will return to the notation of the Introduction and
consider a fixed commutative Banach algebra B with unit and b a
fixed element of B. As before < is the algebra of germs of functions
analytic in a neighborhood of a(b).

DEFINITION 2.7. As before, if o is a clopen subset of o(b) we
let ¢(0) be the germ in ¢ which is one on ¢ and zero elsewhere.
We let E(o) = 6(e(0)) where 6 is the usual functional calculus. If 7
is a closed subset of g(b) we define

Sz)= N E@WB.
o clopen, d27
So S(z) is a closed ideal, not necessarily complemented. It is possible
that S(z) = (0) for 7 = @. We shall be especially interested in the
case when 7 is a connected component of ¢(b). It is easily shown

that if o, are clopen subsets of ¢(b) with o,,, 0, and N30, = 7,
then

S(r) = éE‘(G%)B.

LEMMA 2.8. Let B be a commutative Banach algebra with unit
and be B. Let & be the algebra of germs of functions analytic in
a mneighborhood of a(b). Let T be a connected component of a(b) such
that D(b, S(z)) # (0). Then there exists a discontinuous o-derivation
B from & into D(b, S(z)) which vanishes on the polynomials.

Proof. Here B is an ¢’ module under fx = 6(f)x, fe, x€B.
Let V be an open set in C containing ¢(b). Let H(V) denote the
Frechet space of functions analytic on V. Then there is a map
iy HV)— 2, and ¢ is the direct limit of such H(V). A linear
funetion g will be discontinuous on ¢ if and only if Boi, is discon-
tinuous for some V. Let I = {f:f = 0 on some neighborhood of z}.
Then I is a prime ideal in 7, since if f vanishes on some neighborhood
of 7, it vanishes on some connected neighborhood of z. Let A4, =
C[z], the polynomials in 7. It is clear that

Pl ={pu +T.pecA,uec}.

Note that S(z) is annihilated by I, so S(z) & A(I). But if xe Band
0(f)x =0, all fel, pick o, clopen subsets of o(b) decreasing to 7 i.e.,
T = y=.0,. Then 0 = f(e(c;))x = E(oi)x = 1 — E(0,))x. Thus
E(o,)x = z, for all » and 2 € S(z). Hence S(t) = A(I) and D(A4,, A(I))=
D(b, A(I)) = D(, S(z)) = (0). Let o,(b) = {¢: (b — ) is a zero divisor}.
Even if o,(b) == 6 it is clear that A, = C[x] is a principal ideal domain
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whose primes are of the form (z — ). Invoking Corollary 2.6 we
find that there is a o-injective <7/I module M in D(b, S(7)) and M = (0).
Let n: & — &7/1 be canonical. Let f e H(C) which is transcendental
over C[xz] (for example f(z) = ¢’ will do). Let A, be the algebra
generated by f and C[x]. Define 8, on 7(A,) S /I so that B,(x(f)) =
y # 0,y e M, B(xCl[z]) = (0), i.e.,

By + DS + +oc + 0"+ I) = 2,0y + p:ONO) + v)* — 0(f)]
+ o0 4+ 2 OO + ) — 0] .

By the same arguments as for the transcendental extension in
Proposition 2.2, it is easily seen that g, is well-defined and a o-
derivation on 7m(A4,) into M. Extend B, to B, a o-derivation on all of
2|1 and let B8 = B,om. Then B is a o-derivation which vanishes on
the polynomials. Since C[x] = H(C), it is clear that i;o8 is discon-
tinuous from H(C) to B. Hence, g is discontinuous from < to B.

We finally obtain

THEOREM 2.9. Let B be a commutative Banach algebra with unit
and beB. Let t be a connected component of o(b) such that
D, S(z)) # (0). Then there is a discontinuous functional calculus
0’ for b with B(<”) < D(, S(t)), where B =6 — 6.

Proof. Let 6 be the usual functional calculus. Let @ be the
o-derivation in Lemma 2.8. Then 6" = 6§ + B satisfies the conclusions

of the theorem.

We already know that if a discontinuous ¢’ exists then necessarily
D(®, B) # (0) by Lemma 1.3. What we need to know now is when
does D(b, B) = (0) imply D(b, S(z)) # (0) for some connected component
7 of o(b). We will show this follows when o(b) has only countably
(or finitely) many connected components. Observe that if K is a
compact set in C with at most countably many components {z,} then
at least one 7, is isolated i.e., 7, is clopen in K. The proof of this
fact is essentially the same as for a countable compact set in C.
If the result is false choose o, clopen in K such that o, 27, and
¢: < K has an infinite number of components. Let x, €0} (by o we
mean the clopen complement in K). Ghoose o, clopen in K such that
0,27, and o;No0; & K has an infinite number of components. Let
x,€05,N 0;. Continue the process, obtaining o, clopen in K with
0,27, 0.N -+ N0 < K having an infinite number of components
and z,€0;N -+ Nof. By compactness of K a subsequence x,, — &
in some 7y. But if k= N, n, = N and x,,¢0y 27y, which is a
contradiction. Thus, as in the case of a countable compact set in
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C we may form a decreasing ordinal sequence by removing isolated
components. Specifically, let K, = K. If K, has been defined, it has
at least one isolated component (which must be some 7,), so let
Ks, = K; ~7,. If ais a limit ordinal, let K, = Ms<. Ks. Since {z,}
is countable, and each K, is a union of the 7,’s, there must exist
a countable ordinal v such that K, is first @. We next note that
if a is a limit ordinal and K = o(b), then

S(K,) = [1 S(Kp) -

We may suppose K; + @, 8 < a, so the finite intersection property
implies K, # @. If o isclopen in K and ¢ 2 K;, some B, then 0 2 K,
and so the ideal on the left is always contained in the ideal on the
right. If ¢ is clopen in K and ¢ 2 K,, then o°N K; #+ @ for all g,
again by the finite intersection property. Hence ¢°N K; = @ for
some B so K; & o and this shows containment in the other direction.
We are now ready to prove the following.

PrOPOSITION 2.10. Let B be a commutative Banach algebra with
unit and be B. If o(b) has countably (or finitely) many connected
components and D(b, B) = (0), then there is a connected component
7 of a(b) such that D(b, S(7)) = (0).

Proof. Suppose the result fails i.e., D(b, S(7)) = (0) for all con-
nected components 7 of o(b). Clearly D(b, S)=D(b, S(K,)) since K,=a(b).
If we have shown that D(b, B) = D(b, S(K;)) for all ordinals g less
than some limit ordinal @ then D(b, B) & S(K;) all § < @. So

D®, B) < ,Q, S(K;) = S(K,) .

Hence D(b, B) = D(b, S(K,)) also. Suppose a is an ordinal with a
predecessor i.e., @ = 8 + 1. Let (b, B) = D(b, S(K;)). Now K;=K,U7
for some component 7 of g(b), and 7 is isolated as a component of Kj.
It follows that there is ¢ clopen in g(b) such that z S ¢ and K, < ¢°
(where o° = g(b) ~ 0). Note that E(0)S(K;) = S(r) and E(c°)S(K;) =
S(K,). Now E(o)D(b, B) is b divisible and contained in S(z). Hence
E(0)D(b, B) = (0), since we are assuming D(b, S(z)) = (0). Thus
E(0o°)D(, B) = Db, B) = D, S(K,)), =8+ 1. Hence D, B) =
D(b, S(K,)) for all ordinals a and since S(K;) = {0} we must have
D(b, B) = (0) which is a contradiction. Hence the result holds.

Finally, combining Theorem 1.4, Proposition 2.10, and Theorem
2.9 we obtain the following necessary and sufficient conditions if o(b)
has at most countably many components.

THEOREM 2.11. Let B be a commutative Banach algebra with
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unit and be B. Suppose a(b) has countably (or finitely) many con-
nected components. The following are equivalent:
(1) There exists a discontinuous functional calculus 0’ for b.
(2) Db, B) £ (0).
(8) D(b, S(t)) #= (0) for T some connected component of o(b).

3. It might be hoped that the torsion free requirement in
Proposition 2.2 could be dropped, with o-injectivity of M still holding.
Unfortunately, this is not the case. We shall show that with some
restrictions on A, it will be necessary for M to be torsion free if
it is o-injective.

DEFINITION 3.1. Let A be a commutative algebra over C with
unit which is a principal ideal domain. We say that A is nondegen-
erate provided:

(1) A is not a field,

(2) There is some fixed element p in A such that the set of
all primes in A is contained in {» — M A eC}. We will let 4, denote
the subalgebra generated by » and C i.e.. A, = Alg[C, p].

(38) There exists a unit # in A such that u is transcendental

over A,i.e., P(x)ec AJfx] and P(u) = 0 implies P(x) = 0.
We have several observations. Note that A, is simply all poly-
nomials in p with complex coeflicients and that 4, = C[z] under
p —x, since A is not a field. Let A, = Alg[A4,, w]. It is clear that
(8) implies 4, = Aj[z], all polynomials with coefficients in A,, under
u — 2. Note that up is also transcendental over A4,, and we let 4, =
Alg [A,, up] £ A,. Finally note we can replace » by (p — \,) for )\,
some fixed scalar and 4, remains unchanged. Hence (3) will still hold.
We shall do this when it is convenient.

LeMMA 3.2. Let A be a nondegenerate principal ideal domain
as above. Let u,», A, A,, and A, be as above. Then if Qx) =
a, +ax + -+ + a,xa"€ Afx] and Qu~'p) =0, p divides a, in A.

Proof. We have (a, + au™p + -+ + a,(u™p)") = 0. Note
(up(u=p) — p*) = 0 also. Since both (a, + a,x + - -+ + a,2*) and (upx-p*)
are in AJx] upon passing to the quotient field of A, we see that
there is ¢ = 0 in A, and R(x) € A,[x] such that

(*) a(a, + a,x + +-+ + a,x") = (upa-p*)R(x) .

Clearly A4, is a principal ideal domain since it is isomorphic to
C[x]. Since up is transcendental over A,, it follows that A4, = A[x]
under up — x. Thus A, is certainly a unique factorization domain.
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Furthermore the units in A, = AJfz] will simply be equal to the
zero degree polynomials intersected with the units in A,, Now
although certain (p — \) may be units in A4, it must be the case that
A;'=C~ {0}. Thus A;'=C ~ {0}. Suppose each side of (*) is
factored into irreducibles in A [x], which is also a unique factorization
domain. The coefficients up and p* have no common factors in A,
since 4, = AJx] with up — 2 and p*— p* + 0-2. Hence (upx-p*) is
irreducible in A,Jx]. Thus (upx-p*) divides either a or (a, + ax +
cee +a,x™) in AJx]. But (upx-p®)}a clearly, hence there is b, + bx +
eee +b,_,2"" in A,[x] such that (upz-p®)(b, + dbx + - + b,_x"") =
(ap+ax + +- + a,x2*). Thus a, = upb, — »°b, = p(ub, — pb,) and so
pla, in A. We emphasize that p need not divide a, in A,.

We obtain the following proposition which shows for example
that if A = &7/I as in Lemma 2.8, a o-injective, divisible module M
over <7/I is necessarily torsion free.

PROPOSITION 3.3. Let A be a commutative algebra over C with
unit which is a principal ideal domain. Let M be any commutative
bi-module which is o-injective over A and A divisible. If A 1is
nondegenerate then M is torsion free.

Proof. We suppose the result fails for some M. Then there is
m =% 0 in M and ), €C with (p — r)m = 0. As we noted before we
may assume without loss of generality that pm = 0, since we may
replace »p with (p — \,) in Definition 3.1. We define a o-derivation
B on A, = Alg[A,, up] into M by B(4,) = (0). We can extend g to
A, = Alg[4,, v 'p] as follows:

Bla, + a(u™'p) + -+ + a,(u'P)") = am ,

for ay + ax + +-+ + a,x" € Afx]. This is well-defined since if
a, +a,(u'p) + - +a,(up)*=0,p|a,

by Lemma 8.2 and so a,m = 0. It is routine to check that this is
a o-derivation on A, once one notes that m? = 0. This follows since
m = pm, some m, € M and so m* = pmm = m,pm = 0. Also we have
Bw™p) = m =+ 0. Assuming M is o-injective, extend B to a o-
derivation on all of 4. Observe

(1) 0=p8Q1) =pBwmu™) =usw™) +u'Bu) + Sw)Bu™).

(2) 0= pBup) =uB() + pBu) + BP)BuU) = pB(w).

(3) m=pu"p) =u"BD + pBu™) + BPBU™) = pBu™).
Multiply equation (1) by pu to obtain

(4) 0=upBu™) + pBw) + pBwIuBU™) = w'pBu™),
since pB(u) = 0 by (2). But pBu™) = m by (3) so
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0=um.

This is a contradiction since # is a unit and m # 0. Hence the result
follows.

Finally, if 7,,¢=1,2, ---, n are distinet connected components
of a(b) and if D(b, S(z;)) #= 0 then we can construct nonzero g-deriva-
tions B; from ¢ into D(b, S(z,)) vanishing on the polynomials. Hence
0 =6+ B, + --- + B, is a functional calculus for b since 83,8, =0,
1 # j. It is necessarily discontinuous since 8 == §. The conjecture
arises, at least in the case o(b) has countably many components,
whether all funectional calculi for b are of this form. Certainly if
o(b) has only finitely many components c,, 7, -+, 7,, Which are of
course clopen, then letting g, = E(z,)(0’ — 0), each i, we see this is
the case. Note (6’ — 0)(e(z,)) = 0, each 7, by Lemma 1.3, so 8,(f) =
@ — 6)e(t)f), f e . Unfortunately if o(b) has countably (but not
finitely) many components this conjecture may fail. We shall outline
the construction of a counterexample as follows. Let

U(b) ={2™mn=123 ---}U {0}7 ap(b) =0,

and Db, S({27"})) = (0) for » =1,2,3 ---. It is easy to construct
such a b by taking B to be a suitable product algebra. For example,
let f be a function in the radical algebra L'[0,1] with truncated
convolution. If f does not vanish a.e. in any neighborhood of
0,0(f) = {0} and o,(f) = @. Also f*L'[0,1] is dense in L'[0, 1] and
so there is a dense subspace D in L'[0,1] such that fD = D (see
[4, Lemma 3.1] for one proof). Let V be L'[0, 1] with a unit adjoined
and let B be the [* product of the V’s, i.e., B = {(v,)2: v;€ V and
sup [|v;]| < oo}

Let b = (b,) where b,=f,b,=( —2™),n=1,2,3---. Then
ob)={2™n=1,2,3---}U{0} and 0,0) = @. A bit more work also
shows that D(@®, S({2"}) = (0), » =1, 2,3 ---, and that there are
elements d € D(b, B) such that E({2™"}))d #0,n=1,2,3.-.. Let U,=C.
Let

Un = B(Z‘l, 2—(n+2)) U B(2'2, 2—(n+2)) U---U B(Z—n’ 2—('n+2))
U B0, 2~+0 4 2=ty = gy =1 2 3 ..,

where B(:, ) = {ze€C: |z — | < ¢€}. This looks complicated but we
are simply choosing open sets whose closures decrease to o(b). Hence
¢ is the direct limit of {H(U,)}, and we may actually regard H(U,)
as contained in «*. We seek to construct a o-derivation 8 on H(U,)
into D(b, B) such that B(C[z]) = (0) and E({2™"})B(e*) = 0 for all n.
If B can be extended to all of ¢ then this will give our counter-
example as follows. Suppose ¢’ =6 +'B is of the form + B, + --- + By
where B, is a o-derivation into D, S({27})),%=1,2, ---, N. Then
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E{2="+) (0" — 6)(e*) = 0, but also
B2~ )@ — 6)(e) = (2 ")) =0,
a contradiction. Now we can define B on Alg [C[x], ¢*] by

B®Ds + Die® + <+ + e,e™) = p(b)d + py(b)((e* + d)* — &)
+ oee + Du(D)((e7 + d)* — ™),

where d € D(b, B) and E({2™"})d + 0, all n. Since e® is transcendental
over C[z] it is elementary that this is a o-derivation. We must first
extend it to H(U,). Then we must show that if 8 has been defined
on H(U,) it can be extended to H(U,,,). Since & = Uz, H(U,) we
will then be done. Note that U, is connected, and that H(U,,,) =
H(BE2™, 2N @ -« @ H(BQ v, 27 t9)) @ H(B(0, 2~ ™+ 4. g=tnta)y,
Also note that H(B2™F, 2= ) D H(B2™, 2~ **))in 2,3 =1,2,+-, n,
and

H(B(z—(n—{—l), 2—(n+3))) @ H(B(O, 2-—(’1&+2) + 2—(%+4)));H(B(O’ 2—(n+1) + 2—(n+3))) .

Hence the reader will perceive that we need the following two lemmas.

LEMMA 3.4. Let U be open connected in C with U N o(b) clopen
in o(b). Let A be a subalgebra of H(U) containing the unit X, of
H(U). Then any o-derivation B from A into D(b, S(U N (b)) extends
to a o-derivation on all of H(U) into D(b, S(U N a(b))).

LEMMA 3.5. Let U be open connected in C. Let V be open con-
tained in U with two open connected components V, and V,. Suppose
Una®), V,Nnab), and V,N o) are clopern in o(b) with

Unao® =[V.nae®]U[V,Na®)].

Then if B is a o-derivation from H(U) into Db, S(U N a(d))), B extends
to a o-derivation on H(V) = H(V, @ H(V,) with B(H(V,)) contained
in Db, S(V,Nna®),i=1,2.

Once the above lemmas are proved, the existence of our coun-
terexample will be established by induction.

Proof (Lemma 3.4). This is essentially a direct application of
Proposition 2.2. Let M = (b, S(UN o). Clearly M is an H(U)
bi-module and H(U) is an integral domain. Every element fe H(U)
can be factored as f = pg, where p is a polynomial and g has no
zeros in UNa(b). Hence 6(g) is bijective on M, and since 0,(b) = @,
M is torsion free. This also shows that M is H(U) divisible. The
only thing left to show is that M is solvable. If neC ~ {0}, then
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N+mMZMand W+ m)*M < M for me M. Thus (M + m) acts
bijectively on M. If m,e M, a,e€ H(U) then there exists r crad (B)
such that

my, + r + (m, + 6(a))r* + -+- + (m, + 0(a,)r" + 0,

by [3, Lemma 3.2.8]. But then there is 7 erad (B) such that » =
1 —7r)(—m,) e M. Thus M is solvable and the result follows by
Proposition 2.2.

Proof (of Lemma 3.5). Let o, = V,N o(b) and let o, =V, N a(b).
Let A be the algebra in & generated by {H(U), e(a,), e(d,)}. So

A = {fe(o,) + ge(0,): f, g€ HU)} ,
and A contains H(U) in <. Extend g to A as follows:
B(fe(o,) + ge(o,) = E(0)B(f) + E(0,)B(g) .

If fe(o,) + ge(o,) =0 in & then f vanishes on V, and hence on U
also, g vanishes on V, and hence on U also, so 8(f) = B(g) = 0. Thus
B is well-defined and agrees with 8 on H(U). Let

A, ={fe(o): feHU)}, 1=12.

Then A= A, D A,. Let B, = B|A;, ¢ =1,2. Then B, is a o-derivation
from the subalgebra A, of H(V,) into D, S(V;Nna®))),1=1,2.
Since e(o;) e A; and V,; is connected, B, extends to all of H(V,) by
Lemma 3.4, ¢ =1,2. Since H(U) = H(V,) P H(V, the lemma is
proved.

Thus, the o-derivation on Alg [C[x], ¢°] extends to H(U,) by Lemma
3.4. If it has been extended to H(U,) we note that B(27¢, 27*®) C
B2, 27y 4 =1,2,+++, %, and

B(z—(n-l-l)’ 2——(n+3)) U B(O’ 2—(n+2) _|_ 2—(7L+4)) ; B(O’ 2—(n+l) + 2—(%+3)) .

Thus Lemmas 3.4 and 3.5 respectively show that 8 extends to H(U,,,).
Thus B extends to all of £~ and we obtain a counterexample with
o(b) a convergent sequence.
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