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A UNIFIED THEOREM ON CONTINUOUS
SELECTIONS

E. MICHAEL AND C. PIXLEY

A selection theorem is proved which unifies and gene-
ralizes some known results.

l Introduction* The purpose of this note is to prove the follow-
ing theorem, which unifies and generalizes previously known results.

THEOREM 1.1. Let X be paracompact, Y a Banach space, ZaX
with άimxZ^0, and φ:X->^(Y) l.s.c. with φ{x) convex for all
x e X — Z. Then φ admits a selection.

Recall that a map φ:X->^r{Y), where ^(Y) denotes {SaY:
S Φ 0 , S closed in Y}, is lower semi-continuous, or l.s.c, if {xeX:
φ{x) Γ\V Φ 0} is open in X for every open F i n Γ. A selection for
a map φ:X—> J^iY) is a continuous f.X-^Y such that f(x)eφ(x)
for all x e X. Finally, if ZaX then dimx Z <̂  0 means that
dim E 5g 0 for every set EaZ which is closed in X (where dim E
denotes the covering dimension of E)\

Theorem 1.1 incorporates several known results: The case
Z = 0 is [1, Theorem 1], the case Z = X implies [1, Theorem 2],
and the case where Z is open in X and φ{x) is a singleton for
all xeX- Z implies [3, Theorem 1.2]2.

The conclusion of Theorem 1.1 can be strengthened to assert
that, if A a X is closed, then every selection g for φ \ A extends to
a selection / for φ: In fact, if we define φg: X-> J^iY) by ψg(x) =
φ(x) for x&A and φg(x) = {g(x)} for xeAf then φg is l.s.c. by [2,
Example 1.3], so φg has a selection / by Theorem 1.1, and this / is
a selection for φ which extends g.

2* Proof of Theorem l l* As in the proofs of the special
cases of Theorem 1.1 which were obtained in [1], it will suffice to
show that for each ε > 0 there exists a continuous f: X-+Y such
that f(x) 6 Bε(φ(x)f for all xeX. Once that is done, one can obtain
the required selection for φ as the limit of a uniformly Cauchy
sequence of continuous functions fn: X->Y such that fn(x) eB1/n(φ(x))
for all x e X.

1 Observe that, for normal X, dim x Z ^ 0 is valid if either dim Z ^ 0 or dim X ^ 0.
2 In the latter two cases, Theorem 1.1 is valid if Y is any complete metric space,

since such a space is always homeomorphic to a closed subset of a Banach space.
3 Bε(S) denotes the open ε-neighborhood of S.
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So let e > 0 be given. For each y e Yy let Uy = {x e X: y e Bε(φ(x))}.
Then {Uy:y e Y} is an open cover of X because φ is l.s.c, so there
exists a locally finite, open cover {Vy:ye Y) of X with Vy<z.Uy for
all yeY. For each x e X, let Fx — {yeY:xe Vy}; then Fx is finite,
and F9 c Bε(φ(x)). Let S = X - Z, and for each s e S define

Gs = {xe X: conv F s c Bε(φ(x))} - \J{ Vy: y$F8} .

Then s e G8 because Bε(φ(s)) is convex, and G8 is open in X because
φ is l.s.c. and conv F8 is compact (see [3, Lemma 11.3]). For later
use, let us also note that Fxc:Fs for all xeGs.

Let G = \J{GS: s e S], and let E = X - G. Then E is closed in
X and EczZ, so dim 2£ 5^0. Hence the relatively open cover
{Vy Π E: y e Y} of £7 has a relatively open, disjoint refinement
{Dy:yeY}\

Let Wy=VyPι (Dy U G). The {TF̂ : 2/ 6 Y} is a locally finite, open
cover of X, and thus has a partition of unity {py: yeY} subordinat-
ed to it. Define

f(χ) = Σ (P,(χ))v .
2 / 6 /

Clearly / is continuous, so we need only check that f{x) 6 Bε(φ(x))
for all x e l .

If xeE, the /(») = yeBε(φ(x)) for the unique yeY such that
xe Dy. So suppose that $ 6 G. Then a? e Gs for some seS, so

/(#) 6 conv Fx c conv F8 c Bε(φ(x)) .

That completes the proof.

REMARK. The above proof implies that X need only be assumed
normal and countably paracompact if Y is separable, and that X need
only be normal if \JXeXφ(x) is contained in a compact subset of Y.
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This follows, for instance, from [1, Proposition 2].




