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BANACH SPACES WITH POLYNOMIAL NORMS

BRUCE REZNICK

A Banach space X is said to be in the class &2n if > for
all elements x and y, \\x + ty\\2n is a polynomial in real t.
These spaces generalize L2n and are precisely those Banach
spaces in which linear identities can occur. We shall discuss
further properties of &*2n spaces, often in terms of the
permissible polynomials p(t) = \\x + ty\\2n. For each n, the
set of such polynomials forms a cone. All spaces in ^ 2 are
Hubert spaces. If X is a two-dimensional real space in ^ 4 ,
then it is embeddable in L4. This is not necessarily true
for spaces with more dimensions or for ^2n1 n ^ 3. The
question of embeddability is equivalent to the classical mo-
ment problem. All spaces in ^2n are uniformly convex and
uniformly smooth and thus reflexive. They obey generally
weaker versions of the Holder and Clarkson inequalities.
Krivine's inequalities, shown to determine embeddability into
Lp, p Φ 2n, fail in the even case.

1* Introduction* Throughout, we shall consider real Banach
spaces, and, except where indicated, L2n(Y, μ) with real-valued

functions and real scalars. The phrase "X is embeddable in L2n" is

an abbreviation for "X is isometrically isomorphic to a subspace of

L2n(Y, μ) for some (Y, μ)." Although ^*2 Λ was introduced and

motivated in [11], that paper and this one are largely independent.

2* Norm functions. Suppose X = (xlf , xm) is the real vector

space spanned by the x/s and φ is a real function of m real variables.

Under what circumstances does 112^^11 = φ(u19 •••, um) make (X, || ||)

a Banach space? For u = (ulf , um), let φ(μ) = φ(ulf , um). From

the standard definition of the norm, it is evident that conditions

(A), (B) and (C) are necessary and sufficient. (Here, t is an arbitrary

real.)

(A) φ(u) ^ 0 and φ(v) = 0 implies φ(u) = φ(u + tv)

(B) φ(tu) = \t\φ(u)
(C) φ(u) + φ{v) ^ φ(u + v).

Condition (C) is cumbersome to verify; the following lemma simplifies

matters.

LEMMA 1. Conditions (A), (B) and (C) are equivalent to (A), (B)

and (D).

(D) ψ(t) = φ(u + tv) is a convex function in t for all u and v.

Proof. Assume (A), (B) and (C) and fix u and v. Then for 0 ^

223



224 BRUCE REZNICK

X ^ 1, Xf(tQ) + ( l - λ ) ^ ) = Xφ(u + tov) + (l - X)φ(u + tjή = φ
φ((l - λ)w + (1 - X)tλv) ^ 0(u + (XtQ + (1 - λ ) ί > ) = t(M) + (1
Conversely, assume (A), (B) and (D), then φ{u) + φ(υ) = ψ<0) +
2^(1/2) = φ(u + v).

Observe that it is sufficient to check φ on all two-dimensional
subspaces of X. For a discussion of a different condition on two-
dimensional subspaces, see Dor [2]. We shall consider spaces X in
^2n for which p(t) — \\x + ty\\2n is a polynomial in £ of degree 2w.
When p is given in this way, we shall tacitly assume that || sx + ty \\2n =
s2np(t/s) for s Φ 0 and \\y\\2n = l i m ^ t"2np(t); that is, (B) is implicit.

THEOREM 1. Suppose p is a nonnegative polynomial of degree
2n. Let X = (x, y) and define \\ - \\ on X by p{t) = \\x + ty\\2n. Then
(X, || ||) is a Banach space if and only if 2np(t)p"(t) — (2n — l)(p\t))2 Ξ>
0 for all t.

Proof. With \\sx + ty\\2n defined as above, we need verify (A)
and (D). Suppose (X, || ||) is a Banach space, then ψ(t) = \\x + ty\\ =
p(t)1/2n — f(t) is convex. If x and y a re linearly dependent then
\\x + ty\\ = \a + bt\, and for p(t) = (α + bt)2n, 2nppn = (2n - l){pj.
If x and y are linearly independent, then f(t) > 0 and / is convex
if and only if /"(*) - {2n)-\f{t))1~in(2np{t)pf\t) - (2n - l)(p\t))2) ^ 0.

On the other hand, suppose 2np{t)p"(t) - (2n - l)(p'(t))2 ^ 0 and
|| || is defined as above. If \\sx + ty\\ = 0 for (s, t) Φ (0, 0) then
either p(t0) = 0 or lim t~2np(t) = 0. As the hypothesized condition is
translation-invariant, assume t0 = 0 in the first case. Since p(ί) I> 0
we have p'(0) = 0; let p(ί) = akt

k + o(ί/<;), αfc Φ 0, A; ̂  2, for small t.
Then 2np{t)p'\t) - (2ra - l)(p'(ί))2 - -a\k(2n - fc)*8*~2 + o{t2k"2) hence
fc = 2n, p(t) — a2nt

2n and (X, || ||) is a valid one-dimensional space. In
the second case, let p(t) — akt

k + o(tk) for k < 2n, ak Φ 0 and ί large.
Then k = 0 and (X, || ||) is again one-dimensional.

Now suppose p(ί) > 0 . Let M = dx + by, v = c^ + ατ/ be given; (D)
will be satisfied provided ψ(t) is convex, where

ψ2n(t) = \\dx + by + ί(cα? + α^/)||2w = |cί + d\2np((at

(If c = d = 0, then ^ is a constant and so convex). Note that
ψ2n is again a positive polynomial of degree 2n so that ψ" is conti-
nuous. It suffices, therefore, to check that ψ"(t) ^ 0 for t Φ —d/c.
As above, ψ"(t) ^ 0 provided 2nψ(t)f"{t) - (2n - l)^/(t))2 ^ 0. A
computation shows that this expression equals (ad — bc)2{ct + d)4n~4

(2np(u)p"{u) - (2n - l)(p'(^))2), where % = (at + 6)/(cί + d). Thus,
if 2nppn — (2n — l)(pf)2 ^ 0 then every ψ is convex and (X, || ||) is
a Banach space.
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It follows from Theorem 1 that the two-dimensional spaces in
^2n are characterized by p(t) = \\x + ty\\2n, and that a study of such
polynomials is appropriate. Note also that generators may be chosen
to make any computations easier; in general, (D) must be separately
verified for each two-dimensional subspace.

3* The cone P2n. Let P2n consist of all polynomials p of degree
2n for which p(ί) ^ 0 and C2n(p(t)) = 2np(t)p"{t) - (2n - l)(p'(t))2 ^ 0.

If p(t) = Σ^ykt\ then

2 n - l

We shall omit the subscript 2n when it is superfluous. As defined,
C2n{p) is a polynomial with nominal degree An — 2; the coefficients
for t4n~2 and ί4ίl"3 actually vanish identically.

THEOREM 2. Tfte set P2n is a closed cone.

Proof. Suppose p is in P2n. Then C(p) ^ 0 and for λ >̂ 0, λp ̂  0
and C(λp) = λ2C(p) so λ^ is in P2%. If ^ is in P2n, then ^ + p2 ̂  0
and C(jft + p2) - C(^) + C(p2) + 2^p;'p2 + 2np1p[ - (An - 2)pίp2. Since
PiPi ^ 0 we have (2wp<pί/)1/2 S (2w -1)1 / 21 p, \ so that 2w^ί'p2 + 2np1p[r -
(4Λ-2)pίpi = 2 Λ ( ( j < ' J O ^ - ( j ^ 0 1 ^ i + 4 n ( j ^ ^ ^
(4n—2)(|p1pa | — pxp2) ^ 0. Thus, P2n forms a cone.

Associate p(t) = l(^^\akt
k with the element (α0, ••-, α2TO) in JS2w+1

and pull back the usual topology. Convergence is then either point wise
or coefficient wise. If {pm} is a sequence of polynomials in P2n and
Pm~*P then C{pm(t)) -+ C(p(t)). Hence P2n is closed.

By the proof of Theorem 1, if p(t) is in P2n then so is

(ct + d)2np((at + 6)/(ct + d)) .

For future reference, observe that, if px and p2 are in P2n and
C((px + ft)(ίo)) = 0 then C(Pl(<0)) = C(A(ί0)) = 0, p[\tύ)p2{Q - pMp^)
and p'Mp'M ^ 0.

Since P2 Λ is a cone, it is natural to study its extreme elements.
For q(t) = (δί + c)2w, C2n(q) = 0. Suppose g = ̂  + p2> with p, in P 2 Λ.
If 6 = 0, then ^ and p2 must both be nonnegative constants. Suppose
b Φ 0, then we may normalize b = 1 so g(f) = (ί + c)2w, hence Pi(—c) =
^ 2 ( _ c) — 0. As in the proof of Theorem 1, it follows that p,(ί) —
τi(tJrc)2n so each p f is a multiple of #. We have proved that (bt+c)2n is
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an extreme element in P2n. Since P2n is a cone, Σ(bkt + ck)
2n is in P2n.

This is to be expected in light of Theorem 1 applied to the subspace
of 4n generated by (δ^ δ2, •) and (cu c2, •)•

If 2n = 2, G2(a2t
2 + 2axt + α0) = 4(α0α2 — α2) so that p ^ 0 implies

C2(p) Ξ> 0. Hence the extreme elements of P 2 are precisely (fit + c)2.
Surprisingly enough, the same is true for 2n = 4.

THEOREM 3. The extreme functions of P 4 are (fit + c)4; indeed,
if p is in P 4 then p(t) = (δoί + c0)

4 + (δ^ + cx)
4 + c4 /or some bt and ct.

Proof. Write p(ί) = ^ t W*> then (48)~1C4(p(ί)) = (α2α4 - α|)ί* +

I jmΛ\AJ\ \Λ/A L ' " £j\Λ/O\A/*ϊ JV '"T~ i \Jvf\CJvA Γ" iUCvi CvQ ' ' l3Cvθ / V " I " ( ^JCVACVQ Γ ' 'Ί ^ J C V I CVO / V —Γ" CvΛvvO ' Cvi JLX

p(ί0) = 0, then, as before, p(t) = α4(ί - O 4 If C(p(O) = 0, then with
9(ί) = P(<̂  — O» C(g(0)) = 0. As the conclusion is invariant under
translation, assume tQ = 0. In this case, since C{p) ^ 0, a0a2 — a\ and
a0a3 = α!^ . As α0 = p(0) ^ 0, let αx = rα0, then α2 = r2a0 and α3 =
r3α0. If α4 = r4α0 + s then C(p(ί)) = sα0ί

2(rί + I)2, s o s ^ O and p(t) =
αo(rί + I)4 + si4. (In general p(ί) = αo(r(ί - O + I)4 + β(ί - O 4 ) If the
degree of C{p{t)) is less than four, then by a similar argument,
p(t) = α4(ί + r) 4 + s, s *> 0. Finally, suppose that C(p(ί)) is a positive
quartic and let px(t) = p(ί) - λ, then C(pλ(t)) = C(p(ί)) - 4λpf/(ί). Since
p " is quadratic, and pp" > 0, (Δp"(t))~ιC{p(t)) is continuous, goes to
infinity quadratically in t, and achieves a minimum λ0 > 0 at t — tQ.
Thus p(t) - λ0 is in P4, C(p^(O) = 0; hence p(t) - λ0 + αo(r(ί - O +1) 4 +
β(* — OS which may be rewritten as in the conclusion.

By considering (ct + d)4p((at + δ)/(cί + d)) instead of p, we may
replace c2 by s4(cί + d)4 for any pre-selected c and cί. It would be
nice if this pattern continued for 2n ^ 6; unfortunately, this is not
the case.

THEOREM 4. If n^Z then there exists a polynomial p in P2n

which cannot be written p(ί) = Σ(fikt + ck)
2n.

Proof. Fix n and let p(£) = t2n + t2 + 1. A computation shows
that C2n(p{t)) = (8^3 - 20^2 + 12^)f * + (8^3 - 4n2)t2n~2 + (4 - 4^)ί2 + 4w.
Since n >̂ 3, each term but (4 — 4τι)ί2 is positive. For
| ί | ^ 1, (4 - in)t2 + 4^ ^ 0; for | ί | ^ 1, (8w3 - An2)t2n~2 + (4 - 4^)ί2 >
(8w3 - 4^2 - An)t2 > 0. Thus C2n(p(t)) ^ 0 and p is in P ί n .

Suppose ί2Λ + t2 + 1 = 2:(&Aί + ck)
2n; from the coefficient of t* and

ί2, 0 = Σbicf-4 and 1 = ^λlblcf-2. Since n ^ 3, the first implies

that bkck = 0 for each fc, and this contradicts the second.
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The coefficient 1 for t2 is not the best possible. The following
proposition provides a sharp estimate.

PROPOSITION 1. If t2n + at2k + 1 is in P2n, then

0 ^ a <: 2n(2n - l)c(fc, n) ,

where (c(fc, n))n = (2k)~\2n - 2k)k~n(2k - l)n~2k(2n - 2ft - l) 2 f e ~\

Outline of proof. Suppose pβ(ί) = ί2w + αffc + 1 has the largest
a, then C2Ά(pa(t)) ^ 0 and Ca»(pβ(t0)) = 0 for some t0. Hence the
derivative vanishes at t0 as well. This gives two quadratic equations
in a which may be solved simultaneously. After eliminating an
extraneous solution, the bound is derived.

We see then that there are extreme functions in P2n, n ^ 3, which
are not of the form (bt + c)2n.

PROPOSITION 2. The extreme rays of P6 are generated by

(ct+d)2nfλ((at + b)/(ct + d)) ,

where fλ{t) = ίβ + 6λί5 + 15λ2ί4 + 2QXΨ + 15λ2ί2 + 6Xt + 1, and | λ | ^
1/2 or |λ | = 1.

Outline of proof. As in Theorem 3, we consider special cases
and then subtract various (ct + d)6's. Then fλ are those polynomials
for which C6(fλ(0)) = 0 and Cβ(/) is at most quartic.

As Proposition 2 is not directly relevant to the rest of this paper
and its proof is tedious, we omit the details. The general question
of finding the extreme rays of P2n for n ^ 4 remains open.

Let Q2n denote the closure of the cone of polynomials of the
form Σf=1 (bjt + cj)2n; Q2n S P2n with equality if and only if 2n = 2
or 4. As any 2n + 2 distinct 2%th powers are linearly dependent,

we may assume that R ^ 2n + 1. Suppose q(t) = 2 | h)a^h ίs i n ί?2»
Then g - lim gm, where qm(t) = Σ ' ΰ 1 (&iw) * + ̂ Γ Γ Since ^(δj*>)2% ->
α2% and J(cf ])2n -> α0, we may take 16J W) | < Λf, | c}w) | < M. Thus there
exists a convergent subsequence with limit bj and ĉ  so that one may
write q(t) ~ Σ ^ ί 1 (M + ̂ ) 2 ί t for all g in Q2W. Similar considerations
apply for the generalization of Q2n to several variables.

4* Subspaces of L2n. In [11] we showed that L2n( Y, μ) is in

&%%f that is, | | / + tg\\2n = .J|/ + ̂ |2ίtώ/i is a polynomial in ϊ for all

/ and g. The converse, as we shall see, is false. Suppose that
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X = (x, y) is a two-dimensional space in &*2n, then p(t) = | | E +
is in P2W. Suppose that X is embeddable in Lin(Y, μ), then p(ί) =
Σ(2k)0/ktk = fa + *flr)2*di" = 11/ + ^H8* β y Holder's inequality, since

\f2ndμ < oo and \g2ndμ < oo, \f2n~kgkdμ < oo so that the integral can

be broken up and ak = \f2n~kgkdμ. Let Yo = {se Y: f(s) = 0}, Z =

Y — Y"o; let dv = /2u<iμ and ft — g/"1 on Z. Then we have ak =

\hkdv, 0 ^ k <, 2n - 1, and a2n = \ h2ndv + \ g2ndμ. If Φ(r) =

v(ft~1{(—oo, r]}), then αfe = 1 skdΦ for 0 ^ k ^ 2 ^ — 1 and a2n ^
J — o o

J —oo

Conversely, suppose there exists a nonnegative measure Φ and

α/s so that αfc = \ tkdΦ and α2w ^ I f d Φ . Define (Y", μ) as follows:

Γ = Λ U {̂ o}, μ = Φ on /? and μ{p0} = α2n - [ s2ίldΦ. Let (/(*), flr(s)) =
J —oo

(1, s) on i? and (0, 1) on {pj . Then | | / + tg\\2n = Γ (1 + sί)2%dΦ +

p(t).
Fortunately, this transforms the embedding problem into the

classical moment problem, which has been studied extensively. The
complete solution is known, see for example Akhiezer [1] p. 71, and
we may combine this solution with the previous discussion to obtain
the following theorem.

THEOREM 5. Let X he α two-dimensional Banach space in £P2n

tvith generators x and y and let p(t) — \\x + ty\\2n = Σ[ τ?)akt
k. Define

\ to /

the (n + l)x(n + 1) matrix B = (bi5) by bu = ai+ί for 0 <; i, j ^ n. Then
X is embeddable in L2n if and only if the matrix B is positive
semidefinite. Further, X is embeddable in L2n if and only if p
is in Q2n.

Proof. The positive semidefiniteness of B is equivalent to the
solution of the described moment problem. If p is in Q2n then X
is embeddable in 4ln+1 in the obvious fashion. If X is embeddable
in L2n9 then by approximating dΦ by a sequence of point masses,
we see that p is in Q2n.

COROLLARY 6. // X is two-dimensional space in ,^4, then X is
embeddable in L4. There are two-dimensional spaces in ^2n, n ^ 3,
which are not embeddable in L2n.
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Proof. Coihbίne Theorems 3, 4 and 5*

The case for higher dimensions is less clearcut. Professor J. H. B.
Kemperman [6] has pointed out, using techniques from [4] and [5],
that the analogous moment problem in more than one variable has a
solution which requires knowledge of all polynomials f(u19 •••, up) of
total degree 2n which are nonnegative for all real ut.

Specifically, one transforms the polynomial p(tlf , tp) =
\\x0 + *i«i + + tpxp\\2n for a space X = (x0, , xp) into a family of
equations a(m19 , mp) = V \<Γι t%*dμ; m1 + + m p < 2n,
with inequality if ^ = 2n. Suppose f(uu •••, np) ^ 0 for all real
ut and f{uu , up) = Σb(mu , m^u?1 - %?*, where the sum is

taken over all mit Σmt <; 2n. Then certainly I i/(%i, , up)dμ =

Σa(mlf , mp)b(mlf , mp) ^ 0. It turns out this condition holding
for all such / is sufficient for the existence of a measure with the
desired property.

Since X is real, it is unreasonable to embed X in an L2n space
with complex scalars; one might, however, embed X in an L2n(Y, μ)
space with real scalars but complex-valued functions. This situation
is taken care of by the following theorem.

THEOREM 7. There is an isometry from the space of all complex-
functions in L2n(Y, μ), taken with real scalars, into real L2n{Z,v),
where (Z, v) consists of2n + l copies of {Y, μ).

Proof. It is well known that 42 is embeddable in any infinite-
dimensional Banach space. Let x and y be orthogonal generators of
42 and let x and y be their isometric images in s2n. Then (t2 + u2)n —
\\tx + uy\\2n = ||ίic + uy\\2n = Σ(bkt + cku)2n; by the remarks at the end
of §3, we may say that (ί8 + u2)n = ΣΓJ 1 (&** + ckuYn. Define the
mapping φ from L2n( Y, μ) with complex-valued functions to L2n(Z, v)
as follows: if / = g + ίh is the decomposition into real and imaginary
parts, then φ{f) = bkg + ckh on the &th copy of (Yf μ). For real

ί (g2 + fe2)^ = ( \f\2ndμ = | |/ | | 2 % so ^ is an isometry.
JF JF

We may actually choose bk and ck by:
where α(%) = 2ί ί ^)(2n + 1) j . Hubert has proved that bk and cfc

may be chosen to be rational; see Ellison [3] p. 11 for an extended
discussion. In any case, it suffices to consider embeddings into real
L2n.
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5* A counterexample* The remaining case for embedding is
the three-dimensional one for ^ 4 . We shall construct a three-
dimensional space in ^ 4 which is not embeddable in L4. Consequent-
ly, there are spaces with arbitrarily large dimensions which are not
embeddable in L4. This example is drastically simplified from the one
appearing in the author's thesis.

Suppose X = (x, y, z) and a polynomial p(u, v) with total degree
4 is given. Let || || be defined on X by \\x + uy + vz\\* = p(u, v);
\\tx + uy + vz\\* for t Φ 1 is defined in the usual way. In view of
Lemma 1, we need check (A), (B) and (D) on every two-dimensional
subspace of X. Conditions (A) and (B) will be automatic. A two-
dimensional subspace of X is either (y, z) or (x + ay + cz, by + dz)
for some α, 6, c, d. Thus, for f(u, v) = (p(u, v))iμ, it suffices to show
that ψ(t) = f(a + bt, c + dt) is convex for all α, 6, c, cϋ. (We consider
<2/, ^> separately.) Adopt the usual convention that /x(u, v) =
(β/du)f(u, v), fn(u, v) - (d*!dv*)f(u, v), etc. Then ^"(t) = (&2/u + 2&d/12 +
d2f22)(a + bt9 c + dt). Hence it suffices to show that / u ^ 0 , / 2 2 ^ 0
and fnf22 ^ /J at all points in the plane. If we can verify this for
f — p1/* then (X, || ||) will be a Banach space.

THEOREM 8. For X = (x, y, z), let \\tx + uy + vz\\* = ί4 +

6£2(w2 + v2) + ('M'2 + v2)2. Then (X, \\ \\) is a Banach space which is not
embeddable in L 4 .

Proof. Note that ||ίsc + uy + vz\\ > 0 unless ί = ^ = v = 0 so
that (A) is satisfied. On (y, z), \\uy + vz\\ = (u2 + v2)1/2 so <#, ̂ > is
isometric to 4 2 and (D) is satisfied. In general, let / = p1/4,
then 16/u = p-7/4(4ppu - 3pϊ), 16/22 = p~7/\App22 - 3$) and 16/tt =

— δPiPa). We must show that Δppu — Zp\ ^ 0 and that

(Appn - Spϊ)(4pp22 - Zpt) -

0 .

For p(w, v) = \\x + uy + vz||4 = 1 + 6 O 2 + v2) + (u2 + v2)2 let w = u2 + v2,
then p = l + 6w + w\ p, = 4u(S + w),p2 = 4v(3 + w), p u =
^p12 = &uv, p22 = 4(3 + w + 2v2). Hence

u - 3pϊ = 16(3(1 - ^ 2 ) 2 + t;2(19 + 12^2 + u*) + v\9 + 2^2) + vQ) ^ 0

and similarly App22 — Zpt ;> 0. F u r t h e r , PuPjj — p\2 = 48(w + 3)(w + 1)
and ^ 2 2 — 2p,p2p12 + p\pn = 64w(w + 3)3, hence

3)3

- I ) 2 ̂  0 .
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Thus (x, || ||) is a Banach space.

If X were embeddable in L4, then for some /, g and h, t4 +

6t\u2 + v2) + (u2 + v2)2 = j ^ ( ί / + ug + vΛ)4d/i, so J/ 4 - J #4 = J&4 -

ί/V = ί/%2 = l, L%2 = 1/3. The first five equations imply that

f2 = #2 and f — h2 μ — a.e.; this is contradicted by the sixth. Alter-

natively, in the spirit of the moment problem, 0 <J \ (/2 — g2 — h2)2dμ =
JY

— 1/3. E i ther proof shows t h a t X is not embeddable in L 4 .

One can make a lengthy plausibility a r g u m e n t t h a t t h e set of

polynomials p(t, u, v) = ||fce + uy + ws||4 has 15 degrees of freedom

for spaces in ^ 4 and 14 for spaces in L 4 . The last degree of freedom

manifests itself here as t h e coefficient of u2v2.

6. O t h e r propert ies of έ^2n. Since Q2n £ P 2 n , wi th s t r ic t inclu-

sion for n ^ 3, i t is not obvious t h a t spaces in ,^2n a re necessarily

as "n ice" as spaces in L2n. For example, L2n(Y, μ) is uniformly convex

and uniformly smooth (see Lindenstrauss and Tzafriri [10] p . 127 for

definition) and hence reflexive. Holder's inequality says t h a t , if

I [ g 1 for 0 ^ k ^ 2n. Thus if q(t) =

)

\f2n = \g2n = 1, then I [fkg2

1 + ΣfcVi1^)^** + ί2" is in Q2n, then |α, | ^ 1; indeed, 1 ^ α, ^ r(fc),

where r(2j) = 0, r(2j + 1) = —1. Clarkson?s inequality states that

ιι/ + g\r + ii/ - 0 i r ^ 2 ( n / ι r + i i^ i r) ; if ?(«) = Σ t o ( 2 ^ / i s m
Q2n, then g(l) + g( — 1) ^ 2(g(0) + a2n). As a whole, these properties
extend to ^ 2 Λ , although numerical constants are generally weaker.

Koehler [7] defined a G2n space to be a Banach space on which a
2w-fold inner product (x19 •••, aj2»> is defined, satisfying certain
regularity conditions. In [11] it was shown that G2n spaces and &%n

spaces coincide. Koehler [8] proved that G2n spaces are uniformly
convex. That is, &2n spaces are uniformly convex and thus reflexive.
To prove uniform smoothness and the other regularity conditions we
need the analogue to Holder's inequality.

THEOREM 9. If p(t) = 1 + Σlϊ ί 1 ( ^ W * + *2n i s i n P2n, then
there are constants so that m(k, 2ri) ̂  ak ^ M(k, 2n).

Proof. Since plf2n(t) is convex, by the triangle inequality on the
space induced by p, (1 - | ί \)2n ̂  pit) ^ (1 + 11 \)2n, so for t ^ 0, (t - IT ^

p(t)^(t + l)2\ The set of 2n-l equations ΣSΓi1(^)α*i* = ί>(Λ-l- i 8 ,

I <L j <^2n — 1, has a Vandermonde determinant, hence ί ΐjdk m^y

be expressed in terms of p(j) — 1 — j 2 n . Since p(j) is bounded one
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obtains bounds on ak which are, in general, wildly generous.
Alternatively, a sequence of polynomials with unbounded a/s has

a subsequence from which can be deduced the existence of p in P2n,

V§) — ΈΛT=I ( h)ΰktk, not all ak's equal to zero. This yields a con-

tradiction.

It follows that the set of all points (aίf •••, α2%_1), A, in R271"1 so

that 1 + Σ l t Ί 1 ( ^ W * + t2n is in P2n forms a closed (Theorem 2) and

bounded (Theorem 9) set. Thus functionals, such as p(l), achieve

maxima and minima on A.
The actual values of m(k, 2n) and M(k, 2n) can be found in a

few instances. Since p(t) in P2n implies p( — t) and tZnp(ljt) are in
P2n, m(2j + 1, 2ri) = —M(2j + 1, 2w), m(2w - k, 2n) = m(fc, 2w) and
M(2w — ft, 2w) = M(k, 2ri). As L2% spaces are in &*2n, Λf(ft, 2w) ^ 1 and
w(fc, 2n) <£ r(fc). These coefficients are a two-dimensional property;
consequently m(fc, 2n) and ikf(&, 2w) are already determined for 2n = 2
or 4.

In any case, aλ — lim^^ ί^dla? + ty\\ — ||a?||), so | α j ^ l and
Λf(l, 2n) - - m ( l , 2%) = 1. Further, C(p(0)) = (2ri)\2n - l)(α0α2 - af)
so α 2 ^ 0 and m(2, 2w) = 0. The condition in Theorem 9 is, for general
p in P2ny ak ^ M(k, 2w)αJ~αα^, where α = k/2n. From the convexity
of xa, extreme values are attained on extreme elements in P2n. In
this way, considering Proposition 2, one can show that M{2>, 6) —
- m ( 3 , 6) = 1 and Af(2, 6)-5-5/3(1565 + 496i/Ϊ0)1 / 3^ 1.000905. The general
problem remains open.

T H E O R E M 10. If X is in ^2n then X is uniformly convex, uni-
formly smooth and so is reflexive.

Proof. The uniform convexity follows from Koehler, or by not ing
t h a t \\x\\ = \\y\\ = 1, ||<ε + y\\=2 implies \\x + ty\\ = 1 + ί for t ^ 0
so p(ί) = (1 + £)2u and ||a; — y\\ = 0. Since the set of coefficients A ε

for which \\x\\ = | | ^ | | = 1, | | B — τ/|| ^ ε is compact, \\x + τ/|| achieves
a maximum, which is s t r ict ly less t h a n 2.

For uniform smoothness, let \\x\\ = | | i/ | | = 1. For t ^ τ , by
Taylor 's theorem, | | a + ί2/|| + | | α ; - ί 2 / | | = 2 + ( 2 w - l ) ( α 2 - α ί ) ί a + o(ί2).
Thus 1/2(| I a; + ty\\ + \\x - ty\\) - 1 ^ cτ2 + o(r2) so X is uniformly
smooth.

If X is any Banach space, suppose t = \\y\\ ̂  \\x\\ = 1 and w =
\\x + y\\ ^ ||a? - y\\ = v. Then % + ^ 2 £ so ^ + ^ ^ ^ + (2t-u)p^
2 t p ^ t * + 1 . T h a t i s , \\x + y \ \ p + \ \ x - y \ \ p ^ \ \ x \ \ p + \\y\\p w i t h e q u a l i t y
i f a n d o n l y i f | | a ; | | = \\y\\ — \\x + y\\ = \\x — y\\ — 1 . I n t h i s c a s e ,
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by the triangle inequality, \\x + ry\\ = 1 for \r\ <> 1 so X cannot be
in ^2n. Thus, by the compactness of A, \\x + y\\2n + \\x — y\\2n ;>
c(n)(\\x\\2n + ||y\\2n) for x and y in X i n ^2n. Taking x = 0, c(w) ̂  2.

THEOREM 11. 1/Xis in^2n forn^Z then \\x + y\\2n + \\x-y\\2n ^
2(||cc||2Λ + ||2/||2Λ), but this is not necessary true for n*^ 4t.

Proof. For n <; 2, X is embeddable in L2n. For n = 3, let

ll» + ίwll = Σ U ( ! ) % * * t h e n | |* + 2/||6 + | |* - y\\« - 2 | M I 6 - 2\\y\\« -
30(α2 + α4) ̂  0 since m(2, 6) = m(4, 6) = 0.

Fix n ^ 4 and set pε(t) = 1 + ε(£2 - 3ί4 + ίβ) + ίίn and ||a? + ty \\2n =
p.(ί), then | |2 + y | | t e + | ^ - y\\2n - 2Q\x\\2» + \\y\\2n) - - 2 ε > 0 for
ε > 0. A computation shows that C2n(p.(ί)) = 4n2(2n - l)f%~2 +
e(flr(t) + eλ(ί)), where g(t) - 4^2(2^ - l ) * 1 - 1 ^ - 3t* + f) +
2w(l + ί2%)(2 - 36ί2 + 30ί4) - 4^(2^ - l)t*-\2t - 12f + 6tδ) and h(t) =
2n(ί » 3ί* + f )(30ί4 - 36f + 2) - (2n - l)(6ί5 - 12f + 2t)2.

As ^ ^ 4, the highest order term of g + εh is

2w(4?ι2 - 26% + 4:2)t2n+i ,

there exist ε0 and R so that f or 0 ̂  ε <: ε0 and 11 \ > R, (g + εh)(t) ^ 0
and thus C2n(pε(t)) > 0. As (g + eh)(0) = 4%, for 0 ^ ε ^ ε0 and \t| < δ
or I ί I > R, C2n(pε(t)) > 0. On the remaining (compact) set, fn~2 is
positive and | ^ | + εo |A| is bounded, so for some further reduced
range of ε, C2n(pε) > 0 and pε is in P2n.

For n - 4 take ε - .04, then p.(t) = t8 + .04ί6 - .12ί4 + .04f + 1.
A direct computation shows that C8(pε(t)) = 64(ί12 + 1) + 11.5392(£10+ί2) +
9.68(f + t') + 447.9104ί6. If we factor out .64ί and let u = t2 + t~2,
then we obtain u5 - 18.03u2 + 12u + 735.92 = q(u). (The range for
t2 + ί~2 is ^ ^ 2.) Clearly g(2) > 0, and q achieves its minimum
when u = ^ 0 = 6.01 + i/32.1201 ^ 11.67. Since q(u0) ~ 9.79 > 0, C(4) ^
1.96. This bound is not sharp. This example also shows that m(4, 8) < 0.

The question of describing spaces dual to spaces in ^2n also
remains open. Indeed it is false, in general, that the dual space to
a subspace of Lp( Y, μ) is necessarily embeddable in Lq, p~ι + q'1 = 2.
For example, if p = 2^/(2^ - 1), x = (1,1, 0), # = (1, 0,1) and X is
the subspace of 4 3 generated by x and #, then X* is not even in
0>2M let alone L2U. We omit the proof.

7* Krivine inequalities* Krivine [9] has described necessary and
sufficient conditions for a space to be embeddable in Lp provided p
is not an even integer. Krivine's proof does not apply when p = 2n
because it involves the Taylor series remainder of cos#. Theorem
12 discusses this ease and provides an underlying reason for this
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failure when viewed in conjunction with Corollary 6.
THEOREM (Erivine). // 2r — 2 < p < 2r <: 4fc then a necessary

and sufficient condition for X to be embeddable in Lp is that (1) holds
for all elements xt and all choices of real scalars rt with Σrt = 0.
The sum is taken as the i/s range independently from 1 to m and
as the ε/s range over all choices of sign ± 1 . The sum has m2k22h~l

terms.

(1) • ( ~ D r Σ ••• £rh . . . r ί 2 f c Σ \\xh + e2xi2 + . . . + ε Λ | | * i> 0 .

THEOREM 12. If 4k > 2n and X is in ^2n, then the sum in (1),
taken with p = 2n, is identically zero.

Proof. By Theorem 11 in [11], it suffices to verify any linear
identity on one space in &*2nf say C. Since in (1) all elements are
combined with real coefficients, by Theorem 7, we may embed C
isometrically in R. It therefore suffices to check that (2) holds in R.

m. m

(2) Σ Σ ^ ^ Σ ί M M '•'±ttar = o.

Because of the signs in the inner sum, we may rewrite this in the
form Σidyίi/(1) ••• t*t£k)

9 where j indexes all partitions of 2n into 2k
even integers and dj is the positive multinomial coefficient. If we
now exchange the order of summation, then (2) becomes (3).

( 3 )

Fix j ; since 4k > 2n, at least one of the πv(s)'s is zero. Thus,
one term in the product is Σrό = 0, each term in the sum vanishes
and (3) is verified.

For 2n ^ 4, there are spaces in ^2n which are not embeddable
in L4, so that Krivine's inequalities do not extend. For 4k — 2n and
X— L2n(Y, μ), it is not hard to show that the left hand side of (1)

becomes {KlriXldμj which is nonnegative. If, on the other hand,
X is the space in Theorem 8, xx — x, x2 — y, x3 = z, rλ— — 2, r2 = r3 =
1, then ΣiΣi*\fγ£| |&i±αilΓ = - 1 6 ι t i s Possible that a careful
study of Krivine's inequality for such borderline cases could lead to
an embedding theorem for Lp, p = 2n.
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