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DOUBLE COSET AND ORBIT SPACES

D. K. HARRISON

It is our purpose to study abstractly and in general,
the structure of the set of all double cosets of a group
with respect to a subgroup. In our first section we allow
the groups to be infinite, and focus on a ternary collinea-
tion relation. If X, Y, Z are double cosets, we say they are
collinear if there exists xc€ X,yc Y,z¢€Z with x-y-2=1. This
relation is abstracted and forms the basis of that section.
In the second section we essentially insist the groups are
finite, and count the double cosets which products from two
cosets can appear in (i.e., count all Z with z-y€Z for x¢
X,y€Y). We abstract the properties that these numbers
possess, and study their implications. The orbit space of
conjugacy classes of a finite group can be taken as a set of
double cosets (in the holomorph of the group). This set has
a natural dual, and in certain instances other sets of double
cosets have one also. We study this situation in the third
and last section by use of a complex matrix which enjoys
some of the properties of the character table of a finite
group; this may be thought of as another approach (slightly
different than Brauer’s pseudogroups) to character tables
as a thing in themselves.

We have restricted attention in all three sections to a single
operation. There are applications, particularly to valuations, of
two operation systems where the additive structure is that of an
orbit space, but in order to keep this paper from being too long
we do not include those here.

We are grateful to Kenneth A. Ross for pointing out that
several harmonic analysts (see [5], [6], and [11]) have considered
these same problems with certainly related solutions. We believe
we have minimized overlap, except for a crucial proof that the set
of double cosets does satisfy the properties we wish to generalize,
a proof which is one of Jewitt’s ([6]), which we include for the
reader’s convenience. We wish to acknowledge helpful conversations
with Hom Nath Bhattarai, James W. Fernandez, and William
McClung.

1. Double coset spaces. If H is a subgroup of a group G,
the set of double cosets, G//H = {HaH|a € G}, is a group only when
H is normal in G; however, in genaral it carries some structure
which is retained by the following concept. The relation 4 which
we use, in many cases is, and in general can be thought of, as a
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sort of collinearity. By a Pasch geometry (alias multigroup or
hypergroup, see [3]) we mean a triple (4, 4, ¢) where A is a set, e
is an element in A4, and 4 is a subset of 4 X A X A such that:

(1) for each a e A there exists a unique b€ A with (a, b, €) € 4;
denote b by af,

(2) e*=c¢ and (a)* =a for all ac 4,

(3) (a,b,c)ed implies (b, ¢, @) € 4, and

(4) (Pasch’s axiom) (a,, a,, a,), (a, a,, a;) € 4 imply there exists
an asc A with (a, af, a,), (a a; al) €4 (see mneumonic diagram
below).
We have so labelled (4), because when A is the real projective plane
and 4 is collinearity, then (4) is expressed by the following diagram:

FIGURE 1

ExAMPLE 1.1 (see [4]). Let H be a subgroup of a group G.
Let G//H = {HaH|a € G}. Let

4={X,Y, Z)e(G//H)¥*| weX,yeY,ze Z with xyz = 1}.
Then one easily checks (G//H, 4, H) is a Pasch geometry.

ExAMPLE 1.2. Let F be a group of automorphisms of a group
G. Let G/F = {{f(a)|f € F}|acG} be the set of orbits. Let

4={X, Y, Z)e(G/IF)*|IxcX,ye Y, zec Z with xyz = 1}.

Then one easily checks (G/F, 4, {1}) is a Pasch geometry. This can
be viewed as a special case of the last example, for it is isomorphie
to G X F//F where G x F' is the split extension of G by F with
the given operation of F on G.

ExAMPLE 1.3. We say a Pasch geometry (4, 4, e) is sharp if
for each a,bc A there exists at most one ¢ce A with (a,bd, c)e4.
One can show there always is at least one such ¢, and if a-b denotes
¢!, one checks a group results. Conversely, if G is a group, one
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gets a sharp Pasch geometry by letting 4 = {(a, b, ¢) € G**|abc = 1}.

ExampPLE 1.4 (compare [7]). Projective spaces in which lines
have exactly three points are rather transparent since they corres-
pond exactly to groups in which every element is its own inverse;
i.e., to vector spaces over Z,. Hence in the interest of simplicity
we use the following definition. By a (not necessarily Desarguean)
projective space we mean a pair (P, &¥) where P is a set and &~
is a set of subsets of P, each of which has at least four elements,
such that:

(1) p,qeP,p +# q imply 3 unique L € & (denoted by Lpq) with
{p, ¢} < L, and

(2) (the real Pasch axiom) p,, p;, »,, »; distinet in P, and p, e
Lp,p; N Lp,p, imply 3 ps€ Lp,p, N Lp;p;.

Let (P, %) be such. Let ¢ be an element not in P and let
Pt = PU/{e}. For p, v, p;€P, we let (p, v, »;) be in 4 if and only
if they are distinct and collinear (meaning p,€ Lp,p,), or they are
equal (meaning p, = p, = p;). We also let (e, e,¢) and (e, p, D),
(p, e, ), (v, v, ¢) be in 4 for all pe P. A tedius checking of special
cases gives that (P? 4, ¢) is a Pasch geometry.

ExaMPLE 1.5. Let L be a lattice with least element e. Let
4, ={(a,b,c)e L**la £bVe,b=aVe,¢c=aVb}.

Then we show (L, 4;, e¢) is a Pasch geometry if and only if L is
modular (Proposition 1.8).

A Pasch geometry (A4, 4, ¢) will often simply be denoted by A,
in which case we may either write 4, for 4 and e, for ¢, or simply
let context descriminate between possible ambiguities. Also, when
the context is clear, we will sometimes simply write “geometry” for
“Pasch geometry”.

Two lemmas which are easily checked for an arbitrary Pasch
geometry A are: (a, b, ¢) € 4 implies (¢*, b% a*) € 4, and z, y € A implies
Ize A with (x, ¥, 2) e 4.

Let A, B be geometries. By a (geometry) morphism from A
to B we mean a subset f of A X B such that:

(1) for each ac A there exists a be A with (a, b) e f,

(2) (e, b)ef implies b = e,

(8) (a,bd)ef implies (a*, b%) € £, and

(4) (a, a, a*)ed,, (a,b)ef imply there exists b, b,e B with
(a;, by), (as, b,) € f and (by, by, b°) € 4.

We call a morphism f sharp when it is a map (i.e., whenac A
implies there is at most one be B with (a, b) € f), and call it strict
when the converse to (4) holds; i.e.,
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(5) (au bl)r (a27 bz) ef’ (bu b2; b“) € AB imply there exists an ac A
with (a,, a,, ¢®) € 4, and (a, b) € f.

If C is a geometry, g is a morphism from B to C, and f is a
morphism from A to B, one checks gof is a morphism from A to
C, where gof denotes

{(a,c)e A x C|3be B with (a,b)e f and (b,c)cg}.

If f and g are sharp (respectively strict), then gof is sharp (respec-
tively strict). Since the identity map is a morphism (which is
sharp and strict), we have the category of Pasch geometries (and
the sharp and strict subcategories). One checks an isomorphism
from A to B is a bijective map f: A—B with f(e)=e and (a,, a,, a;) €
4, if and only if (f(a,), f(a.), f(as) €45. We write A = B only if
such exists. By a homomorphism we mean a sharp and strict
morphism. If we identify groups with sharp geometries, the cate-
gory of groups is a full subcategory of the category of geometries
with homomorphisms. Most of the elementary properties of the
category of groups extend to this category.

By a subgeometry of a geometry A we mean a subset S of A
such that eeS and (s, s,, a)€ 4, s, 8,€8S imply acS. Note that if
A is a group (i.e., is sharp), a subgeometry is the same as a sub-
group. We call a subgeometry S of A normal (see [4]) if (s, a, b) €
4, s€8S imply there exists s,€S with (s, b,a)ed. If T is any
subset of A4, we denote the intersection of all subgeometries of A
which contain T' by (T) and call it the subgeometry generated by
T. Note if S is a subgeometry of A, by letting 45 = 4, N S*, S is
itself a Pasch geometry.

Let S be a subgeometry (not necessarily normal) of a geometry
A. For a,beS write a ~b if 3s,s,€S and xc¢ A with (a, s, %),
(x, b% s,) € 4. One checks this is an equivalence relation. For ac A
let [a]s (or simply [a]) denote {bcA|a ~b}. Let A//S denote
{[a]|a € A}. One checks [¢] = S. Let

dans) =X, Y, Z)e(A//S)*|3xe X,ye Y, ze Z with (x,y,2)c4d,}.

PROPOSITION 1.1 (compare [4]). Let S be a subgeometry of a
Pasch geometry A. Then A//S is a Pasch geometry. The natural
map a— [a]s is a sharp morphism from A to AJ/S. It is strict
(i.e., & homomorphism) if and only if S is normal.

The proof is a routine check and is omitted.

PROPOSITION 1.2. Let A and B be Pasch geometries. Let f be
a homomorphism from A to B. Let K;={acA|f(a) =e} and
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I; = {f(a)|lac A}. Then I; is a subgeomelry of B, K; is a normal
subgeometry of A, f induces an isomorphism f from AJ/K; onto
I;, and f can be factored as f = iofoj where j:A— A//K; and
1: I; — B are the natural homomorphisms.

Proof. ecK; and if (k, k, a)ed, k, k,€ K;, then (f(k), f(k,),
fla)) e dy so (e, e, f(a))eds so (e, f(a), e)€ds s0 f(a) =e*=¢ 80 ac
K;. Thus K; is a subgeometry. If [a,] = [a,], then (a, k., 2,
(v, a3, k,) € 4, where ks, k, € K;. Thus (f(ay), ¢, f(2)%), (f(x), f(az), e) €
4dp 80 f(a)f = f(x)* and (e, (@), f(a)) €45, s0 fla) = (f(a)¥)? =
(f@)H* = f(x) and (f(®) f(ay), e)€4s. Thus f(a,) = (f(@))* = f(2).
We get f(a,) = f(a,). Thus [a] — f(a) is a well-defined map which
we denote by f. Let f(a) = f(a). Then (f(as), f(a}), e*) € d;, so
since f 1is strict, (a, af, a¥)e4d,, (a,e)c f for some acA. Thus
(af, e e f so ate K;. Also ec K; and (a,, e, af), (a,, ai, a¥) € 4, so a,~
a, 80 [a,] = [a,]. Thus f is injective. The proof is easily continued
in this fashion.

PROPOSITION 1.3 (see [4]). Let A be a Pasch geometry. If S
is a subgeometry of A and T is a normal subgeometry of A and
S-T denotes {xcA|3scS,teT with (s,t,x)cd}, then ST is a
subgeometry of A, SN T s a normal subgeometry of S, and

(8:T)/T=8//[(SNT).

Proof. This is easily checked using among other things s+
[s]r and the last proposition.

PrOPOSITION 1.4. Let S be a subgeometry (not mnecessarily mnor-
mal) of a Pasch geometry A. Let f: A— A//S be the natural map.
For T a subgeometry of A which contains S, T//S (which s the
same as {f(t)|te T} is a subgeometry of A//S, and

(A/1S)/[(T]IS) = A[IT .

Moreover, this gives a bijective inclusion preserving correspondence
between the set of all subgeometries of A which contain S and the
set of all subgeometries of A//S. Also normal correspond to normal
wn this correspondence if and only if S is normal in A.

Proof. This is a long but straightforward check which we omit.

We call a geometry A abelian if (a, a, a;)€4, implies
(ay @y, @3) € 4.

Let A, B be geometries. We define
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daxp = {((a, b)), (@5, by), (a5, b)) € (A X B)*[(a,, ay a5)
€ 44, (by, by, bo) € 4}

and check that (A x B, 4,.5, (¢, €)) is a geometry. For notation we
let Sh (respectively St) denote the category of all Pasch geometries
with sharp morphisms (respectively with strict morphisms). Thus
if C is a geometry, Sh(A4, C) denotes the set of all sharp morphisms
from A to C, and St(4, C) denotes the set of all strict morphisms
from A to C. We define p,eSh(A x B, A), peSh(A x B, B), in, €
St(4, A X B), inzeSt(B, A x B) by »,(a, b)) = a, ps(a, b)) = b,
wnu(a) = (a, ), ingd) = (¢, b) Yae A, be B, and check these maps are
in the sets we claim they are. It is easy (but tedious) to check
the following:

ProprosiTION 1.5. For A, B,C Pasch geometries we have a
natural identification

Sh(C, A x B) — 8Sh(C, 4) x 8h(C, B) (b —— (p4°h, Psoh))

and if in addition C is abelian, we hove another natural identifi-
cation

St(A x B, C) «—— St(a, ¢) x St(B, C) (h «—— (hoing, hoing)) .

Let G be a group. By a G-geometry we mean a Pasch geometry
A together with a group homomorphism, a — f,, of G into the
group of isomorphisms of A to itself. We usually write a(a) for
f«a). Let A and B be G-geometries. By a G-morphism from A to
B we mean a morphism f from A to B such that (a, b) €f implies
(a(a), (b)) € f for all ¢ €G. One checks these compose so we have
the category of G-geometries. One checks A x B is made into a
G-geometry by defining a((a, b)) = (a(a), a®)) for all acG, (a,b)e
A x B. By a G-subgeometry of a G-geometry A we mean a sub-
geometry S of A such that a(s)e S for all seS and aeG. Such is
clearly a G-geometry in its own right. One can check that all the
previous propositions hold with “geometry”, “morphism,” and “sub-
geometry” prefixed everywhere they appear by “G-”.

Let H be a subgroup of the group G. Let A be a G-geometry.
Then A is naturally an H-geometry (by restricting the operation to
H). For a,bec A write a ~b if a(a) =b for some ac H. This is
an equivalence relation, and we write <a), (or simply <a)) for the
unique equivalence class containing a. Let A/H denote {(a)|ac A},
and

dys ={X, Y, Z)e(A/H)*|Axec X,yc Y,z Z
with (x,y, 2)e4,}.
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One checks (A/H, 4,4, {e)) is a Pasch geometry. For XeG//H let
fx denote

(Y, Z)e(A/H)*|Iyec Y, zc Z,a ¢ X with a(y) =z} .

One checks this is a morphism from A/H to itself, and if H is
normal in G it gives A/H the structure of a G//H-geometry. We
have:

PROPOSITION 1.6. Let G be a group and A be a Pasch G-geo-
metry. Let H be a subgroup of G. Then A/H is a Pasch geometry.
If in addition H is normal, then A/H is a G//H-geometry. If f is
the natural map from A to A/H and g is the matural morphism
from A/H to A then f is a sharp morphism, g is a strict morphism
and fog is the identity morphism of A/H.

ProrosITION 1.7. Let H be a group. Let A be a Pasch H-
geometry. Then there exists a natural order preserving bijection
between the H-subgeometries of A and the subgeometries of A/H.
This bijection is S+ {{(s)|se S} = S/H. Moreover, if S is an H-
subgeometry of A, then

(A//S)/H = (A/H)//(S/H)
by als)n — [{a)uls/a-

Proof. This is a routine long check which we omit.

By the split extension A X H of a Pasch H-geometry A we
mean (A X H, 4, (e, 1)) where 4 consists of all
(@, @), (@gy @), (@, @)
with
(a;, a,(ay), ay(ay(as)) € 4, and (a, @y, @) € 4y .

One checks this is a Pasch geometry. If f is an H-morphism from
A to an H-geometry B, we let f x H denote

{(a, @), 0, @))|(a,b) e f, ac H}.

One checks this gives a functor, and allows us to extend the notion
of an H-geometry to the case where H is an arbitrary Pasch geo-
metry in a way which we now give. Let H be a Pasch geometry.
By an H-geometry we mean a triple (B, S, f) where B is a Pasch
geometry, S is a normal subgeometry of B, and f is an injective
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homomorphism from H into B such that SN I, = {¢} and S-I; = B.
We often denote an H-geometry (B, S, f) simply by S, in which
case we write B; for B and f, for f. If T is another H-geometry,
a H-morphism from S to T will mean a morphism ¢ from By to
B; with gofs = f; and with se S, (s, b) € g implying b e T. We denote
B//I; by S/H. Proposition 1.7 can now be generalized to this
situation in a natural way.

Let A be a Pasch geometry. Let .52(A) be the set of all normal
subgeometries of A. With inclusion .(A4) is a partially ordered
set, and one checks if S;, 7¢I, is an indexed family of normal sub-
geometries of A then (US,) is in S(4) and is a least upper bound
of the S;,,7eI. Hence .5”(A) is a complete lattice. If S, Te S (4),
the greatest lower bound, SA T, of S and T is

{a e AlaNe S”(4) with ae NS SN T}.

If A is abelian this is just the intersection; in this case one checks
& (A) is modular so by the next result 5(A) is an abelian Pasch
geometry.

PROPOSITION 1.8. Let L be a lattice with least element e. Let
d={x,y,z)el*|laVy=axVz=yVz}.

Then (L, 4, ) is a Pasch geometry if and only if L is modular.

Proof. Suppose L is modular. All but Pasch is easily checked.
One checks 2 < yVz y<w\Vu impliess 2 < (VW) A EVU)Vw.
Now let (a,, a,, ay), (@, a,, a;) € 4. Letting a; = (a, V a,) A (a5 V a;) We
have a; < a,Va, Since a,<a,Va, and a, <a,Va, by letting

X =0y Y =0, 8 =0, W= 0qQ, U = a; We get a, < (a,Va,)A(a;Va,) V
a, = a;Va, Similarly, we get a,<a,Va,. Thus (a,a, a,) € 4. Simi-
larly, we show (a,, a;, a,) € 4.

Now conversely, suppose L is not modular. Then 3z < 2z with
2V YAz #*= (@Vy Az This implies x # z so ¥ < 2. It also implies
2V YN <@&Vy) Az (one checks). Let b=V (yAz), a=@&ViyHA
2,¢ =Y. Then one checks a Ve =0bVe¢=xVy. Applying this same
sequence of arguments to the dual of L gives a Ac=bAc=2AY.
Thus (aVe,a,¢), Ve b, c)ed. Since aVe=>bVe, if L were a
geometry there would exist a we L with (w, b, a), (w, ¢, ¢) € 4 (one
checks b* would have to be b and ¢* would have to be ¢). This
would give w £ bVa =a (since b<a) and w <cVe=c¢ so wsa N
¢c. Thus bVw=bV(aAc). But a bV w soa=bV(aAc). Thus
a<bV@Ane)=bV(bAc) =b which contradicts that b <a. The
proposition is proved.
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Since a modular lattice can be reconstructed from its geometry
(@ =< b if and only if (a, b, b) € 4), we can view a modular lattice as
a special kind of geometry and thus use our terminology for
morphisms. For A a geometry and a € A4, let .“(a) be the greatest
lower bound of all Te $”(4) with aeT. At least if one restricts
attention to abelian geometries, a — _“(a) and S+ {(S, a) € & (A) X
Ala e S} are monads and comonands respectively in the appropriate
categories.

The category of projective spaces is a full subcategory of the
category of Pasch geometries; it can be recovered as follows. For
(P, &¥) a projective space with P nonempty, (P% 4, e) is a geometry
which is not sharp and which satisfies $“(a) = {¢, a} for all ac P*
(see Example 1.4). Conversely, let A be a Pasch geometry such
that {e, a} is a subgeometry of A for all ae 4, and A is not sharp.
Let A* = A\{e}, and for a,bc A* a # b let

Lab = {ce A*|(a, b, ¢) € 4} U {a, b} ,

and let ¥ = {Labla, be A* with a # b}. With some straightforward
drudgery one can check that (A4* &) is a projective space with
A* nonempty. Also these constructions are inverses of each other.

Let G be a group (not a general geometry simply for simplicity).
We call a G-homomorphism f: A — B central if (f(a), b,, b,) € 45 implies
(f(a), by, b,) € 45 for all a € A.

Let S be a G-group (i.e., a sharp G-geometry). By an S-G-
geometry we mean a pair (f,, A) where A4 is a G-geometry and f,
is a strict G-morphism from S to A. One checks then f, must be
a G-homomorphism. We often denote (f,, A) simply by A. By an
S-G-morphism from an S-G-geometry A to an S-G-geometry B we
mean a morphism 4 from A to B with hof, = fz. One checks these
compose so we have the category of S-G-geometries. We wish
particularly to have Proposition 1.5 generalized to this context. For
A and B S-G-geometries we let Shy (A4, B) (respectively Stg_s(A4, B))
denote the set of all S-G-morphisms which are in Sh(4, B) (res-
pectively St(4, B)). By Proposition 1.5 there exists a unique sharp
G-morphism f from S to A x B with p,of = f, and pzof = f»
(simply f(s) = (fu(s), f5(s))). One checks (using S is a group) that f
is strict, and so makes A x B into an S-G-geometry. We denote
f by fu X fz. By Proposition 1.2 the image I of f, X fz is a G-
subgeometry of A x B. In general, we cannot make the G-geometry
A x B//I into a S-G-geometry, but when S is abelian and both
f4 and f, are central we proceed as follows. S an abelian group
implies s+ s* is a G-isomorphism (thus strict), so if fi(s) = fa(s™)
for all se S, ff is a strict G-morphism (actually a G-homomorphism)
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and makes B into an S-G-geometry. We let I be the image of
fax f& and let A x ¢B denote the G-geometry A x B//I. Using
that both f, and f, are central, we check that I is normal in
A x B, and thus by Proposition 1.1 get that the natural map g:
A x B— A X ¢B is a strict G-morphism. Letting 1;(s) = eVse S we
check that 1, is a strict G-morphism and that f, x 1; is strict, and
use go(fy, X 1z) (i.e., st [(fu(s), e)];) to give A X (B the structure
of an S-G-geometry. The apparent lack of symmetry is only ap-
parent, since if se S,

((f4(8), €), (e, €), (ful(S), €)%, (Fa(5), €), (e, 5(8))?), (Fuls?), fi(s?)) € 4
SO

[(Fa(9), ©1r = [(e, Fu(s)]: -

PROPOSITION 1.9. Let G be a group and S be a G-group. Let
A, B, C be Pasch S-G-geometries. Then we have a natural identi-
fication

Shs_4(C, A X B) «—— Shy_+(C, A) X Shy_4(C, B)(h — (p4oh, pgoh))

and if in addition C is abelian, S is abelian, and f,, fz, are
central, we have another natural identification

Sts_o(A X 5B, C)—— 8ty o(A, C) X Sts_o(B, C)(h—— (hogoingy, hogeoing)) .

Proof. Using Proposition 1.5 this is a long routine check which
we omit.

We end this section with a construction which gives examples
and also gives some insight into how a single element behaves in
a geometry. Let A be an arbitrary Pasch geometry (not an S-G-
geometry merely for simplicity). Let T be any subset of A which
is closed under ( )* (i.e., t*e TVte T) with e¢ T. For X either A
or T, we define an X-word to mean an n-tuple, % = 0, of elements
in X. If a=(,a, -+, a,), B=(0b,b, -+, b, are X-words, we
let a* denote (af, ---, af, af) and let a-B denote (a,, a, ---, a,, b,
by +++, b,). Since (a-B)* = g*.af, the set of all X-words forms a
monoid with involution. We let D(X) denote the set of all X-words
a = (&, X, *++, x,) such that: either n =0, or n =1 and 2, = ¢, or
n=2 and 2, =2f, or n =8 and (2,2, 2,)€4,, or n=4 and
34y, + -, @y € A with (z,, x,, a;), (af, 5, a5), -+, (@f_;, .y, ,) € 4,. One
easily checks the following:

( 1 ) (tu tz: M) tn) € D(T) implies (tz» ceey by t1) € D(T),

(2) aeD(T) implies a*ec D(T),
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(3) a,BeD(T) imply a-8eD(T),

(4) (tu ct tn)) (Su A Sm) € D(T) and tn = 3% imply (tll °t Ty tn—u
Sy =07, sm) € D(T)’

(5) t,t,eT imply (¢, t,) e D(T) if and only if ¢, = t!, and

(6) for teT, (t)¢ D(T).

We now broaden our point of view and start with a set 7, a
map ( )* from T to T, and a set D(T) of T-words such that (1)-(6)
above hold. We say a set J of T-words is inversive if «-g%e D(T)
for all @, BeJ. Such sets are inductively ordered by inclusion; we
let B denote the set of all maximal inversive sets of T-words. We
let

dg ={(J, K, L)e B*|a-B-ve D(T) for all acJ,pecK,veL}.

For J an inversive set of T-words, we let J* denote {a*|aeJ} and
D(T): J denote the set of all T-words a such that a-8e€ D(T) for
all eJ. One checks Je B if and only if D(T):J = J* With this
one can check that (B, 45 D(T)) is a Pasch geometry. For te T we
let f(t) denote D(T):{(t*}. We let B* denote B\{e} (where e is
D(T)). One checks f is an injective map from T into B*. In fact,
one checks:

(a) for ¢, ---,t,eT,(, ---,t,)eD(T) if and only if (f(¢), ---,
f(¢.)) € D(B*),

(b) for each beB*, 3t,---,t, €T with (f(t), ---, f(t,), b¥) €
D(B*),

(¢) for b, b,, b,c B*, (b, b, b,) € 4; if and only if for all z,, ---,
Luy Y1y ** %y Yms B1y =* 5 2, € T with (f(xl)’ M) f(xn)’ bf)’ (f(yl)y °t %y f(ym),
%), (f(zy, -, f(z,), b3)) in D(B*), we have

(f@), <<=y f@a), FW)y =<+ fW)s [(2), - -+, f(2,) € D(BY),

and

(d) if K is any set of B*-words such that «-B8%c D(B*) for all
a, Be K, then 3b € B with «-(b%) € D(B*) for all a c K.

Moreover, (a)-(d) characterize B in the sense that if C is any
geometry and ¢ is a map from 7 to C such that (a)-(d) hold with
B replaced by C and f replaced by g, then there exists a unique
isomorphism A from C onto B with f = hog. We call B the word
completion of T.

Now let A be any abelian Pasch geometry. Let ¢ be any
element in A with ¢ # e. Either ¢ = ¢* or ¢ = t*; we consider these

two cases separately.
First suppose ¢ = t*. Let #(¢) be the smallest odd positive inte-
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ger (if such exists) with (¢, ¢, -+, t) € D({t}) (here »(t) copies of t).
If no such exists let »(t) = «. Using (1)-(6) above one checks the
structure of D({t}) is determined exactly by »(¢). If » is any odd
positive integer with 8 <, or » = o, we let iT be any set with
one element, say T = {1}, let 1* =1, let D(T) be the set of all T-
words (1,1, ---,1) (n copies) where n =0 or »n is even or n = 7,
check that (1)-(6) above hold, and let B(») denote the word comple-
tion of this 7. We let (1) denote the natural image of 1 in B(r),
and using (a)-(d) get that »({b(1)) = ».

Now suppose ¢ = t!. We let k(¢t) be the smallest positive integer
k (if such exists) such that there exists an integer m = 0 with
& =<, 8, % -, tH e D{t, t*}) (here k + m copies of ¢ and m copies
of t¥). If no such & exists we let k(t) = . If k() # « and n is
any integer, we use 1.-6. to check that there exists a smallest
integer m = —1 with (¢, «--, ¢, ¢, ---, t9) e D({¢, t*}) (here nk + m + 1
copies of t and m + 1 copies of t¥). We denote m by h(n). With
(1)-(6) above we check that h is a function from Z (the integers) to
Z with:

(1) R(0) = -1,

(2) —1Zhn), Yne Z,

(8) h(m, + ny) <hn,) + hin,) + 1Vn, n,€ Z,

(4) hn, + n,) < h(n,) + h(ny)Vu,, n,€ Z with h(n,) # —1 and
h(—mn,) # —1, and

(5) h(—n) =n-k+ h(n)Vre Z, for k = h(—1) — h(1).

We call such a semi-subadditive integer fumnction. One checks
that 5 exactly determines the structure of D({t, t¥}). Conversely,
we choose any convenient set with two elements, say T = {1, —1}.
Welet 1¥ = —1, (—1)* =1. If h is a semi-subadditive integer func-
tion we let k¥ = h(—1)—h(1), and let D(T) be all permutations of
T-words of the form (1, ---,1, —1, ---, —1) (here p copies of 1 and
q copies of —1 where 3 integer » with p — ¢ = nk and h(n)+1=q).
For the other case, if k¥ is to be oo, we let D(T) be all permuta-
tions of (4, ++-, 1, —1, .-+, —1) (p copies of 1, ¢ of —1, where p=q).
In both instances, one checks (1)-(6) hold. We denote the resulting
word completions by B(h) and B(co, ) respectively.

We call 7, =, h, or (oo, =), whichever corresponds to ¢, the type
of t (for t = ¢). We let 1 be the type of ¢ and let B(1) denote the
trivial group 1.

2. Double coset spaces for finite subgroups. If H is a finite
subgroup of a (not necessarily finite) group G, the set G//H of
double cosets has some extra number theoretic properties in addition
to being a Pasch geometry. By a probability group (alias discrete
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convo, or hypergroup, see [5], [6], [8]), [11], we mean a pair (4, p)
where A is a set and p is a map from A* to the nonnegative reals,
(a, b, ¢) — p.(a, b) (which we read as “the probability that a-b is ¢”)
such that:

(1) for a,be A, p.(a,bd) is zero for all but finitely many ¢ in
A, and >.p.(a,d) =1,

(2) for a,b,c,dec A,

; p.(a, b)p(x, ¢) = Zy! p4(@, Y)p,(b, c) ,

(3) there exists an ec A with p.(e, a) =1 = p,(a, e) for all
acA,

(4) for each ac A4, there exists a unique afc A with p.(a, a¥)>
0, and

(5) for a,b,cc A,

p.(a, b) = p.:(b% af) .

Note that (2) is just associativity in the probabilistic sense
(using the usual rule for composite probabilities) and (5) expresses
that the inverse reverses multiplication. If (A4, p) is a propability
group, one checks that the identity e is unique, ¢* = ¢, and (a*)*=a
for all ac A. We often denote (A4, p) simply by A. We let 4,
denote {(a, b, ¢) € A*|p.:(a, b) > 0} (i.e., the set of all (a, b, ¢) such that
“a-b-c could be ¢”). On easily checks:

PropPosITION 2.1. If A 1is a probability group, then (A, 4, e)
1s a Pasch geometry.

If A is a probability group and a € A we note p.(a, ¢¥) > 0 and
write h.(p) (or simply &,) for 1/p.(a, a®). If r is a positive integer,
we say A is r-integral if kY™ and p.(a, b)RYh}"/hL" are integers for
all a,b,cc A (here ( )’ denotes as usual the unique nonnegative
rth root). One can show that if A is finite and r-integral and r+1,
then A is 2-integral, so » =1 and r» = 2 are the two cases that
interest us. We call A abelian if p.(a, b) = p,(b, a) for all a, b, c € A.

ExXAMPLE 2.1. (see [6]), [3]. Let H be a finite subgroup of a
group G. For X, Y, ZeG//H (the set of double cosets), let

ps(X, Y) = |[«Hy N Z|/| H]|

where e X, ye Y (it is independent of this choice). We will check
this makes G//H into a probability group. The next lemma shows
this probability group is l-integral
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LEMMA 2.1. Let H be a finite subgroup of a group G. For
%, Y, 2€G,

|HzH|/|H| = [H|/|H N zHz""| = hgrm
which is an integer. Also
leHy N HzH |-|zHz"' N H|/(eHe' N H|-|yHy™ N H)

18 an integer.

Proof. Let f map H* onto HzH by f((h, hy)) = hi'zh,. Let
2Hz™ N H operate on H* by h-(h, h,) = (hh,, 2 'hzh,). Each orbit
has |zHz ' N H| elements, and f induces a bijection from the set of
orbits. This proves the first conclusion, since H N zHz™' is a sub-
group of H. Now let T = {(h,, h,) € H*|x *hi'zh,y ' € H}. One notes
T = f«Hy N HzH) so

|T|=|zHz'NH||xHy N HzH | .

Let the direct product of (xHx™*N H) and (yHy ' N H) operate on
T by (9., 9)(hy, hy) = (hugi*, hyy~'9:'y) for (hy, h,) € T. Each orbit has
leHx* N H|-lyHy™' N H| elements, and since the number of orbits
is an integer, the lemma is proved.

EXAMPLE 2.2 (see [6]). Let F' be a finite group of automor-
phisms of a group G. For X, Y, ZeG/F (the set of orbits), let

pAX, Y) = [{(®, v) e X X Yoy = 2}|-[Z|/( X]|-] Y]

where z ¢ Z (it is independent of this choice). We will check this
makes G/F into a 1l-integral probability group.

ExAMPLE 2.3 (see [5], [6], [11]). We say a probability group
A is sharp if for each a,becAdice A with p,/(a,d) =1 (i.e., the
underlying geometry is sharp). One defines a-b = ¢, checks a group
results, and so checks that a sharp probability group and a group
are essentially the same concept.

ExamPLE 2.4. Let (P, &) be a finite projective space (see last
section). Let m be a real number with m > 2 and such that every
line has exactly m -+ 1 points on it (so if & is not empty m is an
integer). Let P%= P U {e}, where e is some element not in P, and
let p.(e,e) =1 = p,le, a) = p,(a,e) for all aecP. Let p/la,a)=
1/(m — 1) and p.(a, a) = (m — 2)/(m — 1) for all acP. For a,beP
with @ # b and for ¢eL,, (the line through a¢ and b) with ¢ = a
and ¢ # b, let p,(a,b) =1/(m — 1). For those @, b, c€ P* for which
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p.(a, b) has not yet been defined, let ».(a, b) be zero. A long tedius
straightforward checking gives that this is an abelian probability
group (integral when m is an integer).

ExaAmMPLE 2.5 (compare [9]). Let G = {X,, *+*, X} be the set of
all irreducible characters of a finite group G. For y-6 eG, % 0 can
be decomposed %-0 = Yg; 4 (the sum over all +eG) where the
02,0+ are nonnegative integers. Let

2y(X, 0) = deg (¥)gy,0,y/(deg (6) -deg, () ,

where deg (I") = I'(1) for each I ed. Using some elementary pro-
perties of characters one checks this is a 2-integral abelian probabi-
lity group.

We will give more examples as we progress. By a probability
map f from a set A to a set B we mean a map, (a, b) — f,(a) (which
we read as “the probability that f(a) is b”), from A x B to the
nonnegative reals such that for each a € A4, fi(a) is zero for all but
finitely many be B and 2,f,(a) = 1. If g is a probability map from
B to a set C, we write gof for the probability map from A to C
where (gof).(a) = >, 9.00)f,(a) for all ¢ceC, acA. If for each
ac€ A3be B with fi(a) =1, we write f(a) for b, and call f sharp.
We may view each ordinary map from A to B as being a sharp
probability map. By a (probability) morphism from a probability
group A to a probability group B we mean a probability map f
from A to B such that:

(1) f(e) =1,

(2) fula® = fi(a) for all ac A, be B, and

(8) there exists a real constant v such that for all a,, a,e A
and beB

21 Pa(a; @) fo(@) = V(X 3 fol@)fu@n)pile, d))

(the sums over all a€ A, ce B, d € B respectively).

Note (3) says “the probability that f(a,-a,) is b is bounded by
v times the probability that f(a,)-f(a;,) is b”. We call a morphism
f strict if equality holds in (8), (for some 7, which must then
necessarily be 1). If f is both strict and sharp, we call it a homo-
morphism. If g is a morphism from B to a probability group C,
one checks that gof is a morphism from A to C, and gof is strict
(respectively sharp) if both ¢ and f are strict (respectively sharp).
Hence we have the category of probability groups (and the sharp
and strict subcategories). If f is a morphism from a probability
group A to a probability group B, we let 4, denote {(a,b)e A X
B|f,(a) > 0} and check this is a (geometry) morphism from (4, 4,, ¢)
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to (B, 4z e) (sharp if f is sharp and strict if f is strict). This
gives a natural functor from probability groups to Pasch geometries
(which preserves being strict and also being sharp). If » is a posi-
tive integer and A and B are r-integral probability groups, we say
a morphism f from A to B is r-integral if hi"f,(a)/hi" is an integer
for all ac A, be B. One checks these compose and give a category
(which contains the category of groups as a full subcategory).

If X is any subset of a propability group A, we write n(X)
for 3, h, (the sum over all xz€ X; recall h, = 1/p,(x, %)) and call
this the order of X; note it is finite if and only if | X | is finite.
Note always |X| < «n(X). If A is r-integral (for some positive
integer ) and A is finite, then each h, is a positive integer so n(X)
is an integer. By a subgeometry of A we mean a subset S of A
such that ec S, and p.(s, s,) >0, s,s,€8,ced imply ¢*e S (i.e., a
subgeometry of (A4, 4, ¢)). Note any such is a probability group in
its own right (by restricting » to S*). By the complex group
algebra of A, we mean the vector space C(A) over C (the complexes)
which has the elements of A as a basis and has multiplication
defined by linearity and a-b = 3, p.(a, b)c for all a, b € A. One checks
C(4) is an associative algebra with identity. We define aug: C(4)—
C and 0:C(4) — C(A) by aug G a.a) = S a, and o3, a,a) = 3, &,ak.
Here the a, are complex numbers, and &, is the complex conjugate
of @,. One checks aug is an algebra homomorphism and ¢ is a
semi-linear anti-isomorphism with o(o(v)) = v for all ve C(4). We
define an inner product on C(A) by (3 a.a, 3. 8:b) = 3, a.B.p.(a, af),
which one checks is linear in the lst variable, and satisfies (v,, v,)=
(V3 )y (V100 ¥5) = (v, v5-0(vy)) for all w, v, v;€ C(4). Also, if v+0,
v€C(A), then (v, v) >0 (where for acC, @ >0 means a is real
and @ > 0). If &, = h,: for all a € A (which we will see is the case
if A is finite or abelian), then one checks (v, -, v;) = (v, 6(¥,) + v,)
and (o(v), 0(v,) = (v, v,) for all », v, v,€ C(4). If r is a positive
integer and A is r-integral, by the r-integral group ring Z[A] we
mean the free Z-module over Z (the integers) which has a basis in
bijective correspondence with A, w, «— a, and which has multiplica-
tion defined by linearity and

Wy Wy = Z (pc(a’ b)htlzlrh]l;lr/hlclr)wc

for all a,be A. By taking w, = hi'"a € C(4), for each a € A, we can
take this ring as a subring of C(4). Then o (restricted to the
subring) gives an involution of Z[A], the inner product (also
restricted to the subring) maps to Z, and aug (restricted to Z[A])
also maps to Z.

The first two conclusions of the next result are from [6].
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PROPOSITION 2.2. Let S be a finite subgeometry of a probability
group A. Let ug = >, (h/n(S))scC(A) (the sum over all seS).
Then u: = ug = o(us) and for any s€S, hf =h, and s-ug = Ug-s =
us. If for any X, Y, Ze€ A//S, we let

pAX, V) = 2, Z 2. pa(, $)p.(a, Yh,/n(S)

where x€ X, y€ Y (the sums over all s€ S, all z€ Z, and all a € A),
then this is independent of the choice of x€X and y€Y and
makes A//S into a probability group. us-C(A)-us is isomorphic to
C(A/IS) by 3 a0 — > aals. The natural map from A to AJ/S is
a sharp morphism. For each YeA/llS, Y is finite and n(S)-hy =
w(Y). If A is finite, then n(S)-n(A//S) = n(4).

Proof. Although the first two conclusions could be simply
quoted, for the reader’s convenience we outline a complete proof.

For s, 8, 8,€8 X, (51, 8)D.(a, 81) = 3. Du(81, A)Da(3, 81) 50 D,,(s,,
8)D(8y 83) = (81, 8D(s, sE) 50 D, (8, s, = DS, 8Dh,, sO

s+ = 25 35 (hey/n(S))Pu(81, 8)8,, = 20 2 (/S )Pii(s, sD)s:

Sp 82

= Z (hsy/n(S))8, = Uy «

Also aug (ug) = n(S)/n(S) = 1. These two properties characterize
us as an element in C(S), for if v, w € C(S) with aug (v)=1, aug (w)=
1, and v-s = v, w-s = w for all se S, then v-o(w) = v aug (c(w))=v
(since aug (¢(v)) = aug (v) = 1) and w-0(v) = w aug (c(v)) = w so v-
o(w) = a(c())-oc(w) = o(w-0(v)) = o(w) and thus v = o(w). Applying
this first with w for v we get w = g(w), and then applying it with
a general v, we get v = w. Since ug = o(ug) (from letting w be uy)
we have h, = h,: for each s€S. For s,s,€8, aug (s,-us) = aug (s))-
aug (ug) = 1, and (s, Ug)+s =8, + (Ug+8) = 8, - Ug SO 8, Us = Ug. Also
Us Us = Us AUE (Us) = Ug.

We make Hom, (C(A), C) into a two sided C(A)-module, by defi-
ning (v,-f-v,)(vy) to be f(v,-v,-v,) for wv, v, v,€ C(4) and fe Hom,
(C(4), C). Let u be ug and let h =u-f-u for some f in Hom, (C(A),
C) with f(x) = 0 for all xe A. Then for s, s, €S and ac A4,

(8;°h-s,)(@) = h(s;-a-5,) = f(U-s;,-a-8,-u) = flu-a-u) = h(a),

so if we write p.(s, a,s,) for >, p.s, b)p,(a,s,) we have h(a) =
> D5y, @, sp)h(c). We also note that ce[a]s if and only if 3s,s,€ S
with p.(s,, a,s,) > 0. Since S is finite this implies [a]; is finite. Note
h(c) = 0 for all cc A, as is seen by expanding h(c) = f(u-c-u) and
using that f has this property. Choose z€[a]s such that h(z) = h(c)
for all ce[a]s. Then for s, s, €S,
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2,08y, 7 8)(h(2) — h(e) = h(z) — h(z) = 0

so for all ¢ with p.(s, a, s,) # 0, h(z) = h(c) (since all these numbers
are nonnegative reals). Letting s, and s, vary over all possible ele-
ments in S, we have Ai(z) = h(c) for all celals. Thus fu-x-u) =
fuw-c-u) for all z, cela]s. For each de A let f be f;, where f, is
defined by linearity and f,(y) = 1 or 0 according as ¥ is or is not d,
for all ye A. This gives u-x-u = u-c-u for all z,celals. Thus
for Xe A//S we can unambiguously write w-X-u for u-.-x-u where
x€X. The set of all u-X-u with Xe A//S certainly generate
u+-C(A)-u, and if >, ayu-X-u = 0, taking ( , d) gives a, = 0 where
Y = [d]s. Thus this set is a basis of u-C(A)-u. If X, YeA//S,
one checks

w-Xuw-u-Y-u=>9,X, YVu-Z-u ,

where the sum is over all Ze A//S. One now easily checks these
0,(X, Y) satisfy the axioms of a probability group (using the fact
that u-C(A)-u is an associative ring closed under o).

One checks the natural map from A to A//S is a morphism
with %(S) for constant. Using (2) and (4) of the definition of a
probability group, one checks p.:(a, b)h, = D.:(b, ¢)h,z. Let Y e A//S.
For y,€ 7Y, and s, te S, p.(z, s)p,(a, y) =0 unless xe€ Y. Hence

ps(Y, Y“)@ h,) = Zy s(Y, Y9h,
= ; Z tZ > (Y, s)pla, yDh,h,/n(S) ,

aPgq

where the first three sums are over all ye Y, the next two are
over all se S, teS, and the last is over all a € A. This in turn is

Zb E Et.'. Za, Da(b, 8)pa, yHh, [0 (S)
= 213030 3 0ie(s, aDhapi(a, yDh[n(S)
= 2,31 3 hap (@, YDh/n(S)
= 33 5 pall, 9k /n(S)
= 2 X b /n(S) = n(S)n(S)/n(S) = n(S) ,
where each s and ¢ are summed through S, and each ¢ and b are
summed through A. This proves n(S)h, = n(Y). If A is finite,

summing over all Y gives the last result, and the proposition is

proved.
The above proposition does not cover the obvious case in which

A is sharp and S is normal but possibly infinite. For this we want
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the following generalization of A being finite. We say a probalility
group A is of discrete probability type if for each a € A there is a
finite set F', of real numbers with p,(a, b) € F', for all z,bc A. We
call a subgeometry S of A normal if p,a,db) >0, se€8, a,bc A
imply p,(, @) > 0 for some te S (i.e., if S is normal in (A4, 4, ¢)).

PROPOSITION 2.3. Let S be a normal subgeometry of a probabi-
lity group A which is of discrete probabitity type. For X, Y, Ze
A/IS, let p,(X, Y)=>,0.(x,y) (the sum over all zeZ), where
xeX, yeY. Then this is independent of the choice of re X and
yeY, and makes A//S into a probability group of discrete probabi-
lity type. The natural map f from A to A//S is a (probability)
homomorphism of A onto A//S. If S is finite, the notation of this
and the last proposition agree. Let B be a probability group and
let g be a (probability) homomorphism from A to B. Let K, =
{a€ Alg(a) = e}, and I, be the image of g. Then I, is a subgeometry
of B, K; is a normal subgeometry of A, f induces a (probability)
isomorphism f from A[/K; onto I;, and f can be factored as f =
iofoj where j: A— AJ/K; and i: I, — B are the natural (probability)
homomorphisms.

Proof. Let Y, Zec A//S, ac A. For any x € A let f(x)=>, ».(a, x)
(the sum over all ze Z). Extending f by linearity, we get it in
Hom/(C(A), C). For be A,seS

fb-s) = Z p.(b, 8)f(c) = Z 2 p.(b, s)p.(a, ¢)
= 53 p.(a, )p.d, 9)
and since p,(d,s) is zero unless de€ Z this is >, >, v.(a, b)p,(v, 5)

(where v and z are summed over Z) and since p,(v, s) is zero unless
we Z this is

; Z D,(a, b)p,(v, ) = Z p.(a, b) = f(b) .

Now choose y,€ Y such that f(y,) = max{f(y)|ye Y}. There are
only finitely many finite sums of elements in F, which are bounded
by 1 (using A is of discrete probability type) so the above maxi-
mum exists. For s€S we now have

2.2, $)(f (W) — W) = X 2u¥s, $)(f (¥0) — f(w))
=) — f(Wors) =0

so if »,(y,, 8) >0, f(¥,) = f(y). Now for any ye Y3s,s,€S, y,¢Y
with (y,, s, ¥, (¥, ¥ 8)) €44. Thus f(y,) = f(y) and (s}, y, ¥} € 4,,
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so 3s,€ 8 with (y, s, ) €4 so f(y) = f(y). Thus f(y,) = f(y). This
proves the sum 3>}, p.(a,y) (over all ze Z) is independent of the
choice of y€ Y. Replacing Z by Z*and using »,(a, ¥) = 0.:(¥% a*) we
get that if ae Xe A4//S, then p,(X, Y) is well-defined. Now the
rest of the proposition is easily checked.

For future use we give a slight strengthening of this last pro-
position. For f a strict morphism from a probability group A to
a probability group B let K; denote {a € A|f.(a) = 1} and I, denote
{be B|3a with f,(a) > 0}. One checks K, is a subgeometry of A
and I, is a subgeometry of B. Now assume A is finite and let j
be the natural map from A to A//K,, and let ¢ be the natural map
from K; into B.

LEMMA 2.2. Let the notation be as above. Then there exists a
unique strict morphism g from A//K; to I; with iogoj = f.

Proof. For a,, a,e A write a,La, (respectively a,Ra,) if I3se€ K;
with (a,, s, af) € 4, (respectively (s, a,, af) € 4,). One checks these are
both equivalence relations. For beB and X an equivalence class
for L choose z,€ X with f,(x,) = max {f,(x)|x€ X}. For s&S one
checks

Zx. (fo(@e) — f3(2))D,(2y 8) = 0 .

Hence z,La implies f,(x,) = f»(x). Hence x,Lx, implies fi(x,) = fi(,).
Similarly we show y,Ry, implies f,(y,) = f»(¥,). Now one checks
that if a,, a,€ A with [a,] = [a,] in A4//K;, then 3a, with «,La, and
a;Ra, so fi(a,) = fi(a,) = fi(a,). We can define g,([a,]) to be fi(a,),
and have this is well-defined. A long straightforward check shows
g is a strict morphism and proves the lemma.

Propositions 2.3 and 1.8 now immediately give:

PROPOSITION 2.4. Let A be a probability group of discrete pro-
bability type. Let S be a subgeometry of A and T be a mormal
subgeometry of A. Then

ST =8//(SNT).
PROPOSITION 2.5 (see [6]). Let S be a finite subgeometry of a

probability group A. Let T be a finite subgeometry of A with
SS T. Then

(A/ISHIKT|IS) = A]T .
Proof. By Proposition 2.2 ug-C(A)-us is isomorphic to C(4//S)
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and %5 C(A//S) s, is isomorphic to C((4//S)//(T//S)). If ¢ is
the first isomorphism, one checks @(u;) = U5, SO Up-C(A)Up =
Uy - Ug+ C(A) - ug - u, is isomorphic to C((A4//S)//(T//S)). One checks
the map is the natural map (the same one as in Proposition 1.4,
which we now have preserves probabilities).

LEMMA 2.8. Let B and C be subgeometries of a probability
group A which is of discrete probability type. Let B’ be a mormal
subgeometry of B and C’ be a mormal subgeometry of C. Then
B'-(BNC" is a normal subgeometry of B'-(BNC), C'-(B'NC) is a
normal subgeometry of C'-(BNC), and

B-BNnC)//B-«(BNnC)=C"-(BNC)/|C'"-(B'NC).

Proof. One checks BN C is a subgeometry of C, so C’-(BNC)
is a subgeometry of C. (¢, x,y)ed,, ¢'c€C’, z,yeC'-(BN C) imply
xz,yeC so 3d’' e C’ with (d’, y, x) e 4,. Thus C’ is a normal subgeo-
metry of C'-(BNC) so

C'-BNC)//IC"=BnC//C'N(BNC)
and C'N(BNC)=C"NAB is a normal subgeometry of BN C. Thus
C'-BNC)/IC'"=BNC//IBNC'.

By interchanging B and C the above argument gives B’ is a
normal subgeometry of B’-(BNC), B'NC is a normal subgeometry
BN C and

B-(BNnC)//B=BnC//BNC.

Thus D = (BN C")-(B' N C) is a subgeometry of BN C. Let (d, x, %) €
4,y deD, x,ye BN C. There exists d,e BNC’, d,e B'NC with
d,, dy, d) e 4,. By an argument using Pasch’s axiom one gets there
is a weBNC with (df, z, w¥, (df w, y)ed,. Thus there exist die
BnC’, dte B NC with (df, w* x), (i, vy, w)ed, so (y,=x,d,), (df di,
d)ed, so (d, di, d))ed,. Thus d, d, d;) €4, where d,eB NC.
Thus (d,, dy, dy) €4, so d,eD. This proves D is a normal sub-
geometry of BN C.

Define a map f from C’'-(BNC) to BN C//D as follows: for
(¢,b,x)ed,, ¢’eC’, be BNC, let f(x) be [b¥],. One checks this is
well-defined. One checks f is a surjective (probability) homomor-
phism with

K;=C'-DNnBNC)=C"-BNC).

First applying Proposition 2.3, and then interchanging B and C
gives
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cC'-(BnC)//C'-B'nC)y=BNC//D=HB-BNC)/B"-(BNC").

The lemma is proved.

We call a probability group A simple if it has exactly two
normal subgeometries (4 and {e}). A finite probability group 4 will
have a chain of subgeometries

A=A242---24,=1{

such that A4,,, is a normal subgeometry of A;, and A,//A,., is simple
for 1=0, ---,n—1. We call n the length of A and call {4,//A,, |i=
0, -+, n — 1} the sequence of simple composition factors; using the
lemma and the usual argument, one gets the length is well-defined
and the sequence of composition factors is unique as an unordered
sequence. The above proof is complicated by the fact that an inter-
section of normal subgeometries apparently need not be normal.
Let A, B be probability groups. We define

p(avbl)((azr b,), (as, by) = pal(azy as)pbl(bz, b,)

and check that this makes A x B into a probability group (see [6]).
For notation we let Shp (respectively Stp) denote the category of
all probability groups with sharp (probability) morphisms (respec-
tively with striect probability morphisms). One checks the natural
map from A x B to A (and also the one to B) is in Shp and the
one from A to A X B (and also the one from B to A x B) is in Stp.

PROPOSITION 2.6. For A, B, C probability groups, we have a
natural identification

Shp (C, A x B) — Shp (C, 4) x Shp (C, B) (h —— (psoh, ppoh))

and if in addition C is abelian, we have another natural identi-
fication

Stp (A x B, C) —— Stp (4, C) x Stp (B, C) (b —— (hoin,, hoiny)) .

Proof. The first part is easily checked. Let C be abelian. For
feStp (4, C), geStp (B, C), define i by

h.((a, b)) = Z chcl(a)gcz(b)pc(cu C,)

for all ¢c€C, ac A, be B (here the sums are over all ¢, ¢,€C). One
checks heStp (4 x B, C) and hoin, = f and hoiny = g. The rest of
the proposition is easily checked.

Let G be a group (for simplicity; one can do what follows for
G an arbitrary probability group much as was outlined in the last



DOUBLE COSET AND ORBIT SPACES 473

section). By a G-probability group we mean a probability group
A together with a group homomorphism, a~ f,, of G into the
group of (probability) isomorphisms of A to itself, such that for
each ac A, {f.(a)|acG} is finite. We usually write a(a) for f,(a).
Let A and B be G-probability groups. By a G-morphism from A
to B we mean a morphism f from A to B such that f,;(a(a)) =
fola) for all ace A, beB, acG. One checks these compose so we
have the category of G-probability groups. One checks A X B is
made into a G-probability group by defining a@((a, b)) = (a(a), a(d))
for all ¢€@G, (a,b)e A x B. If A is a G-probability group, we note
(4, 44, ¢) is a G-geometry. By a G-subgeometry of A we mean a
subgeometry S of A such that a(s)eS for all se€S, aeG. Such
is clearly a G-probability group in its own right. One can check
that all the previous propositions of this section hold with “proba-
bility group”, “morphism”, and “subgeometry” prefixed everywhere
they appear by “G-".

Let H be a subgroup of the group G. Let A be a G-probability
group. Then A is naturally an H-probability group (by restricting
the operation to H). In particular, A/H = {{(a)y|a € A} is a set of
finite subsets of A (here {(a); = {a(a)|le¢c H}). For X, Y, Zc A/H
let

PAX, Y) =23, 3 p:(%, NIZI/(AX]-[ Y],

rzeX

where z e Z.

PROPOSITION 2.7. Let H be a subgroup of a group G. Let A
be a G-probability group. Then the p,(X,Y) defined above is
well-defined and makes A/H into a probability group. For each
XeAllH, hy =n(X) = h,|X]|, for any x€X. If A is finite, then
nw(A/H) = n(A). If H is normal (a restriction only for simplicity),
then A/H is a G//H-probability group. Also (A/H)/(G//H)= A|G.
In any case, if | X| is bounded for X e A/H then the natural map
from A to A/H is a sharp morphism.

Proof. If we extend by linearity H operates on C(4) by ring
automorphisms. We let C(4)” denote the subring of all elements
left element-wise fixed by each ac H. For each Xc A/H let vy =
S x)/| X | (the sum over all x€X). One checks the vy, for Xe
A/H, are a basis of C(4)”? and vy-vy = D, p,(X, Y)v, forall X, Ye
A/H. With this one easily checks the proposition. If H is normal,
the operation of G//H on A/H is given by (a-H)({x)y) = {a(®))y
for all xe€ G, x€ A. The rest can be checked.

CoMMENT 2.1. Let A be an H-probability group as in the last
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proposition. For Xe A/H, ae A, let f,(X) be 1/|X| if a€ X and be
zero otherwise. Then f is a strict morphism from A/H to A. If
A is l-integral one can check A/H is also l-integral and f is 1-
integral. If g is the natural map from A to A/H, then gof is the
identity map.

ProOPOSITION 2.8. Let H be a group. Let A be an H-probability
group. Let S be a finite H-subgeometry of A. Then the matural
map between (AJ/S)/H and (A/H)//(S/H) (see Proposition 1. 11) s a
probability isomorphism.

Proof. Using the notation of the last proof, let @ be the
isomorphism spoken of there from C(A4/H) to C(A)?. One checks
that @(um) = us. Thus @ maps gy, C(A/H) Uy isomorphically
onto wug-C(A)7-u;. One checks that ug-C(A)7-ug = (us-C(A)-ug)".
Using that ug-C(A4)-us is isomorphic to C(A4//S), one can combine
these isomorphisms and check that the proposition is true.

Let G be a group. For A a G-probability group, one checks
A x G with

Pe.n((a, @), (b, B) = p.a, a(b))p,(a, B)

is a probability group; we denote it by A X G. A x {1} is a normal
subgeometry and {e} x G is a subgeometry, of A x G and if G is
finite, A X G//{e} x G = A/G. 1If f:A—FE is a G-morphism to
another G-probability group E, one checks fio,w((®, B) = fu(0)dus
(Kronecker delta) is a morphism from A X G to E X G. Conversely,
if C is a normal subgeometry of a probability group B and D is a
finite subgeometry of B with D sharp, C-D = B, and CN D = {¢},
then C is a D-probability group in a natural way and B= C x D.

For S and A G-probability groups we call a G-homomorphism
J: S — A central if p,(f(s), a) = p.(a, f(s)) for all se S, a,xc A (note
if A is abelian this is certainly the case).

We use the customary term of G-module for an abelian G-group
(i.e., abelian sharp G-probability group). Let S be a G-group (so
not necessarily abelian). By an S-G-probability group we mean
a pair (f,, A) where A is a G-probability group and f, is a strict
G-morphism from S to A. One checks then f, must be a G-homo-
morphism. We often denote (f,, A) simply by A. Let A and B
be S-G-probability groups. By an S-G-morphism from A to B
we mean a G-morphism g from A to B with gof, = fz. We let
Shps_«(A, B) (respectively Stps_¢(4, B)) denote the set of all S-G-
morphisms which are in Shp (4, B) (respectively Stp (4, B)). By
Proposition 2.6, there is a unique sharp G-morphism f from S to
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A X B with p,of = f, and pzof = fp (simply f(s) = (fu(s), f5(s)). One
checks (using S as a group) that f is strict, and so makes A x B
into an S-G-probability group. We denote f by f. X fs By
Proposition 2.3 the image I of f, X f3 is a G-subgeometry of A x B.
In general, we cannot make A x B//I into an S-G-probability group,
but when S is abelian, both A and B are of finite probability
type, and both f, and f; are central we proceed as follows. S an
abelian group implies s — s™! is a G-isomorphism (thus strict), so if
#s) = fa(s™) for all se S, f} is a strict G-morphism (actually a G-
homomorphism) and makes B into an S-G-probability group. We
let I be the image of f, X f4, note I is a normal G-subgeometry of
A x B (using Proposition 2.3 and that both f, and f; are central),
check that A x B is of finite probability type, and let A X B
denote the G-probability group A x B//I (which exists by Proposi-
tion 2.3). By Proposition 2.3 the natural map ¢g: A x B— A X3 B
is a G-homomorphism (so strict). Letting 1,(s) = eVse S we check
that 1, is a strict G-morphism and that f, x 1, is strict, and use
go(fa X 1p) (i.e., s+ [(fu(s), €)];) to give A X B the structure of an
S-G-probability group. One checks go(f, X 1) = go(1, X fx).

PROPOSITION 2.9. Let G be a group and S be a G-group. Let
A, B, C, be S-G-probability groups. Then we have a natural iden-
tification

Shps_+(C, AX B) «—— Shps_4(C, A) X Shps_4(C, B) (b «—— (p4oh, Dzoh))

and if in addition C 1is abelian, S is abelian, A and B are of
finite probability type, and f, fz are central, we have another
natural identification

Stps-(4 X5 B, C) «—— Stps_a(4, C) X Stps_a(B, C)
(h —— (hogoing, hogoing)) .

Proof. The first part is easily checked (using Proposition 2.6),
so we make the assumptions for the second part. This part follows
easily from three lemmas. Now f, and f, induce algebra homomor-
phisms (which we denote by the same names) f,: C(S) — C(4) and
fz: C(S)— C(B). Since f, and f, are central, these make both C(A4)
and C(B) into C(S)-algebras, and similarly C(A X B) is a C(S)-alge-
bra. Each of f,, f5, fu X f5 is a G-homomorphism, so by Proposition
2.3 its image (which is isomorphic to a factor group of S) is a
subgroup and the next lemma applies.

LEMMA 2.4, Let T be a sharp subgeometry (i.e., a subgroup) of
a Pasch geometry D. Then for teT,deD3 unique x€D with
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d, t, ) ed,. We denote x by d-t (t-d is defined similarly).

Proof. Let (d,t, x%, (d,t, y*)€d,. Then Iwe D with (w, t t),
(w, ¥*, x) e 4,. Thus w =e so ¥y = x.

LEMMA 2.5. C(A XsB) = C(A) Qcis) CB) as C(S)-algebras, by
linearity and [(a, b)]; — a @ b.

Proof. C(A) Q.5 C(B) is C(A) @.C(B)/W, where W is the sub-
space spanned by all

(a-f4(8) ®b —a®(fs(s):b), where ac A,beB,scS.

Each such term may be written (using f, is central, S is a group,
and letting ¢ be f;(s)-b)

(fuls) R Fiis) —e®e)-(a Qec), where ac A,ceB,seS.

Using that I is normal one checks for a,, a, € 4, b, b, € B that [(a,, b,)],=
[(a;, b,)]; if and only if 3se S with (fu(s) ® fi(s))-(a, ® b)) = (¢, @ by).
Thus if we extend the map [(a, b)];+— ¢, ® b, + W by linearity we
get a well-defined C-homomorphism which one can check is bijective

and preserves multiplication and also multiplication by elements in
c(S).

LemMA 2.6. Let D, H be probability groups. Then Stp (D, H)
18 in bijective correspondence with the set of all algebra homomor-
phisms f from C(D) to C(H) such that fooc = oof and f(P(D)) <&
P(H) (where P( ) is the set of linear combinations with monnega-
tive coefficients which add to 1).

Proof. Letting feStp (D, H) correspond to the linear map
which takes deD to >, f.(d)h, this is easily checked. Now the
proof of Proposition 2.9 is easily concluded using usual properties
of the tensor product.

Now let A be a finite probability group. The group ring C(4)
is semi-simple (for if J is the radical, J™" =0, J™ % 0, ve J™, then
ow)ed™ so v-o(v) =080 0= w-0(v),e) =, v) sov=0). Thus the
Wedderburn theorems give that C(A) is a direct sum of complex
full matrix rings. Now suppose A is abelian. Let A denote the
set of all maps f from A to C such that f(e) =1, and

2 Palb, e)f(@) = f(b)f(e)

for all b, ce A. Since these correspond to the algebra homomorphisms
from C(A) to C, they are a basis of the algebra Map (4, C) of all
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maps from A to C with component-wise addition and multiplication.
I-Ience there exist uniquely defined complex numbers 5,(X, ¥, 6, X, 4r €
A with

Yoo = ;ﬁﬂ(x, w6, for all X, ye A .

We call A (in the spirit of [5], [6], [11]—they consider more than
the finite case) dualizable if D,(X, ) is a nonnegative real for all
a, X,ape/f. If this is the case, one can check then (A4, P) is an
abelian probability group (which is dualizable) and if (A, p) = (B, q)
then (B, §) = (A4, p). If G is a finite group and F is the set of inner
automorphisms of G, then G/F is an abelian probability group
(Example 2.2) which is dualizable with dual G (Example 2.5). If
(P, &) is a finite projective space, then (P% p) is an abelian proba-
bility group (Example 2.4) which is dualizable with dual coming
from the projective space which has hyperspaces for points, and
hyperspaces containing a subspace of codimension two for lines
(i.e., the usual dual). If A is G//H for G a finite group, A is duali-
zable ([10]). Even when A is not dualizable we have the following:

PROPOSITION 2.10. Let A be a finite abelian probability group.
Let XeA. Then X(a*) = X(a) for all acA. Define X* by Xia) =
X(a*) =TX(a) for each ac A. Then X*c A and aug € A (where aug (a)=
1 for all acA). Also DX, X% is a positive real nmumber. We
denote its reciprocal by hy, and we let fn(fi) denote >\ h; (the sum
over all Xefi). Then n(ﬁ) = n(A), and using the Kronecker delta,
we have for any X, n,/reff, b,cecA

> hohyX(a)y(a) = n(A)oy,y (the sum over a € A), and

S hahoX(@3X(B) = n(A)d,., (the sum over Xe A) .
x

Proof. Let n, denote 3, |X(a)|*h,, which is certainly a positive
real number. Let v denote >, X(a®)h,a € C(A). For any be A, by
direct computation (together with (2) and (4) of the definition of a
probability group) w-b = vX(d), v +0, and +* = kv where k=
S X(@HX(a)h,. k =0 since C(A) is semi-simple. Let u; (or ) denote
k7v. Then w +#0, u*=wu, and u-b = uX(b)vbe A. One checks
directly that any element in C(4) with these properties must be u.
Now let X° be defined by X°(a) = X(a¥) for all a € A. One checks X’¢
A. Taking o( ) of u-b = uX(b) gives b*-a(u) = X(b)o(u), s0 o(uy) =
Up. But 0 < (uy, Uy) = (Uz-0(Uy), €) 80 Uyz-Up = 0. But for each
be A, Uy Up-b = Uy upX’(d) and wu,-uy is an idempotent, so u;-up =
Up. Similarly, wpe-u; = uy. Since ug-uUzp = Up- Uy, We have U, = uy.
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Multiplying this by any ac A, gives X%a) = X(a), and thus X(a¥) =
X(a). Substituting above, we get n, = k. One checks X* and aug are
in A. Extending 2 by linearity gives an algebra homomorphism
from C(4) to C. Now let a/reﬁ. For ac A, uyp-a = uypy(a) so
Xup)X(a) = X(uyp)y(a), so if X+, choosing a appropriately we get
X(uy) = 0, while if X = 4, X(u,) = > X(aHhX(a)/n, = 1. Thus X(uy) =
0yv. In particular, X(Use) = 0yaue. But ey = > (ho/n(A))a so
> (ho/n(A)X(a) = 0,00 Thus

ﬁaug(xy "ﬁ\#) = ; ﬁe(X’ “ﬁ'#)aﬂ,aug = 02 ; ﬁe(xy "F#)haﬂ(a)/n(A)
= 2 (ha/n(A)X(@)¥¥(@) = U3 (ha/n(A))p(a¥)a)
= (y/n(A)X(y) = (Ny/1(A))0; 5 .

Since both ny and n(A) are positive real numbers, we have D, (X, 4%
is nonzero if and only if X =+. Also h, = n(4)/n,. Plugging this
in X(uy) = 0,4 gives

S hahy L@@ = n(A)rs -

This can be written as that the product of two appropriate matrices
is the identity. Hence their product in the other order is the iden-
tity, so

2 kX (@)X(b) = n(A)0as -
X
Letting a = b = ¢, we get n(4d) = n(4).

PROPOSITION 2.11. Let A be a finite dualizable abelian probabi-
lity group. Let S be subgeometry of A. Let S+ = {Xeff!%(s) =1
vseS). Then S* is a subgeometry of A, both A/lS and S are
dualizable and

S A~ ~
A4//S)y=8+, S=A/8+.

Also S+ S* is an order inverting bijection betweien the set of all
subgeometries of A and set of all subgeometries of A. Also n(S*) =
n(A)/n(S) and (SH)* = 8.

Proof. First one checks that the restriction to S (which we
denote by @) satisfies the rules that would make it a homomorphism
if S is a probability group. In particular 3 9,X, v*) (the sum over
all e S*) is zero if p(X) = @(¥) and is nonzero otherwise for X, 4
A. Hence if (0, X, ¥) e 4 with 6, X e S*, then (X, v, 6) € 4 50 DX, ¥)>
0 so o) = P(X*) so e S*t. This proves S* is a subgeometry of
A.
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For XeS*, we extend X by linearity and note X(us) = 3, (h,/
n(S))X(s) = 1. Thus if a,bec A with us-a-us = ug-b-us, then X(a) =
X(b). Since ug-C(A)-us = C(A//S), we have a well-defined map from

S
S+ to (A4//S) which is a bijection and preserves the probabilities.
Since S* is a probability group, A//S is dualizable. We also have
S
n(S*+) = n(A)/n(S), since from the last proposition n(4//S) =
n(AJ[S) = n(A)/n(S). X

Now oneAchecks that @ induces a bijection from A//S* onto a

subset I of S, and this bijection preserves probabilities. Thus

n(I) = n(A)/S*) = n(A)/n(S*) = n(A)/(n(A)/n(S)) = n(S) = n(S) .

Since n(l) =n(§) we must have I=3S, so S is dualizable and
AJ/S*+ = §.
We now have

n(S) = n(A//S*) = n(A)/n(S*) = n(A)/n(S*)

andAreplacing S by S+ we have n(S*) = n(ﬁ)/n(S“) so n(S)=mn(4)/
(n(A)/n(S**)) = n(S**+). Since S & S** the proposition is proved.

PROPOSITION 2.12. Let H be a finite group and A be a finite
abelian dualizable H-probability growp. For acH, Xe A, define
a)e A by (@)(@) = X)) for all ac A. This makes A into an
H-probability group. Also A/H is dualizable and

S ~
(A/H) = A/H .

Proof. It is straightforward to check A is an. H-probability
group. Every idempotent in C(4) is some sum of the minimal non-
zero idempotents wu,, XecA (see proof of Proposition 2.10). But
C(A/H) = C(A)" (see proof of Proposition 2.7). Now one checks that
for o€ H, a(u;) = Uq.q, and if for XeA/H uy denotes >, u, (the
sum over all X e X), then the uy, Xe¢ A/H, are exactly the minimal
nonzero idempotents of C(A)?. For Xe A/H and Ye A/H we let
Px(Y) denote 3, X(y)/| Y| = 3, X(%.)/| X | for %, e X, y,€ Y (the first
sum over all ye Y and the second over all Xe X). One checks
®(Y) is independent of the chice of X, ¢ X, y,€ Y, and

ux(Z YY) = Px(Yuy .

This means X— @, ( ) is a bijection from A/H onto (A/H) But
A/H is a probability group (Proposition 2.7) and one checks

Px(Y)-Pp(Y) = 3. P(X,, X)P(Y)



480 D. K. HARRISON

(here X, We A/H, Ye A/H, the sum is over all ZcA/H, and $ is
defined as in Proposition 2.7 with A replaced by A). The proposi-
tion is proved.

ProPOSITION 2.13. Let A and B be finite abelian dualizable
probability _groups. For (b, a)1—>f,,(a) a map from B x A to C,
let (X, 6)— f,(0) be the map from A x B to C defined by

F.6) = 2. 2 (@)X (@b ha/n(A) -

Then f is a (probability) homomorphism if and only if Fis a
(probability) homomorphism. Also if g = f then § = f (after iden-
tifying each of A and B with its double dual). Thus the category
of finite abelian dualizable probability groups with homomorphisms
18 self dual.

Proof. For ac A let f(A) denote >}, f,(a)b, and then extend f
to a linear map from C(4) to C(B). Extend each 6 ¢ B by linearity
to an algebra homomorphism from C(B) to C. Doing the same thing
to f and each Xe A, one checks using Proposition 2.10, that f(0) =

Gof for each #ec B. Thus by vector space duality j=fif f=g
(after the proper 1dent1ﬁcatlons) If f is a homomorphism, f maps
B to A, so for 6,0,eB, acA

;m@wmwmw=;m@mmuw»=uﬂWﬂwm»'
=ﬂmw$ww=gmﬂmiwmw,

and since this is true for all «,
3. Do0: 0)70) = 3, DS ©0.), F O

which implies f is a homomorphism. Now this same argument with
f replaced by f proves the proposition.

COMMENT 2.2. The self dual category of the last proposition
does not have products or coproducts so falls short of being abelian,
but is exact ([2]).

COMMENT 2.3. Let A, B be finite abelian dualizable probability
groups as in the last proposition. A map f from A to B determines
a unique map «, (4, X) — a,(@), from B x A to C with

Oof = X, ()X

for all 6e B. One checks a is f. We call f dualizable if for each
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6, the a,0) are nonnegative and add to 1. One can check f— 7 is
a bijection from the dualizable maps from A to B onto the strict
morphisms from B to A.

Let » and s be positive integers. We say a finite dualizable
abelian probability group A is (7, s)-integral if A is r-integral and
A is s-integral.

PROPOSITION 2.14. Let » be a positive integer. Let A be a
finite r-integral probability group. Then if r+ 1, A is 2-integral.
Assume further that s is a positive integer and A 1is a finite
dualizable abelian (7, s)-integral probability group. Then if S 1is
any subgeometry of A,A n(S) divides n(4). Also if r and s are not
both 1, for each XeAA, hY® divides m(A) (so by duality, for each
ac A, hl" divides n(A) = n(A4)).

Proof. For a,b,ce A,
m(a, b) = ,(a, O)RI"hy" (R

is a nonnegative integer. Letting ¢ =¢,b = a* we get (using Pro-
position 2.2 to show h, = h,) h, divides (hY7)’. If »=2, (A")¥(hL") 2=
h. gives that (k") divides h,, so (b)) = h, so hl" = hl%. With
this one checks A is 2-integral. Now suppose A is dualizable
abelian (7, s)-integ/ril. If S is a subgeometry, n(S)n(4//S) = n(4)
and n(4//S) = n(4//S) = n(S*) is an integer, so »(S) divides n(4).
Let XeA. The w,=hi"a, ac A, generate a subring of C(A) which
is finitely generated as an abelian group. Thus the same is true of
the image of the extension of X (by linearity) to this ring. Hence
hY"X(a) is an algebraic integer for each a € A. Now assume 7 and
s are not both 1. By Proposition 2.10,

S hJX(@)X(@) = n(A)/h, .

Case 1. r #= 1. Then A} = hl* so hi*X(a) and AL*X(a) are both
algebraic integers, so n(4)/h, is an algebraic integer and a rational
number. Thus &, divides n(4). But hY*-(h}*)** = h, so hY* divides
h,.

Case 2. » =1. Replacing A by A in an above argument gives
hi*X(a) is an algebraic integer. Thus

> h (@)Y (@) = n(A)/(RY*)
is an integer, so (hy*)*"" divides n(4), and since s = 2, hY* divides

(hy*)y*. This proves the proposition.
We end this section with a structure theorem which characteri-
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zes finite projective spaces. If (P, &) is a finite projective space
with not both P and & empty, and if m > 2 is a real number
such that every line (i.e., element of &) has exactly m + 1 points
on it, then the probability group P* of Example 2.4 is not sharp,
and every a € P* is in a subgeometry of P* which contains two or
less elements (i.e., [{{a})| £ 2). (P, &) and m are easily reconstruc-
ted from P* so are uniquely determined by P*.

PROPOSITION 2.15. Let A be a finite probability group such
that [{a})| =2 Vae A (where {{a}) denotes the subgeometry generat-
ed by a). For simplicity assume A is not sharp (i.e., not a group
wn which every element has order 2 or 1). Then there exists a
unique (up to isomorphism) finite projective space (P, &) with
not both P and <& empty, and there exists a wunique real m > 2
such that every line im & has exactly m + 1 points on it and
A = P¥where (P, &¥) and m define P* as in Example 2.4). In
particular, A is abelian, and if it has more than two elements it
18 dualizable and (1, 1)-integral.

Proof. If |A| = 2, the result is easily checked so without loss
assume |A|=38. By the comment immediately following Proposition
1.8, (P, &¥) is a finite projective space, where P = {ac Ala +# ¢},
where for a,be P, a #0b, L,, is {cc A|p.(a,b) >0 or ¢ =a or ¢ = b},
and where & = {L,|a,be P, a + b}. Since & is nonempty there
is a unique m such that every line has exactly m + 1 points on it.
Let (B, q) be the probability group associated by Example 2.4 to
(P, L). Then B and A are the same sets, they have the same iden-
tity, 45 = 4, (i.e., they have the same geometry), but it remains
to prove p.(a,bd) = q.(a,b) for all a,b,ceB = A. Let 2 be the
set of all maximal proper subgeometries of B (or equivalently of
A). For Se o7, the sets of A//S and B//S are equal and |B//S|=2
so |A//S| = 2. Hence A//S ={S, A\S} where A\S denotes the ele-
ments in 4 not in S. One can check the dual of a two element
probability group {e, } is z+1 and z+— —(h,)™", so the dual of
A//S is {aug, g5} where g5(S) =1 and g5(A\S) = —(has) ™. Let ks be
the natural map from A to A//S. Then fy = gsokg is in A. In
fact aug, and the f5, S€ 5% are distinet, and since their number
is the same as IAI (in a projective space the number of hyperspaces
is the same as the number of points), they make up all of A. For
ac A, a# e, the restriction of fs to {e, a} must be in the dual of
{e, a}. Hence fs(a) is either 1 or —(h,)™'. Choosing a¢S we get
—(hps)™ = —(h,)™" 80 hgogs = h,. Hence ifbg¢ S, h, = h;,. Let Le &2,
C={e}UL. Then L is a subgeometry of A, so all of the above
holds with A replaced by C. Using that the hyperplanes of C are
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just the {e, ¢}, ceC, ¢ # ¢, one checks h, = h; for all a,beC, a = e,
b # e. Hence there is an h with h, = h for all ac A4, a % e. But
by Proposition 2.2, h,n(S) = n(C\S); since there are m + 1+ 1
elements in C, this gives h-(h + 1) = mh so h = m — 1. Returning
back to A, and S a hyperspace of A we have fg(a) =1 if a €S and
fs(@) = —(m — 1) if aeA\S. This whole argument can be done
with A replaced by B, and we see the dual of B is the same set
of maps; i.e., A = B. Tor this set of maps there exist unique P
with
f@)-g(x) = > Dulf5 9k()

for all f,ye A=B and all ze A=B. Taking double duals the proof
is completed.

!

3. Formal character tables. In [9], Brauer formalizes some
properties of the character table of a finite group, and then con-
siders tables with those properties in their own right. Here we
choose a somewhat different set of properties, suggested by the
last section, to make the same sort of approach.

We denote the complex conjugate of a complex number C by
C. We consider square matrices whose entries are complex numbers.
If M is such, we write m(M) for the size of M (i.e., the number
of rows, or equivalently, the number of columns), and we denote
the (i, ))-entry of M by M,; for 4,7=1, -, m(M). The set of
rows of M will be labeled {1, ---, m(M)} and will be denoted by
R(M), and the set of columns of M will be labeled {1, ---, m(M)}
and will be denoted by C(M).

By a semiformal table we mean a square complex matrix M
such that there exist positive real numbers A, -+, h,, t,, +-+, t,(m=
m(M)) with >, h, = >, t, (call this » or #n(}M) or the order of M),
with ¢, = 1, and with:

(1) M,=1vi=1,---, m.

(1) M,=1vVa=1,---,m.

(2) S M,M;M,h, is a nonnegative real number Va, 53, v and if
a =1 it is I;n/t;VB, v (where [ is the identity matrix of size m).
It will soon be apparent that if the A, and ¢, exist, they are unique.
One can check that the transpose of a semiformal table is itself a
semiformal table if and only if S, M, M;.M.t, is a nonnegative
real Vi, 7, k; if this condition holds we call M a formal table. If
M is a semiformal table, the matrix which results when the nonfirst
rows (and/or the nonfirst columns) of M are permuted is certainly
a semiformal table; we say it is isomorphic to M to express that
it is essentially the same as M.

For A=1{a, =e¢a, -+, a,} a finite abelian probability group,
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let A ={X =aug, X, ---, X} and let M,,=¥(a.) for i,a=1, -+, m.
The resulting matrix M is a semiformal table by the last section
(and it is a formal table if and only if A is dualizable).

PrROPOSITION 3.1. The above association is a bijection from the
isomorphism classes of finite abelian probability groups onto the
isomorphism classes of semiformal tables.

Proof. Let M be a semiformal table of size m. By (2) M has
an inverse, so M is nonsingular. Thus the columns of M are a
basis of C™, so there exist unique complex numbers p,(a, B8) with

M.M;; = >, v, BM;Vi, e, 3 =1, --+, m .
7

Using (2) one checks the p,(a, 8) are nonnegative reals. Also,
(because the columns are a basis) there exist unique complex numbers
Cpa with

Miﬁ = Zc,@rM,,;TV’I:, B = 1, oo, m .
T

Taking the complex conjugate of this gives

> CsCre = 05,, (Kronecker delta) .
T

But
(e, B)nft, = iZ MiaMiﬁMilh’i = Er‘. Ei‘. EﬁrMiuMwhi = CpaMtft,

S0 €, is nonnegative real. With this one can check (using >, ;6=
0s,,) that for each @ there is a unique v with ¢; # 0 (and also ¢5=
1). With this one checks C(M) with p is a finite albelian probability
group, and its associated table is M. One checks that if we start
with a finite abelian probability group, and perform this construe-
tion on its associated table, we get seomething isomorphic to the
probability group we started with. The proposition is shown.

Now let M be a formal table. As in the above proof we have
that both C(M) and R(M) are naturally abelian probability groups.
We say M is (r, s)-integral if C(M) is r-integral and R(M) is s-inte-
gral. For G a finite group, D the diagonal subgroup of G X G, G X
G//D is a finite abelian dualizable (1, 2)-integral probability group
and its associated matrix M is a formal table which we denote by
T(G) and call the adjusted character table of G. The matrix Al2M,,,
1€ R(M), e C(M), is the character table of G, while conversely, if
N is the character table of G, N,,/N,, 1€ R(N), acC(N), is the
adjusted character table of G.
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Now let N be a formal table. By a table morphism from M
to N we mean a map f from C(M) to C(IN) such that f(1) =1 and
such that

ﬁZNif(mMjﬂtp is a nonnegative real Vv, 5.

For ie R(N), je R(M), we define f,(i) so that f;(i)n/h; is this
displayed nonnegative real.

PROPOSITION 3.2. Let M and N be formal tables. Let f be a
map from CM) to C(N). Wwrite

Nif(ﬂ) = fo(fl’)MJﬂ Vi = 1! ) m(N)7 B = 17 M) m(M)

which we can do since the rows of M are a basis. Then f is a
morphism if and only if f(1) =1 and all the coefficients x;(1) are
nonnegative real numbers. If f is a morphism, then x;(1) = f ()
for all © and j.

Proof. If fis a morphism we substitute f;(i) for z,(i) above
and then use (38’) with v = 1. Conversely, if the z;(1) are nonnega-
tive real numbers, we substitute in the criteria for a morphism,
use (8) with k =1, and get x;:(4)n/h;. The proposition is proved.

We call a map f from C(M) to C(N) a homomorphism if for
each 7e€ R(N) there exists a jeR(M) with N,;p = M;vB. We
denote such a j by f(i) and check if f is a homomorphism, then 7
is a homomorphism from N°® to M*! (where ( )* denotes the trans-
pose of ()). Both morphisms and homomorphisms compose and
give categories. In both cases isomorphims consist of simply per-
muting the nonfirst rows and columns. We write M = N if such
exists from M to N.

Let M be a formal table. For S a subset of R(M), S+ = {ac
C(M)|M,, =1vie S}. For T a subset of C(M), T*={te R(M)|M,,=
1va e T}. By a submatriz of M we mean any matrix derived at
by deleting rows and columns from M. We let mat (T) denote the
submatrix of M which results when first all columns not in T are
deleted from M and then all but one of resulting duplicate rows
are removed. Each column of mat(7T) comes from some column of
M; this gives a natural map from C(mat(T)) to C(M). For S a
subset of R(M), the matrix derived at by deleting all rows of M
not in S, and then deleting all but one of resulting duplicate colu-
mns, will be denoted mat (S). We have a natural map from C(M)
to C(mat (S)); each eolumn of M is first truncated by removing all
elements not in rows of S and then appears in mat(S). By a sub-
table of M we shall mean a subgeometry of C(M); if T is such
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this terminology tends to confuse 7' with mat (T); indeed, when no
confusion can result we sometimes denote mat (7T') simply by T.
By a factor table of M we mean a subgeometry S of R(M); when
S is such we sometimes denote mat (S) simply by S or by M/S*.
Clearly the factor tables of M are exactly the subtables of M.

PROPOSITION 3.3. Let M be a formal table and T be a subset
of C(M). Then the following are equivalent:

(1) 3 a subset S of R(M) with S+ =T,

(2) T=(TH",

(8) T 1s a subtable of M.
If T is a subtable of M, then T (i.e., mat(T)) is a formal table,
T+ is a factor table of M, M/T (i.e., mat (T*)) is a formal table,
the natural map from C(mat (T)) to C(M) is an injective homomor-
phism from mat (T) to M, the natural map from C(M) to C(mat
(TY) s a surjective homomorphism from M to mat (T*), and the
image of the former map is exactly the inverse image under the
latter map of the singleton consisting of the first column; also
n(mat (TH))n(@mat (T)) = n(M).

Proof. Everything is either trivially checked or follows from
results in the last section, so the proof is omitted.

Note 3.1. Let T be a subtable of a formal table M. Let
@: C(mat (T)) — C(M), 6: C(M) — C(mat (T*))

be the natural homomorphisms. For a« e C(mat (T)), ¢, = tow. For
BeC(M), let [B]; = [B] be the set of all 6 C(M) with 6(B8) = 6(5).
Then tp; = >, (t,/n(mat (T))), the sum over all de[g]. For B,v,d¢€
CM), qs5(0(B), (7)) = 22a8u(B, 7), the sum over all @ € [d]. For 5, 7€
C(M), 6(B)=06(7) if and only if ¢, (B, ¥¥) > 0 for some a € C(mat (T)).
By replacing M by M®' we get the corresponding statements for
§: R(mat (TY)) — R(M), &: R(M) — R(mat (T)), the h’s, and the p’s.

PROPOSITION 3.4. Let M and N be formal tables and let f be
a homomorphism from M to N. Let K; ={acCM)|f(a) =1} and
I, ={fl@)lacCM)}. Then K; is a subtable of M, and I; is a
subtable of N, and if 0: M — M/K;, ®:I;,— N are the natural
homomorphisms, then there exists a unique isomorphism g: M/K; —
Iy with @ogo0 = f.

Proof. This follows from Proposition 2.3.

Propositions 2.4 and 2.5 give immediately: Let 7 and W be
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subtables of a formal table M. Let T-W denote the set of all ¢ ¢
C(M) such that 3geT,ve W with ¢,(8,7) >0. Then T-W aud
T N W are subtables of M and

(T-W|W) = (T/(Tn WwW)).

If T is a subtable of a formal table M, then L~ L/T is a lattice
preserving bijection from the set of all subtables of M which con-
tains T onto the set of all subtables of M/T. Also if L is a sub-
table of M with T < L, then

(M/T)/(L|T) = M/L .

We call a formal table simple if it has exactly two subtables.
A formal table M will have a chain of subtables

M:TOQTIQ"';TT:{I‘}

such that T,/T,,, is simple for ¢+ =0, ---,» — 1. We get that the
length » of M and the unordered sequence {T/T;,,|t =0, «++, r — 1}
of composition factors of M are well-defined and unique.

We call a formal table M projective if {a, 1} is a subtable of
Mva e C(M). By Proposition 2.14 we know explicitly the structure
of such tables (at least up to knowledge of the non-Desarguean
planes), and in particular if M is such and is of size larger than 2,
then M is (1, 1)-integral. If M is (1, 2)-integral (e.g., T(G) for G a
finite group), »(M) is an integer and by Proposition 2.14 all the
hi* and t, divide n(M), and the order of any subtable divides n(M).
In practice this puts rather heavy restrictions on the table. For
instance, if M is an (r, s)-integral formal table where » and s are
not both 1, with (M) a proper prime power, then by using n(M)=
2ih, + Sh, (the first sum over all aeC(M) with h, > 1, and the
second sum over all Be C(M) with h, = 1), it is easy to check that
M has a subtable isomorphic to 7(C,), where C, is the cyclic group
of order p, and p is the prime which divides n(M). Hence if n(M)=
», M = T(C,).

We now strengthen Proposition 3.4 to the “nonnormal” situation:

PROPOSITION 38.5. Let f be a morphism from a formal table M
to a formal table N. Let K;={acCM)|f(@) =1}, K; ={iec
R(N)|F,() = 1}, It = {je RIM)| Fi(G) >0 for some i}, and I, be the
wntersection of all subtables of N which contain f(a) for all e C(M).
Then K; is a subtable of M, I; is a subtable of N, K; is a factor
table of N, and I} is a factor table of M. Also I} = K, and
K;* =1I;. If 6:M— M/K; and @:I;— N are the natural homo-
morphisms, then there is a wunique morphism g from M/K; to I,
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such that @ogod = f. Also K, ={1} and I, =1I;. If f is a homo-
morphism, then this all reduces to the situation and notation of
Proposition 3.4.

Proof. Let m = m(M) and C(M) denote the algebra C™ with
multiplication defined point-wise. For i€ R(M) we write M,, for
the row (M,,, My, ---, M,,). We have the M,, are a basis of C(M)
and

M- M;. = Eklpk(fi, 9) M.

for all ¢, je R(M). Let acC(M). By the proof of Proposition 2.10,
there exists a nonzero idempotent u, e C(M) with u,-M,. = u,M,, for
all 1. Letting u, = >, r;M;. we have > ; 7;0.(J, ©) = r.M,;, SO

(5176 | Maa] < 3 S5 2uld, 6) = S|

so | M| £1 for all 1€ R(M), « € C(M).
Now let Be K;. Then from

1= Ny = S F M5 ,
=3 Fi0)Ms) 32 7:0) | M| = 3 F5) = 1,

we get F;(i) > 0 implies M;; =1. Thus geI;*. One easily checks,
I++ < Ky, so we have I3+ = K;. The rest of the proposition now
either is easily checked or follows from Lemma 2.2.

We say a morphism f from a formal table M to a formal table
N is 2-integral if F;G)RYYRY* is an integer for all ie R(N),
je R(M). For instance, if H and G are finite groups and o: H > G
is a group homomorphism, then the adjusted character tables T(H),
T(G@) are (1, 2)-integral, and the natural map f = T(®): T(H) — T(G)
(which has the obvious effect on conjugacy classes, <{h)+— (@(h))) is
a 2-integral morphism. One checks @ is injective if and only if
K; = {1}. With this in mind we let N be an arbitrary (1, 2)-inte-
gral formal table. By a presubobject of N we mean a pair (M, f)
where M is a (1, 2)-integral formal table, and f is a 2-integral
morphism from M to N with K; = {1}. We call two presubobjects
M, 1), (L, g) equivalent if there exists an isomorphism 6: M — L
with go6 = f. The equivalence class containing a presubobject (M, f)
will be denoted c¢(M, f) and called a subobject of N. It will be
called cyclic (respectively abelian) if M = T(G) for G a finite cyclic
(respectively abelian) group. These can be used in defining pseudo-
groups (see [1]). The class of all subobjects of N is a finite partia-
lly ordered set, where we write ¢(M, f) < ¢(L, g) if there exists a
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morphism 6 from M to L with gof = f. There is something to
prove here but it follows from:

PROPOSITION 3.6. Let c¢(M, f) be a subobject of a (1, 2)-integral
formal table N. Then n(M) divides n(N). Also if n(M) equals
n(N), then f is an isomorphism. There are only finitely many
possibilities for c(M, f).

Proof. For e C(N), ke R(M) define
@) = 3 (PR RN,
2(@) = ((N)[ta)(X (bs/n(M )k Mys)

where the second sum is over all 8 with f(8) = a (and the first
sum is over all 1€ R(N)). One checks that

; yk(“)taNja = sz“ zk(a)taNja

for all j, k, and one checks this implies y,(a) = z,(a). Letting a =
1, k =1 this gives

n(M)(S (PR = n(N) .

But M,;=1= N4 =Dy fj(l)Mﬁ and since the rows M. are
linearly independent, we get f,(1) =1, so (Fy()A/RY)RY> =1, so the
above sum over all ¢ is = 1. Now assume this sum is equal to 1.
Then we must have f,(i) = 0 for i == 1. With this one checks

IHOVAOUIES WIWHOVECT XCRIED W ACEIVAOES XU

so if i = «, F;(@)fu®x) =0. By Proposition 3.5, I; = R(M), so for
each ke R(M) there exists a unique i€ R(N) with f,(3) > 0. Denote
i by g(k). For each ie R(N), 3 7.(i) =1 so f,(3) > 0 for some F,
so g is surjective. Letting x = 1 above gives

3 P F i) = 1/,
or

S F@r 1y =1
where the sum can be taken over all keg*({l}). Since f is 2-i£1te-
gral, there exists a unique % with f,(2) > 0. We denote k& by f(3).

We also have g is bijective and an inverse to f. f is a homomor-
phism so f is a homomorphism, so f is an isomorphism so f is an
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isomorphism.
There are certainly only a finite number of possibilities for the
row orders for M since they add to a number dividing #(N). The

mi(t, §) = Pi(e, Dhi*hy[hi*

are nonnegative integers limited by 3, m.(1, ))hi* = hi°h}? so there
are only finitely many possibilities for them. The nonnegative
integers m, (i) = fF.(0)h!*/hi? are limited by 3 m.(i)hi® = hl® so there
are only finitely many possibilities for them. The proposition is
now proven.

When we remove integrality restrictions the above situation
changes. Let M be an arbitrary formal table. For X a subset of
B(M) we write n(X) for >, h, (the sum over all ze X) and X* for
{x*]® e X). This notation of course holds for M® also. By an admis-
stble partition of M we mean a pair (&, &) where .7 is a partition
of R(M) and & is a partition of C(M) such that:

(1) {1}e.=” and {1}e g,

(2) X?e.2” and Y*e ¢ for all Xe.&”, Yeg,

(3) Xuew o/ X)M,, = Diyer) (hy/m(Y )M, , forally' e Ye &
and all ' e Xe .o~
We denote the number in (8) by M,,, and the matrix with entries
My, Xe.&” Ye & (where &° = {X, ---, X}, & ={Y,, -+, Y}, X, =
{1}, Y, ={1) by M/(Z «). Letting hy = n(X), hy = n(Y) one
easily checks this is a formal table and the natural map C(M) » &
is a morphism.

As an example, if G is a group of automorphisms of M, then
by Propositions 2.7 and 2.12, the set & of orbits of C(M) by G
with the set .&” of orbits of R(M) by {T|r e G} is a partition of M.
In this case we denote M/(&7 &) by M/G.

PROPOSITION 3.7. Let f be a morphism from a formal table M
to a formal table N such that K, = {1}. Then n(M) = n(N). Also
nw(M) = n(N) if and only if there exists an admissible partition
(P, &) of M and an isomorphism @ from M/(Z, &) onto N with
@ol = f, where 0 is the natural morphism from M to M|(ZF, &).

Proof. We repeat the words of the proof of Proposition 3.6 to
get (M) < n(N), and to assume n(M) = n(N) and get there exists
a surjective map ¢ from R(M) to R(N) with f.(¢) >0 if and only
if g(k) = . Still using that proof we get

Yl@) = Flgto)hywNywalhi?
z(a) = ‘Sﬂ_‘,(tﬁ/ta)h}ﬁsz,S (over all B with f(B) = a)
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so letting @ = 1, f.(g(k)) = hy/h,u, and substituting this back,
teNgia = zﬁ‘,tﬁMMg, the sum over all B with f(8) =« .

Substituting in the equation of Proposition 3.2,

hNis = ;hkMkﬁ, the sum over all &k with g(k) =1 .

Also f(1) =1,9(1) =1. For aeC(N), Be C(M), let () be 0 if a+
f(B) and be t;/t;; if @ = f(B8). Then

Nye = Zﬂl Gs() M5

so by Proposition 3.2, g is a morphism from N?! to M’. Note
g.(@) =0 for « #1, and K, = {1}. By interchanging ¢ with f, f is
surjective. Let .Z° and & be the partitions defined on R(M) and
C(M) by g and f respectively. The above formulas give (& &) is
an admissible partition of M and @-6 = f, where 6 is the natural
morphism from M to M/(<# &) and @ is the bijection induced by
f. Clearly @ is an isomorphism. The converse is easily checked
directly, so the proposition is proved.

We note by Proposition 2.6, the categories we are considering
have finite products (the Kronecker product of the matrices) and
zero object.
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