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ALGEBRA HOMOMORPHISMS AND THE
FUNCTIONAL CALCULUS

MARC THOMAS

Let b be a fixed element of a commutative Banach algebra
with unit. Suppose σ(b) has at most countably many connected
components. We give necessary and sufficient conditions for
b to possess a discontinuous functional calculus.

Throughout, let B be a commutative Banach algebra with unit
1 and let rad (B) denote the radical of B. Let b be a fixed element
of B. Let έ? denote the LF space of germs of functions analytic
in a neighborhood of σ(6). By a functional calculus for b we mean
an algebra homomorphism θr from έ? to B such that θ\z) = b and
θ\l) = 1. We do not require θr to be continuous. It is well-known
that if θ' is continuous, then it is equal to θ, the usual functional
calculus obtained by integration around contours i.e.,

θ{f) = -±τ \ f(t)(f - ]dt

for f eέ?, Γ a contour about σ(b) [1, 1.4.8, Theorem 3]. In this paper
we investigate the conditions under which a functional calculus & is
necessarily continuous, i.e., when θ is the unique functional calculus.

In the first section we work with sufficient conditions. If S is
any closed subspace of B such that bS Q S, we let D(b, S) denote
the largest algebraic subspace of S satisfying (6 — X)D(b, S) = D(b, S)f

all λeC. We show that if θ' is a functional calculus for b and if
we let β = θf - θ, then β(έ?) £ D(b, rad (£)). Hence if D(b, B) = (0),
then θ = θ'. We show that this extends H. G. Dales earlier result
that if rad (B) is finite dimensional, θ = θ' [2, Theorem 1, application
(a)].

In section two we seek converse results to the above. In general,
if σ is a clopen subset of σ(b), we let E(σ) denote the projection
θ(e(σ)) where e(σ) is one on σ and zero elsewhere. If τ is a connected
component of σ(b) we let

S(τ)= Π E{σ)B,
a c lopen, σΞ>r

which is a closed ideal. We first show that if D(δ, S(τ)) & (0) for
some connected component τ of σ(b)9 then there exists a discontinuous
functional calculus θ' for b. If we let β = 0' — (9 as before we may
choose /S(^) £ D(δ, S(r)). We next show that if cr(6) has only countably
(or finitely) many components, then D(b, B)^έ(0) implies
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for some connected component τ of σ(b). Hence when σ(b) has at
most countably many connected components we can give necessary
and sufficient conditions for a discontinuous functional calculus θ' to
exist (Theorem 2.11). We note in passing that the techniques used
in this section are also useful in general for constructing new algebra
homomorphisms when one is given.

In the third and final section we give some counterexamples to
related conjectures. We show that the torsion free condition in the
technical Proposition 2.2 unfortunately cannot be dropped. Finally,
it might be hoped that every functional calculus θ — θ + β1 + + βn

where &(£?) £ D(b, S(r4))i = 1, 2, •••,%, for some distinct connected
components τ t of σ(b). We show that this need not hold, even when
σ(b) is a convergent sequence.

1* We continue to use the notation of the Introduction, con-
sidering b to be some fixed element of the commutative Banach algebra
B. We give the formal definition of D(b, S) and make some observa-
tions.

DEFINITION 1.1. Let S be any closed subspace of B satisfying
bS Si S. Let D(b, S) be the largest algebraic subspace of S such that
(b-~X)D(b, S) = D(b, S), all XeC. This exists since we may take D(bf S)
to be the span of all algebraic subspaces with the above property.
Now if we define Tx = bx for all x e B, then T is a continuous linear
operator on the Banach space B and σ(T) = σ(b) since leB. Hence
S is a closed T invariant subspace and D(b, S) is the largest T
divisible subspace in S. If p is any nonzero polynomial in C[x] then
p(T)D(b, S) = p(b)D(b, S) = D(b, S) since p factors into a product of
terms {z — λ<) for various λ<β Also note if S is a closed ideal and
ceB then cD(b, S) is contained in S, is also divisible and hence
cD(b, S) Q D(b, S). Hence D(b, S) is also an ideal, though it is never
closed unless it is trivial. Finally, we observe that S need not be
closed to form D(b, S) but we shall have no occasion to consider
nonclosed S.

LEMMA 1.2. Let B be a commutative Banach algebra with unit.
Let beB and S a closed subspace of B with bS Q S. Then D(b, S) Q
rad (5).

Proof. Let Φ be the maximal ideal space of B and let d e D(b, S).
Let φ6Φ. Then φ(b) = λ, some λeC. Hence there exists eeD(b, S)
such that d = (6 — X)e. Applying φ to both sides, we obtain φ(d) —
O φ(e) = 0. Since φ was arbitrary, this shows that derad(-B).
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Suppose θ' is a functional calculus for 6. Let β = θ' — θ. Note
that β is linear and

β(fΰ) = 0(/)£G/) + θ{g)β(f) + /3(/)/3(</) .

We shall call β the (/-derivation associated with θf. It is clear that
if p is a polynomial, /9(j?) = 0. There are more restrictions on β
however. If feέ? and λeσ(δ), then / = /(λ) + 0 — λ)g for some
g e <?. Applying β we obtain β(f) = 0 + /3((z - X)g) = (6 - λ)/9(#).
If λ e σ(ί>), then # = (//# — λ) e έ? and f — (z — X)g. Again applying
β we obtain β](f) = (6 — X)β(g). Hence we have shown that
(6 - λ)/2(^) = /S(^) for all λ e C. Thus /9(^) £ £>(δ, B) S rad (B) by
Lemma 1.2. Hence β(έ?) Q D(b, rad (£)). Now if a is a clopen subset
of σ(b) we will let e(σ) denote the germ in έ? which is one on σ and
zero elsewhere. We will let E(σ) denote the idempotent θ(e(σ)). It
is of some concern that θ'(e(σ)) is an idempotent also, and a priori
may not be equal to E(σ). W. G. Bade has pointed out to us that
since θ(e(σ)) and θ'(e(σ)) commute, β(e(σ)) = β(e(σ)f = β(e(σ))3n, all n.
Since β(e(σ)) e rad (B) this forces β(e{σ)) = 0. Thus θ(e(σ)) = ^;(e(σ)) =
E(σ). We sum up the above in the following lemma.

LEMMA 1.3. Let B be a commutative Banach algebra with unit
and let b e B. Let θ' be a functional calculus for b and β — θr — θ.
Then

(1) β is a linear function from έ? to rad (B) vanishing on
C[x].

( 2 ) β{fg) = θ(f)β(g) + θ(g)β(f) + β(f)β(g).
(3) β(#>)QD(b,τad(B)).
(4) If σ is a clopen subset o(b), then β(e(σ)) — 0.

We wish to note that H. G. Dales considers θ—θ'm [2], so (2) is
slightly changed and by considering B, (1) is proved in a different
manner [2, 2.2.3]. Now if D(b, B) = D(b, rad (B)) = (0), it follows
that β = 0 and 0 = #', and we obtain the following.

THEOREM 1.4. Let B be a commutative Banach algebra with unit
and let b e B. Let θf be a functional calculus for b. If D(b, B) = (0)
then θ' = θ.

This implies H. G. Dales result that if rad (B) is finite di-
mensional, then θr — θ [2, Theorem 1, application (a)], as follows.
If rad (B) is finite dimensional then Tx = bx as an operator on
rad (B) is algebraic. Hence there exists a nonzero polynomial p such
that p(T)x = p(b)x = 0 all x e rad (5). Then 0 = p{b)D(b, rad (JS)) =
D(b, rad (B)). Hence β = 0 and θ = 0'.
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2Φ Our first task is to obtain sufficient conditions for constructing
discontinuous functional calculi. It will be necessary to begin in a
very algebraic framework and add the analysis as we proceed.

DEFINITION 2.1. Let A be a commutative algebra with unit 1
over C. Let M be an A module which is also a commutative algebra
over C, though not necessarily with unit. We always require lm = m
for all meM. We will call M a commutative bi-module over A if
a(m{m^ = mί(am2)f for a e A, mί9 m2 e M. We will say that M is
solvable with respect to A provided

(1) di e M, at e A implies there is x e M such that

d0 + x + (α2 + d2)cc2 4- + (αw + dn)x* = 0 .

(2 ) If λ e C, λ ^ 0, then (λ + d) maps M one-to-one onto itself,
for all deM (in general (α + c£) is the linear operator on ikf given
by (a + ώ)m = am + cίm where a e A, d e M).
Finally, we call a linear function /S from i to l a er-derivation if
β{fg) = fβQg + gβ(f) + β{f)β(g), for all /, ^ e A.

PROPOSITION 2.2. Let M be a commutative bi-module over A.
Let Ax be a subalgebra of A containing 1. Suppose the following
conditions hold.

(1) M is torsion free, i.e., m e M, a e A, αm = 0 and m^O implies
α = 0.

( 2 ) ikf is A divisible, i.e., α 6 A, α ^ 0 implies aM = ikΓ.
(3) ikf is solvable with respect to A.

Then any σ-derivation βλ from A1 into ikί extends to a α-derivation
/3 from A into M.

Proof. If I Ξ (0), the conclusion is trivial. If M =£ (0) then A
is necessarily an integral domain since fg = 0 implies fgM = (0) and
so fM Ξ (0) or gikί = (0), in which case / = 0 or g = 0. By (1),
division in Λf by elements of A is unique. Let g e A~AX and suppose
g is algebraic over AL i.e., there is P(x) e Ax[x] with P(g) = 0 and
P(x) φ 0. Let F and JP^ be the respective quotient fields of A and
A1# We can regard P(x) as a polynomial in Fj[x] which is a Euclidean
ring. We can also regard g to be in F. Hence in F\x\ there is a
unique monic minimal polynomial Pλ{x) with Px{g) — 0. By clearing
the denominators of the coefficients of P^ix) we can obtain a poly-
nomial P(x) in Aj[x] of minimal degree with the following property.
If Q(x) 6 Ax[x\ and Q(g) = 0 then there exists R(x) e Ax[x] and a e A,
α ^ 0 such that aQ(x) = P(x)R(x). Let P(x) = Σ ^ α ^ . We need to
define β(g) so that β(P(g)) = 0. To motivate this consider the following
formal manipulation using the σ-derivation identity.
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/' + ±β{at)β(gi)
ΐ=l i=0 i=l

= Σ (α, + βiaJW) + Σ /Sfoto* .

By induction one easily sees that

V-tfflr)1 + + 0(0)'

= (0 + 0(0))' - g*.

Hence the above is equal to

= Σ (o« + βίflMo'-'βte) + + 0(0)') + Σ /βίoOflf*.
i <o

Replacing /3(c/) by the variable y we obtain an equation of the following
form.

do + [ Σ i(at + βidtW-^y + (c2 + d2)i/
2 + + (cn + dJi/ = 0 ,

where n ;> 1, d0, cί2, , dw e Λί, c2, c3, , cn e A.
Let α == Σ?=i i(ai + βiβί))^"1 = c + ώ f or some ceA,deM. Note

£ = Σ?=i Wig1"1 a n d hence c Φ Q, otherwise the minimality of the
degree of P(x) is contradicted. Suppose a = 0. Then c = — d, c ^ 0
and hence by (2), there exists dλeM such that d = cdι# Then d =
cdι = —ddι and d(ί + dj = 0. But (1 + dx) is a bijection on M which
implies that d — 0, so c = —d — 0 also, a contradiction. Thus c Φ 0
and c + d =̂  0. Hence c + d = c(l + dj for some ĉ  e AT, c^ = d.
Thus α = c + d acts bijectively as an operator on M. Replace the
variable y by az. Let dQ — a2m0, m0 e M, and solve the following
equation for zeM.

mo + z + (c2 + d2)z2 + (ac, + adz)zd + + (an~2cn + an-*dn)z* = 0 .

Applying α2 to the above and letting y = az we obtain

d0 + ay + (c2 + 4 ) / + + (cn + dn)yn = 0 ,

as desired. Hence we wish to define β(g) = /̂ and for ΣUo Qk%k in
ilifa?], define

= Σ (ϊ* + iS(?*))((flr + £(</))* - ^fc) + Σ β(Qk)ΰk

= Σ (?* + £(?*)) (0 + 0(0))* - Σ 9»0*,
λr=O Ar=O

and note this is an element of M by the cancellation of certain terms.
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Once this is well-defined we will have a σ-derivation extension to
Alg [g, AJ, the algebra generated by g and At as follows.

k) Σ UQ1 + /3(Σ

= Σ <7*0*(Σ (<y + £(ίy))(flr + >β(flr))J - Σ ίyffO

+ ( Σ (?* + ye(?»))(ί/ + /β(flf))* - Σ ?^r*) Σ tiQ*

+ ( Σ (g* + β{qk))(g + β(g))k - Σ wr*)

x ( Σ («y + M ί , ) ) ^ + (̂flr))5' - Σ tjgj)

= - Σ g*ίiff*+i - Σ <fctiflr*+i + Σ qktiϋk+i

+ ( Σ (?* + β{Qu))(g + β(g))") (Σ1 (f, + β(t,))(s

= Σ (t, + β(tj))(qk + β{qk))(g + β(g))k+J - Σ qkh

= Σ (ίyί* + β(tjq*))(g + β(g))k+i - Σ

= /3(Σ </»ίyfr*+i)

Hence we need only show that β is well-defined. Suppose Q(x) e
iijα;] and Q(flr) = 0. Let Q(x) = Σi=o qkx\ There is then α e A, α ̂  0
and R(x) e A,[x] such that aQ(x) = P(x)β(a;). Let R(x) = Σ"=o r.-a;3'.
Then P(a;)-B(x) = Σ αiϊ . a;^^ We have

β(g)Y+j -ΊL^r^

= Σ (atTi + aSiri) + βiaύr, + β(.ai)β(rό)){g + β(g))ι+i ,

since Σ atTjgi+i = P{g)R{g) = 0. Continuing we get

= Σ (α, + β{flt)){g + β(g)Y - Σ (r, + β(rMg + β(g)Y

Since Σ a^* — P(ϋ) = 0 we obtain

= ( Σ (α« + βiaMig'-'βig) + ••• + β(gY) + T,β(aί)gi)

β(g))s)

= 0 .

Since aQ(x) = P(x)R(x) this implies that

Σ (aqk + β(aqk))(g + /S(flr))* - Σ aqkg
k = 0 .

A;=0 fc=0

Since aQ(g) = 0 this implies

0 = Σ («?*

Σ (9* + (̂g»))(flr + β(g))k.
Λ0
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Now, a Φ 0 so a + β(a) acts bijectively on M and we obtain

0 = Σ*(qk-
k=0

since Q(g) = ΣLo ?*£* = 0. Thus /5 is well-defined and extends to
Alg [#, AJ. If fir had been transcendental over Ax, we could have
extended β by letting β(g) be arbitrary in M. Hence, an application
of Zorn's lemma completes the proof, and β can be extended to all
of A.

Note that if M2 = (0) then it is trivially solvable and any σ-
derivation β from A into M is simply an ordinary derivation i.e.,

β(fg) = fβ(g) + gβ(f) -

Hence, if M is any A module, we may make it a commutative bi-
module over A by defining mxm2 = 0, for all mlf m2 e M. We imme-
diately obtain the following corollary, previously noted by A. M.
Sinclair [6, Lemma 8.6].

COROLLARY 2.3. Let A be a commutative algebra over C with
unit. Let M be an A module (we always require Im = m, all m e M).
Let A1 be a subalgebra of A containing 1. Suppose the following
conditions hold.

(1) M is torsion free.
( 2 ) M is A divisible.

Then any derivation βx from A1 into M extends to a derivation β
from A into M.

This corollary is also proved in a particular case by H. G. Dales
[2, Lemma 5]. In this paper a discontinuous functional calculus is
constructed by first taking a semisimple algebra and tacking on a
nilpotent radical of index two which contains such an M above. Then
a discontinuous derivation is constructed into M which when added
to the usual functional calculus gives a discontinuous functional
calculus [2, Theorem 2], We will show this procedure can be gen-
eralized considerably. We will consider a fixed element 6 of a fixed
commutative Banach algebra B and look for subalgebras M of rad (B)
as in Proposition 2.2 into which we can construct discontinuous σ-
derivations β. Moreover, we need not require M to be nilpotent.
Actually, our methods will be applicable in the construction of algebra
homomorphisms φ' when one homomorphism φ is already given. It
is trivial that the difference φf — φ of two algebra homomorphisms
is a ^-derivation using φ as the module action, i.e.,
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iφ* - ΦKfg) = ψ{f){φf - ΦKo) + φioXφ' - ΦKf)
+ & - φ)(fHφ' - φ)(g) ,

assuming the algebras are commutative. We need some definitions:

DEFINITION 2.4. Let M be a commutative bi-module over a
commutative algebra A with unit. We say that M is σ-injective if
any σ-derivation βx on a subalgebra At containing 1 of A extends
to a (/-derivation on all of A. Hence the conclusion of Proposition
2.2 is that such an M is σ-injective. Of course we will want M Φ (0).
In terms of diagrams, we are considering the following:

0 > A, > A

M

DEFINITION 2.5. Let A and C be commutative algebras with
units and v an algebra homomorphism from A into C (we always
require v(l) = 1). Then C becomes a commutative bi-module over A
with operation ac Ξ= v(a)c, aeA,ceC. Let AQ be a subalgebra of A
containing 1. We say an algebraic subspace M of C is Ao divisible
provided aM — M for aeAQ, a Φ 0. Note Ao is necessarily an integral
domain if M φ. (0). Let / be an ideal in A. We define

A(I) - {e e C: Ic = (0)} .

Clearly A{I) is an ideal in C, which is invariant under the action of
A. Let A~γ denote the group of units in A. Finally, if S is any
subspace in C invariant under the action of an integral domain Ao Q. A
we let D(A09 S) denote the largest Ao divisible subspace of S. This
exists since we may take the span of all Ao divisible subspaces in S.

COROLLARY 2.6. Let A be a commutative algebra with unit over
C. Let B be a commutative Banach algebra with unit. Let v be a
unital algebra homomorphism from A into B. Hence B is a com-
mutative bi-module over A as in Definition 2.5. Suppose there exists
an ideal IQ A and a subalgebra Ao £ A, with leA0ΦC, such that

A/1 = {au + Γ.ae Ao, u e A"1} .

Then,
(1) // D(A0, A(I)) is torsion free over Ao, (a Φ 0 in AQ,me

D(AQf A{I)) and am = 0 implies m = 0), D(AQ, A(I)) is σ-injective over
A/I.

(2) // D(A0, A(I)) Φ (0), but has torsion elements, we further
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require that Ao is a principal ideal domain whose primes are of
the form p0 — λ, for various λ and fixed p0 e Ao. In this case there
exists a torsion free submodule M Q D(AQ, A(I)), M Ξ£ (0), which is
a σ-injective commutative bi-module over A/1 and M2 = (0).

Proof. Case (1). It is clear that D(A0, A(I)) is an A module as
follows. Let d e D(AOf A(I)) and p e AQ. Then pd e D(AQ, A{I)) by
definition. Let u e A~\ Then ud e A(I) and uD(AQ, A(I)) is AQ divisible,
so uD(AQ, A(I)) Q D(A0, A(I)). Since the same is true of u~ι we must
have uD(A0, A(I)) = D(A0, A{I)). Since every element a of A is of
the form pu + s for peA0,ue A'1 and s e I, this shows that
aD(A0, A(I)) Q D(A0, A{I)). Since I annihilates A(I), A(I) becomes an
A/I module by (a + I)b = ab, a e A, b e A(I). By our remark above
that (a + I) = pu + I for peA0,ue A"1 it is clear that (a + I) Φ I
implies (a + I)D(A0, A(I)) = D(A0, A(I)), i.e., D(A0, A(I)) is A/I divisible.
We are assuming M = D(AOf A(I)) is torsion free over Ao and it easily
follows that it is torsion free over A/I. Since

ί k

M2 = j Σ m ^ : mίf

is also in A{I) and is Ao divisible M2 £ l , so M is a commutative
algebra. It is clear that M is a commutative bi-module over A/I,
hence by Proposition 2.2 it suffices to show that M is solvable with
respect to A/I. We may assume M & (0) in which case it is inter-
esting to note that AQ and A/I are integral domains, so / is a prime
ideal necessarily. Let deM. Choose a e Ao ~ C and let φeΦ, the
maximal ideal space of B. Let φ(a) — λ and choose e e M so that
(α — λ)β = d. Applying φ one obtains φ(d) = 0. Since ψ was arbitrary,
d and hence M£ rad (B). Let λ e C , λ ^ 0 . Then (λ + d) is a unit
in £ and (λ + d)A(I) £ A (I), (λ + dY^A^I) £ A(I), so (λ + d) is a
bijection on A(/) and hence on M = D(A0, A{I)). Finally, let dteM,
at + Ie A/I, then there exists y e rad (2?) satisfying

4 + y + (d, + v(a2))y2 + ... +(dn + v(an))yn - 0 ,

by [3, Lemma 3.2.8]. But then d0 = (1 — r)y for r 6 rad (B). Hence
2/ = (1 — r)~ιdQ, d0 6 M. But exactly as above, any unit in B maps
A(I) bijectively onto itself, and hence maps M bijectively onto itself.
Thus y eM. Hence M Ξ D(AO, A(I)) is seen to be solvable over A/I
and hence is σ-injective over A/I.

Case (2). We suppose D(A0, A(I)) ^ (0) but has torsion elements.
In this case we cannot simply let M equal D(A0, A(I)), but must
choose something smaller. Since we are assuming Ao is a principal
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ideal domain, D(A0, A(/)) = A θ Df where Dt is the Ao submodule
of all torsion elements in D(A0, A{I)) together with zero, and Df

is some nonunique torsion free submodule of D(AQ, A(/)). We con-
sider Dt. Let deDt E£ (0) and dx e D(A0, A(I)). There is a nonzero
aeAQ with ad = 0 and d2 e D(A0, A(/)) with ad2 = c .̂ Thus dc^ =
αd2d = 0 and so D(A0, A(I)) Dt = (0). In particular Df = (0). By
continuity of multiplication we must have (Dt)

2 = (0). (X2 shall
always denote finite sums of products of two elements in X.) Now
A(I) is certainly a closed ideal, so DtζZA(I). Let ueA~\ Then
uDt £ A and w"1!?* £ A Hence wl)* £ Dt and w"1!)* £ A , thus u
is bijective on Dt. It is clear that Dt is an A/I module, as is Dt,
and it has an A/I divisible submodule Dt ^ (0), since

A/1 — {pu + I:pe Ao, u e A"1} .

We claim that A/1 is also a principal ideal domain. Let K be an
ideal in A//, then its pre-image K1 is an ideal in A containing I.
Now Kx n Ao is an ideal in Ao, hence K1f]A0 = qAQ for some q e
(Kx Π Ao) since we are assuming Ao is a principal ideal domain. Let
k + IeK, where Jc e Kt. There is a e Ao and % e A"1 such that & + I —
αu + I. Hence α^ eKx and α e ^ since u is a unit. Hence α e ^ n Λ
and a = eg for some c e Ao. Thus (& + /) = (cw + /)(? + I) and hence
every ideal in A/I is principal. Of course A/I is an integral domain
since it has a nontrivial divisible module D(A0, A(I)). By the theory
of modules over principal ideal domains, there exists a largest A/I
divisible submodule D of Dt. Furthermore D = Mt © M where Mt

is the torsion submodule of D and M is torsion free and divisible
(actually it can be shown that Mt = Dt, though we do not need this
fact). We claim that M φ (0). Let T be the continuous linear
operator on B defined by Tx = v(po)x, where p0 is as described in
(2). It is clear that every element of A/1 is of the form

where λ< e C, u e A"1. Hence the largest T divisible subspace of Dt

is 2λ Also, all vectors in Mt are torsion vectors for T. A. M.
Sinclair has proved that if a continuous linear operator on a Banach
space has a nontrivial divisible subspace, then it also has a non-
trivial torsion free divisible subspace [5, Theorem 3.3]. Hence
M Ξ£ (0). Since M £ Dt, we also have that M2 = (0). Thus, as we
noted before in Corollary 2.3, it is trivial that M is solvable and
hence σ-injective over A/1. This completes the second case.

Note that if π: A —> A/I canonical and β: A/I —> M is a σ-derivation,
then β o % is also a σ-derivation from A into Λf. We now apply the
above to the problem of constructing a discontinuous functional
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calculus. We will return to the notation of the Introduction and
consider a fixed commutative Banach algebra B with unit and b a
fixed element of B. As before & is the algebra of germs of functions
analytic in a neighborhood of σ(b).

DEFINITION 2.7. As before, if a is a clopen subset of σ(b) we
let e{σ) be the germ in έ? which is one on σ and zero elsewhere.
We let E(σ) = θ(e(σ)) where θ is the usual functional calculus. If τ
is a closed subset of σ(b) we define

S(τ) = Π E(σ)B.
a clopen, σ3r

So S(τ) is a closed ideal, not necessarily complemented. It is possible
that S(τ) = (0) for τ Φ 0. We shall be especially interested in the
case when τ is a connected component of o(b). It is easily shown
that if σn are clopen subsets of σ(b) with σn+1 c σn and Π?=i σn = τ>
then

S(τ) = Π E{σn)B .

LEMMA 2.8. Let B be a commutative Banach algebra with unit
and beB. Let & be the algebra of germs of functions analytic in
a neighborhood of σ(b). Let τ be a connected component of σ(b) such
that D(b, S(τ)) ^ (0), Then there exists a discontinuous σ-derivation
β from έ? into D(b, S(τ)) which vanishes on the polynomials.

Proof. Here B is an έ? module under fx Ξ θ(f)x, f e^,xeB.
Let V be an open set in C containing σ(b). Let H(V) denote the
Frechet space of functions analytic on V. Then there is a map
iv: H(V)-» έ?, and έ? is the direct limit of such H(V). A linear
function β will be discontinuous on & if and only if βo%v is discon-
tinuous for some V. Let I = {/: / = 0 on some neighborhood of τ).
Then / is a prime ideal in ^, since if / vanishes on some neighborhood
of τ, it vanishes on some connected neighborhood of τ. Let Ao —
C[x\, the polynomials in &. It is clear that

&II = {pu + Γ.pe Ao, u e t?-1} .

Note that S(τ) is annihilated by /, so S(τ) Q A(I). But if # el? and
θ(f)x — 0, all / 6 /, pick σn clopen subsets of σ(b) decreasing to τ i.e.,
τ = Πn=iσn. Then 0 - θ{e{σc

n))x = E{σc

n)x = (1 - E(σn))x. Thus
E(σn)x = a?, for all n and α? 6 S(τ). Hence S(r) = A(/) and D(A0, A{I)) =
D(b, A(I)) = D(6, S(τ)) ̂  (0). Let σp(b) = {̂ : (6 - μ) is a zero divisor}.
Even if σp(b) Φ θ it is clear that Ao = C[x] is a principal ideal domain
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whose primes are of the form (z — λ). Invoking Corollary 2.6 we
find that there is a σ-injective &/I module M in D(b, S(τ)) and M Ξ£ (0).
Let π: έ? -> £?// be canonical. Let / e H{C) which is transcendental
over C[x] (for example f(z) = e* will do). Let Ax be the algebra
generated by / and C[x]. Define β1 on π(Λ) S έ?ll so that ft(ττ(/)) =
y Φθ,yeM, βx(πC[x\) = (0), i.e.,

ft(Po + Pi/ + + P / + *) Ξ Pi(&)y + PtΦWtf) + I/)2

By the same arguments as for the transcendental extension in
Proposition 2.2, it is easily seen that & is well-defined and a σ-
derivation on π(At) into M. Extend ft to β2 a (7-derivation on all of
έ?\I and let β = β2°π. Then /S is a (/-derivation which vanishes on
the polynomials. Since C[x] = Jff(C), it is clear that ic°β is discon-
tinuous from H{C) to B. Hence, β is discontinuous from έ? to β.

We finally obtain

THEOREM 2.9. Let B be a commutative Banach algebra with unit
and beB. Let τ be a connected component of σ (6) such that
D(b, S(τ)) Φ (0). Then there is a discontinuous functional calculus
θ' for b with β(έ?) £ Dφ, S(τ)), where β = θ' - θ.

Proof. Let θ be the usual functional calculus. Let β be the
^•-derivation in Lemma 2.8. Then θr = θ + β satisfies the conclusions
of the theorem.

We already know that if a discontinuous θ' exists then necessarily
D(b, B) & (0) by Lemma 1.3. What we need to know now is when
does D(b, B) Φ (0) imply D(b, S(τ)) ̂  (0) for some connected component
τ of (7(6). We will show this follows when σ(b) has only countably
(or finitely) many connected components. Observe that if K is a
compact set in C with at most countably many components {τn} then
at least one τn is isolated i.e., τ% is clopen in K. The proof of this
fact is essentially the same as for a countable compact set in C.
If the result is false choose σx clopen in K such that σx 2 τx and
σ\ £ K has an infinite number of components. Let xx e σ{ (by σ\ we
mean the clopen complement in K). Ghoose σ2 clopen in K such that
σ2 2 τ2 and o\ Π o\ £ K has an infinite number of components. Let
x2 6 σc

2 Π o{. Continue the process, obtaining σn clopen in K with
on 2 τn9 σ°n Π Π o\ Q K having an infinite number of components
and xn 6 σ% Π Π o\ By compactness of K a subsequence xnje —> x
in some τN. But if k^ N, nk^ N and xnk ίσNΏ, τN, which is a
contradiction. Thus, as in the case of a countable compact set in



ALGEBRA HOMOMORPHISMS AND THE FUNCTIONAL CALCULUS 263

C we may form a decreasing ordinal sequence by removing isolated
components. Specifically, let Ko = K. If Kβ has been defined, it has
at least one isolated component (which must be some τ j , so let
Kβ+1 — Kβ ~ τn. If a is a limit ordinal, let Ka — C\β<a Kβ. Since {τn}
is countable, and each Kβ is a union of the τ/s, there must exist
a countable ordinal 7 such that Kr is first 0 . We next note that
if a is a limit ordinal and K — σ(b), then

S(Kσ) = Π

We may suppose Kβ Φ 0 , /3 < a, so the finite intersection property
implies Ka Φ 0 . If <J is clopen in K and σ 2 iζs, some /3, then σ^2Ka

and so the ideal on the left is always contained in the ideal on the
right. If σ is clopen in K and σ 2 Ka, then σc Γi Kβ Φ 0 for all /S,
again by the finite intersection property. Hence σc Γl Kβ = 0 for
some β so Kβ Q σ and this shows containment in the other direction.
We are now ready to prove the following.

PROPOSITION 2.10. Let B be a commutative Banach algebra with
unit and beB. If σ(b) has countably (or finitely) many connected
components and D(b, B) =£ (0), then there is a connected component
τ of σ(b) such that D(b, S(τ)) =έ (0).

Proof. Suppose the result fails i.e., D(b, S(τ)) = (0) for all con-
nected components τ of σ(b). Clearly D(b, S) = D(b, S(K0)) since Ko=σ(b).
If we have shown that D(b, B) = D(b, S(Kβ)) for all ordinals β less
than some limit ordinal a then D(b, B) £ S(Kβ) all β < a. So

D(6, JB)

Hence D(b, B) = D(b, S(Ka)) also. Suppose a is an ordinal with a
predecessor i.e., a = β + 1. Let (6, 5) = D(6, S ^ ) ) . Now Kβ = Ka\Jτ
for some component τ of <7(6), and τ is isolated as a component of Kβ.
It follows that there is σ clopen in σ(b) such that τ £ a and ίΓα £ σc

(where σc = σ{b) - σ). Note that E(σ)S{Kβ) = S(τ) and E(σe)S(Kβ) =
S(Ka). Now E(σ)D(b, B) is 6 divisible and contained in S(τ). Hence
E(σ)D(b, B) Ξ (0), since we are assuming D(b, S(τ)) Ξ (0). Thus
E(σc)D(b, B) = Z?(&, 5) = Z>(δ, S(ίΓβ)), α = 8̂ + 1. Hence i)(δ, B) =
D(6, JS(JSLΛ)) for all ordinals α and since S(Kγ) = {0} we must have
D(b, B) Ξ (0) which is a contradiction. Hence the result holds.

Finally, combining Theorem 1.4, Proposition 2.10, and Theorem
2.9 we obtain the following necessary and sufficient conditions if σ(b)
has at most countably many components.

THEOREM 2.11. Let B be a commutative Banach algebra with
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unit and b e B. Suppose σ(b) has countably (or finitely) many con-
nected components. The following are equivalent:

(1) There exists a discontinuous functional calculus θf for b.
(2) D(b,B)m(0).
(3) D(b, S(τ)) φ. (0) for τ some connected component of σ(b).

3* It might be hoped that the torsion free requirement in
Proposition 2.2 could be dropped, with σ-injectivity of M still holding.
Unfortunately, this is not the case. We shall show that with some
restrictions on A, it will be necessary for M to be torsion free if
it is σ-injective.

DEFINITION 3.1. Let A be a commutative algebra over C with
unit which is a principal ideal domain. We say that A is nondegen-
erate provided:

(1) A is not a field,
(2) There is some fixed element p in A such that the set of

all primes in A is contained in {p — λ: λ e C). We will let Ao denote
the subalgebra generated by p and C i.e.. Ao = Alg[C, p\.

(3) There exists a unit u in A such that u is transcendental
over Ao i.e., P(x) e A0[x] and P(u) = 0 implies P(x) = 0.
We have several observations. Note that Ao is simply all poly-
nomials in p with complex coefficients and that Ao = C[x] under
p —» x, since A is not a field. Let A2 = Alg [AQ, u\. It is clear that
(3) implies A2 = A0[ce], all polynomials with coefficients in AQ9 under
u-*x. Note that up is also transcendental over Ao, and we let Aγ =
Alg [Ao, up] Q A2. Finally note we can replace p by (p — λ0) for λ0

some fixed scalar and Ao remains unchanged. Hence (3) will still hold.
We shall do this when it is convenient.

LEMMA 3.2. Let A be a nondegenerate principal ideal domain
as above. Let u, p, Ao, A19 and A2 be as above. Then if Q(x) =
α0 + aγx + + anx

n e A^x] and Q{Wιp) = 0, p divides aγ in A.

Proof. W e h a v e (α 0 + a^u^p + ••• + an(u~1p)n) = 0. N o t e
(upiu^p) — p2) = 0 also. Since both (α0 + axx + + anx

n) and (upx-p2)
are in A^x\ upon passing to the quotient field of A1 we see that
there is a Φ 0 in At and R(x) e A\x\ such that

( * ) a(aQ + aλx + + anx
n) = (upx-p2)R(x) .

Clearly Ao is a principal ideal domain since it is isomorphic to
C[x]. Since up is transcendental over Ao, it follows that A1 = AQ[x]
under î ί> —> x. Thus Ax is certainly a unique factorization domain.
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Furthermore the units in At = AQ[x] will simply be equal to the
zero degree polynomials intersected with the units in AQ. Now
although certain (p — λ) may be units in A, it must be the case that
Ao1 = C ~ {0}. Thus Ai1 = C - {0}. Suppose each side of ( * ) is
factored into irreducibles in A^x], which is also a unique factorization
domain. The coefficients up and p2 have no common factors in At

since Ax = AQ[x] with up->x and p2 -+p2 + 0-x. Hence (upx-p2) is
irreducible in AJ[x]. Thus (upx-p2) divides either a or (α0 + axx +
• + anx

n) in Aj[x\. But (upx-p2)\ a clearly, hence there is b0 + btx +
• + ft^cc*""1 in Ax[x\ such that (upx-p2)(b0 + bjX + + fe^a?*""1) —
(flo + djX + + αΛa?*). Thus a1 = wp&0 — 2>2&i = p(ub0 — pbj and so
p\a1 in A. We emphasize that p need not divide αx in A1#

We obtain the following proposition which shows for example
that if A = &\I as in Lemma 2.8, a tf-injective, divisible module M
over &/I is necessarily torsion free.

PROPOSITION 3.3. Let A be a commutative algebra over C with
unit which is a principal ideal domain. Let M be any commutative
bi-module which is σ-injective over A and A divisible. If A is
nondegenerate then M is torsion free.

Proof. We suppose the result fails for some M. Then there is
m Φ 0 in M and λ o eC with (p — λo)m = 0. As we noted before we
may assume without loss of generality that pm = 0, since we may
replace p with (p — λ0) in Definition 3.1. We define a σ-derivation
β on Aλ = Alg [Ao, up] into M by β(At) = (0). We can extend β to
A$ = Alg [Alf u~ιp\ as follows:

β(aQ + a^u^p) + + aJtvr^pY) = axm ,

for a0 + aλx + + anx
n 6 A^x\. This is well-defined since if

a0 + a^u^p) + + an(u~γpY = 0, p \ ax

by Lemma 3.2 and so αxm = 0. It is routine to check that this is
a σ-derivation on Az once one notes that m2 = 0. This follows since
m — pmί some m1 6 ikf and so m2 = pmjn = m^m = 0. Also we have
β(u~*p) = m Φ 0. Assuming M is cr-injective, extend β to a σ-
derivation on all of A. Observe

(1) 0 = β(l) - / J ^ - 1 ) = uβ(u~λ) + u~'β(u) + β(u)β(u-χ).
(2 ) 0 - £(wp) = ^iS(p) + pβ(u) + ^(p)iβ(w) = pβ(u).
(3 ) m = /S^"1^) = n~ιβ(p) + ί9iβ(^~1) + β(p)β(u~') = pβ(u~ι).

Multiply equation (1) by pu to obtain
(4 ) 0 = u2pβ(u~ι) + pβ(u) + pβ(u)uβ(u~') = u2pβ(u~ι)9

since pβ(u) = 0 by (2). But pβ(u~ι) = m b y (3) so
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0 = U2m .

This is a contradiction since u is a uni t and m Φ 0. Hence t h e result
follows.

Finally, if τif i = 1, 2, •••,% are distinct connected components
of σ(b) and if D(b, S(τ,)) Φ 0 then we can construct nonzero cr-deriva-
tions βi from έ? into D(b, S(r€)) vanishing on the polynomials. Hence
#' = # + βχ + ... + βn is a functional calculus for b since β^ό = °>
^ ^ j . I t is necessarily discontinuous since θf Φ θ. The conjecture
arises, a t least in t h e case σ(b) has countably many components,
whether all functional calculi for b a re of this form. Certainly if
σ(b) has only finitely many components τlfτ2, •• , r Λ , which are of
course clopen, then let t ing βi = E(τ%)(θr — θ), each i, we see this is
the case. Note {βf - 0)(e(r,)) = 0, each i, by Lemma 1.3, so βt(f) =
(θf — θ)(e(τ%)f), feέ?. Unfortunately if σ(b) has countably (but not
finitely) many components th i s conjecture may fail. We shall outline
t h e construction of a counterexample as follows. Let

σ(b) = {2—. tt = 1, 2, 3 •} U {0}, σp(b) = 0 ,

and D(b, S({2~n})) m (0) for rc = 1, 2, 3 . I t is easy to construct
such a 6 by taking B to be a suitable product algebra. For example,
let / be a function in t h e radical algebra Lι[0,1] wi th t runcated
convolution. If / does not vanish a.e. in any neighborhood of
0, σ(f) = {0} and σp(f) = 0 . Also /*L T [0,1] is dense in I/[0,1] and
so there is a dense subspace D in Lι[0,1] such t h a t fD = D (see
[4, Lemma 3.1] for one proof). Let V be Lι[0,1] wi th a unit adjoined
and let B be t h e ί°° product of the V'&, i.e., 5 = {(Vi)T=0 ViβV and
SUP 11 -17* 11 < oo}.

Let b = (6n) where δ0 = /, bn = (/ - 2~%), w = 1, 2, 3 . Then
a(b) = {2~n: n = 1, 2, 3 •} U {0} and <?„(&) = 0 . A bit more work also
shows t h a t D(b, S({2~w})) ^ (0), n = 1, 2, 3 , and t h a t t h e r e are
elements d e J5(6, B) such t h a t E({2~n})d Φ 0, w - 1, 2, 3 . Let ί70 = C.
Let

Z7. = B(2~\ 2~ίn+2)) U 5(2~2, 2~(%+2)) (J U 5(2"%, 2"(w+2))

U J5(0, 2-(Λ+1) + 2-(*+3)) , ^ = 1, 2, 3

where B(X, ε) = {ze C: \z — λ| < e} This looks complicated but we
are simply choosing open sets whose closures decrease to σ(b). Hence
έ? is the direct limit of {H(UJ}, and we may actually regard H(Un)
as contained in < .̂ We seek to construct a σ-derivation β on H{ Uo)
into D(b, B) such that β(C[x]) s (0) and E({2~n})β(ex) Φ 0 for all n.
If β can be extended to all of g? then this will give our counter-
example as follows. Suppose θf = θ +f/3 is of the form θ + βx + + βN

where βt is a σ-derivation into D(b, S({2~'})), i = 1, 2, , N. Then
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E({2~{N+l)})(θf - θ){ex) = 0, but also

E({2-{N+1)})(Θ' - θ)(ex) = E({2~{N+ι)})β(ex) Φ 0 ,

a contradiction. Now we can define β on Alg [C[x], ex] by

β(Po + Pie9 + + e.e") = ptφ)d + p£(δ)((e + rf)2 - e2x)

+ + p.(δ)((eβ + d)» - enx) ,

where d e D(b, B) and E{{2"n})d Φ 0, all w. Since ex is transcendental
over C[x] it is elementary that this is a σ-derivation. We must first
extend it to JEΓ(Z70). Then we must show that if β has been defined
on H(Un) it can be extended to H(Un+1). Since & = U ϊ = o 5 ( P J we
will then be done. Note that Uo is connected, and that H(Un+ί) =
jff(JB(2-1

f 2-(%+3))) 0 0 W - ( f t + 1 ) , 2~ ( w + 3 ) ))θίί(β(0, 2"( +« + 2-(%+4)))
Also note that H{B{2~\ 2" ( % + 3 )))aίiΓ(β(2" ΐ, 2~{n+2))) in ^ , i = 1, 2,. , n,
and

Hence the reader will perceive that we need the following two lemmas.

LEMMA 3.4. Let U be open connected in C with U Π o(b) clopen
in (7(6). Let A be a subalgebra of H(U) containing the unit χπ of
H(U). Then any σ-derivation β from A into D(b, S(UΠ tf(δ))) extends
to a σ-derivation on all of H(U) into D(b, S(UΠ σ(δ))).

LEMMA 3.5. Let U be open connected in C. Let V be open con-
tained in U with two open connected components Vx and V2. Suppose
U n σ(b), Vx Π σ(b)f and V2 Π <7(6) are clopen in σ(b) with

U n <τ(6) = [VιΠ σ(b)] Ό[V2Π σ(b)] .

Then if β is a σ-derivation from H(U) into D(b, S(U Π σ(b))), β extends
to a σ-derivation on H(V) = H{VX) ®H(V2) with β(H(Vi)) contained
in Dib SiVinσψmi = 1,2.

Once the above lemmas are proved, the existence of our coun-
terexample will be established by induction.

Proof (Lemma 3.4). This is essentially a direct application of
Proposition 2.2. Let M = (6, S(Unσ(b))). Clearly M is an H(U)
bi-module and H(U) is an integral domain. Every element feH(U)
can be factored as / = pg, where p is a polynomial and g has no
zeros in 17 Π ^(6). Hence θ(g) is bijective on M, and since σp(b) = 0 ,
M is torsion free. This also shows that M is H(U) divisible. The
only thing left to show is that M is solvable. If λ e C — {0}, then



268 MARC THOMAS

(λ + m)M C M and (λ + m)~ιM Q M for m e M. Thus (λ + m) acts
bijectively on M. If m, e Λf, α< 6 H( U) then there exists r e rad (2?)
such that

mo + r + (m2 + #(α2))r2 + • + (mn + 0(α Λ))r + 0 ,

by [3, Lemma 3.2.8]. But then there is rx6rad(jB) such that r =
(1 — rj""^ — m0) eΛf. [Thus ikf is solvable and the result follows by
Proposition 2.2.

Proof (of Lemma 3.5). Let σ1 = Vx Π 0"(δ) and let σ2 = F2 Π
Let A be the algebra in έ? generated by {H(U), e(σλ), e(σ2)}. So

A = {fefr) + ge(σ2): f,geH(U)} ,

and A contains H(U) in ^ . Extend β to A as follows:

If /e(0Ί) + flre(α2) = 0 in έ? then / vanishes on Vι and hence on U
also, # vanishes on V2 and hence on /7also, so β(f) = β(g) = 0. Thus
/9 is well-defined and agrees with β on H(U). Let

Then A ~ Λ φ A2. Let ^ = β \ Aiy i = 1, 2. Then & is a cr-derivation
from the subalgebra A, of iϊCFJ into D(δ, S(Vt Π ^(δ))), i = 1, 2.
Since ^ σ j e ^ and Vt is connected, ^ t extends to all of H(Vt) by
Lemma 3.4, i = 1, 2. Since £Γ(Σ7) ^ #( FJ 0 J?( F?) the lemma is
proved.

Thus, the σ-derivation on Alg [C[x], ex] extends to H(U0) by Lemma
3.4. If it has been extended to H(Un) we note that J?(2"*, 2~(ίi+3)) £
B(2~\ 2~{n+2)), i = 1, 2, , w, and

B(2"(Λ+1), 2"(n+3)) U ΰ(0, 2"(w+2) + 2~u+4)) C 5(0, 2~in+1) + 2~(%+3)) .

Thus Lemmas 3.4 and 3.5 respectively show that β extends to H(Un+ι).
Thus β extends to all of & and we obtain a counterexample with
σ(b) a convergent sequence.
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