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CONSTRUCTION OF Z^ACTIONS ON MANIFOLDS

LOWELL JONES

This is one in a series of papers about PL topological
actions of the prime order group Zv on the m-dimentional
ball Bm.

Recall that P. A. Smith [15] has shown that any fixed point set
KdBm of an action Zp x Bm —> Bm must satisfy

(1) S*(K,Zp) = 0

(2) (K, K Π dBm) is a ^-homology manifold pair .

More recently the author has shown [7] that if KΓ\ Bm is the fixed
point set of a PL topological action Zp x Bm —> Bm, and p odd, then
K also satisfies

(3)

Here

is a characteristic class defined for all rational-homology manifolds.
There are many examples of K satisfying (1), (2) above, but not
satisfying (3) above. Properties of h*(K), and of related character-
istic classes, can be found in [7]. An important step in the veri-
fication of (3) above was a PL equivariant index theorem (see
Theorem A below) which shall be described now.

Let Gp denote the Witt group of nondegenerate symmetric forms
over the field Zp: each element in Gp is represented by a symmetric
matrix (α<y) over Zp with det(α<y) Φ 0; (ati) and φid) are added in
Gp by forming their direct sum (atί) φ (6<y); the zero element of Gp

is represented by any direct sum of hyperbolic planesί« Λ ) Φ ( I Q ) ©

* " ® ( l θ)# Gp a l s o h a s a r i n g s t r u c t u r e : i f λ : V x V-^Zp,X
f:

V x V' —> Zp are two symmetric forms representing a, βe Gp, then
a - β is represented by the tensor product λ 0 λ': (V φ V) x (V φ V) ->
Z9.

If —1 is a square mod^p then Gp = Z2@ Z2: let r: Gp -> Z2 map
(aiά) to its rank mod 2, and let det: Gp -> Z2 map (aiά) to its deter-
minant it the group of units Zp mod the subgroup of square units
Z*/(Z*)2 = Z2; then r φ det: GP^Z2® Z2 is an isomorphism. If - 1
is not a square mod p, then Gp = ^ 4 : [1] is a generator for Gp, and

in Gp there are relations [1] φ [1] φ [1] - [-1], [1] 0 [-1] - [J J].

in
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Let A denote a finitely generated torsion-free module over the
group ring Z(ZP). Following Wall [16, 17], a Hermitίan form on
A is a bilinear mapping X: A x A-^ Z(ZP) satisfying X(a-x, β-y) =
a-βx(x,y) for a, β eZ(Zp), where if t is a generator for Zp then
aQ + aγt + a2t

2 + + a9^tp"1 = a0 + ap_λt + ap_2t
2 + + ajt9"1. To

each Hermitian form X on A is associated a symmetric bilinear form
X: Ax A-+Z over the integers by the rule X(x, y) — α0 + aJΛ I-
a^J?"1 = x(x, y) = α0: elsewhere λ is called the transfer of λ. Set
As = {xeA\s-x=:0}, A, = {xeA\7} x = 0}, λ , Ξ λ | i | X i ( , λ, = X\AηXAΐj,
where s = ί - 1 and ^ = l + ί + ί 2 + + ί2'"1. Let i(λ), ̂ (λ), iβ(λ)
denote the indices of λ, λ9, λs; note that over the rationale λ = λ sφλ^,
so i(X) — iη(X) + iβ(λ).

Now let r: Zp x Λf —> M be a PL action of the group 2^ on a closed
oriented PL manifold, M, having dimension 4fc. KaM denotes the
fixed point set of r. We now define the invariants i(M), iη(M), is(M),

The first three will denote i, iη, is applied to the Zp-equivariant
intersection pairing

H2k(M, Z) H2k(M, Z)
Tors(M) Tors(ϋί)

where Tors(ikf) denotes the torsion subgroup of H2k(M, Z). This
intersection pairing is determined by the given orientaion, [M], of M.

V

Let Kif ί = 1, 2, , , q be the connected components of K. Each
Ki is a closed ^-homology manifold (a P. A. Smith theorem). We
assume in addition that each Kt is orientable over the integers, i.e.,
Hki(Ku Z) s Z, Hj(Kif Z) = 0 Vj > kif where kt = dim(^).

If ki = 0 mod 4, write kt = 4^ and choose arbitrarily an integral
orientation, [K^, for Kt. [K^ determines an intersection pairing

H2h(Kiy Z) χ H2H{Ki, Z)
χ

Tors(iQ
where Tors(iQ denotes the torsion subgroup of H2l.(Kίf Z). The
modp reduction of this pairing represents some ateGp.

Define ip{K) = Σ* ̂ (a^y where the summation runs over all i
with fcί = 0mod4, and where the homomorphisms h^ GP-^GP are
yet to be defined.

We now define ht: Gp ->Gp: Choose for each Kt a "slice" Zp x Dik~ki ->
Dik~ki of the action ZpxM->M near the fixed point set Kit These
"slices" can be gotten by constructing a Zp-equivariant cell structure
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"dual" to a Zp-equivariant PL triangulation for ZpxM-+M, and then
choosing Zp x J94*~*< —> Da~kί to be any equivariant cell dual to a kt

dimensional simplex of Kt. Note that the orbit space dDa~ki/Zp

is a homotopy lens space, which we'll denote by L{. For the if*
under consideration, ft{ = 4Z*. So dimension (L*) = 4(& — Z*) — 1.
Thus jff2ί*-i1)-i( ί'<» ^) = ^ P a n ( i links dually with itself. Note that
there are two linking forms, corresponding to the two distinct inte-
gral orientations for Lt. A particular orientation [Lt] is determined
from [M] and [Kt] as follows. [M] and [Kt] determine an orientation

*i] for the dual cell D4k~~kί by requiring the equation [M] =
*q x [K,] to hold near JD4*-*'. Since Lt = dD'k-^/Zpf [J54*-**] de-

termines an orientation [LJ. Now let link: •H2<*-ι<>-i( E'i> ̂ ) χ

H2{k^h)^{Lu Z) -> Q/Z denote the linking pairing associated to [LJ.
If for all & e JS^-^-iCki, ^) we have link (a?, a?) = ajp where the
integer ax is a square moάp then set ^ Ξ I , Otherwise define ht to
send each symmetric matrix [α£i] to [6αίy] where 6 is some non-
square element of Zp.

Here is an equivalent definition of ht. Note that link: ^(t-v-i
(L^ Z) x i22(fc_φ_1(Z/, Z)-*Q/Z maps into ZpaQ/Z, and thus repre-
sents an element ln(L) 6 Gp. h^. Gp —> Ĝ  is just left multiplication by
ML).

THEOREM A. Let ZpxM—>Mbe a PL action of a group having
odd prime order on an oriented, closed, PL manifold having dimen-
sion equal zero mod 4.

Then ip(K), i(M), and ir/(M) are related by the following tables.

Table (1) if p = 2q + 1 with q = odd,

iP(K)

[1]

[1] θ [1]
[1] 0 [1] 0 [1]

0

i,(M) + (p - l)i(M)mod 8

+2q

4

- 2 ?

0

Table (2) if j> = 4? + 1 with (? = odd,

[1]

[2]

me [2]
0

+ (p - l)i(Λf)mod 8

4

0

4

0
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Table (3) if p = Sq + 1

[1]

W
mem

0

iη(M)mod 8

0

4

4

0

Here I denotes any integer which is not a square mod p.

REMARK. The entries under ip(K) in Tables 1, 2 completely ex-
haust the elements of the Witt group Gp. To see this note that by
the quadratic reciprocity principle — 1 is not a square mod p <=> p =
2q + 1 with q = odd. And 2 is not a square mod p <=> p = iq + 1
with q = odd.

This theorem was first formulated and proven by the author,
under the condition that 2 generates the group of units in the field
Zp (see [8]). A complete proof and significant generalization was
later given by J. P. Alexander and G. C. Hamrick [1].

There is also a characteristic class version of Theorem A, due
to the author [7], which follows directly from Theorem A. If
Zp x M —> M is a PL action on an oriented PL manifold M (M need
not be closed), let K denote the fixed point set and ψ: Zp x R —> R
an equivariant regular neighborhood for K in Zp x M —> M. There
are two characteristic classes

Σ τ{K) e Σ H™-"{{K, dK), W(Q) ®x za))
i ί

and
Σ θ\ψ, R) e Σ H^((K, dK), W(Q(ZP)) ®z Z{2)) .

Here m = dimension (Λf), Z(2) denotes the integers locallized at 2,
W(Q) and W(Q(ZP)) denote the Witt-Grothendiek group of nonsingu-
lar symmetric and hermetian forms over Q and Q(ZP) respectively.
The class y*(K) depends only on the topological type of (K, dK).
But the class θ*(ψ, R) depends on the PL topological type of
Zpx R->R. There is a relation between y*(K) and θ*(φ, R) which
is determined directly by the tables in Theorem A. By exploiting
this relation, one can prove that h*(K) = 0 for any fixed point of a
Zp action on a PL manifold (/&*( ) is the characteristic class men-
tioned in (3) above) [see 7].

In this paper we prove the following related (to Thm. A) result.

THEOREM 0.1. Let n be any positive integer, and [aiβ\ a square,
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symmetric matrix over the integers satisfying det(α^) Φ 0 mod p.

Let Zp denote the integers localized at p. Then there is a PL

group action Zp x ikf -» ikf on a (4 + An)-dimensional almost paral-

izable manifold ikf, having a A-dimensional fixed point set K, for

which the intersection pairing H2(K, Z) x H2(K, Z) —» Z is equivalent

over Z{p) to [ai5\ Θ L n Furthermore ip(K), i(M)t iη(M) are related

as in the tables given above in Theorem A.

REMARK. If the action Zp x M—>M is restricted to the bound-
ary of a cell which is dual to a 4-dimensional simplex of K, the
orbit space will be an exotic lens space, L, of dimension An — 1. If
Lf is any other exotic lens space of dimension An — 1, there is an
action Zp x M' —> Mr satisfying 0.1, and for which U is obtained
form Zp x ikf' —» ikf' in the manner just described.

Theorem 0.1 is related in several ways to the authors study of
actions Zp x Bm —> Bm. Originally, Theorem 0.1 was the first step
in proving Theorem A above. By forming the connected sum of
Zp x ikf -> M in Theorem A with some CPn x (Zp x ikf' ~> Mr) where
Zp x Mf -> M' comes from 0.1, it reduces proving Theorem A to the
special case when the fixed point set K has a mid-dimensional inter-
section form equivalent over the rationale to a hyperbolic form.
Then a surgery procedure on K and Zp x M —> M changed the homo-
logy of M and K (but not the value of ip(K), i(M), iη{M), so that
Theorem A becomes obvious.

Another use of Theorem 0.1 (one which shall be followed in a
later paper) is to aid in completing surgery on a complicated surgery
problem. To any triangulated subset KdBm satisfying (1), (2) above,
there is associated a complicated surgery problem S^f and surgery
can be completed on S^ (i.e. . y = 0 in a surgery group) iff KcBm

is the fixed point set of a PL action Zp x Bm -> Bm [see 8]. It is
known S^ lies in the 2-torsion supgroup of a complicated surgery
group, and that S? = 0 if S* (K, Z2) = 0 (see [8]). To analyze S*
further it is important to relate it to some intrinsic invariant of K.
The intrinsic invariant which works is the characteristic class
h*(K) eH*(K, Z2) in (3) above. In further papers it will be shown
that surgery can be completed on S* iff h*(K) = 0, thus proving
that (1), (2), (3) above are both necessary and sufficient conditions
for K to be a fixed point set of some Zp x Bm —> Bm. In proving
the implication

h+(K) = 0 i > OS = 0 ,

Theorem 0.1 will be used in detail. That is, not just the statement
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of 0.1 will be used, but also some further properties (see 3.1 below)
of Zp x M->M constructed in the proof of 0.1 will be used.

The rest of this paper is organized as follows:

Section 1. Shows that certain torsion free Z(Zp)-moάu\es are
actually stably free.

Section 2. Computes irj(X) for certain Hermitian forms
λ: Z(ZP) x Z{ZP) -»Z(ZP), and gives an algebraic version of the
computations in the tables of Theorem A.

Sections. Constructs the actions ZpxM->M, and examines
homology properties.

Section 4. Verifies Tables 1, 2, 3 for the actions constructed in
§3.

It is a pleasure to thank G. Hamrick for some suggestions about
this paper. Thanks also to J. Milgram for help with the calcula-
tions in § 2, and to the referee his suggestion of Lemma 2.2 to
simplify the computations in § 4.

1, Let 0 -> Cm h Cm_! — Cm_2 - ^ - C0 be a finitely generated
free Z(Zn)-cha,in complex. Suppose the homology groups H^C) are
torsion prime to n for i Φ j , and the torsion part of H%(C)—denoted
Tors(Hj)—is also prime to n. It is a well-known fact that under
these restrictions the quotient iϊi(C)/Tors(ί3Γi) must be a protective
Z(Zn)-moάale.

THEOREM 1.0. ϋΓ

i(C)/Tors(iίi) is a stably free Z(Zn)-module if
one of the following holds:

(a) Zn acts trivially on each of the modules Hi{C){i Φ j),

(b) n is a prime; p is a prime which generates the group of
units in the field Zn; each of the modules Ht(C)(ί Φ j), Ύoτs(Hj) has
order equal to a power of p.

Proof.
Step 1. For M equal any of the modules Hi(C)(i Φ j),

there is an exact sequence of Z(Zn)-moάules

0 >F >F' >M >0

where F> Ff are finitely generated stably free
If the chain complex satisfies (a), then this follows Lemma 1.1

[4].
Suppose (b) is satisfied. First consider the case when H^C)

(i Φ j), and T o r s ^ ) are ^-vector spaces. Set Γ = Zp(Zn). Γis the
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direct sum of two fields ZP®ZP{Θ) where θ is a primitive wth root
of unity: Zp(θ) is a field because by the hypothesis of (b) 1 + x +
x2 + + xn~ι is an irreducible polynomial over the field Zp. So as
Γ-modules Hi(C)(i Φ j) and ΎOYS(HJ) as the direct sum of a finite
number of copies of Zp and Zp(θ). The kernels of the first two of
the following natural projections

Z(Zn) >ZP

Z(ZJ >Γ

Z(Zn) >ZP{Θ)

are free Z(ZJ-modnles (see § 1 in [3]); hence the kernel of the third
projection must be stably free (SchanuePs Lemma). Now it is seen

that the kernel of F'->J?,(C) (or of F'^> Tors(fly» must be stably
free, where a is any surjection from a finitely generated, stably
free Z(Zn)-module Ff (again, SchanuePs Lemma).

To establish Step 1 in general, split H^C) (or Tors(ίZy) into its
primary components, filter each of the by submodules ApczA2

pc:A!;c:
• 'dHi(C)p where Aρ

+1/Aρ is a i^-vector space. Using the induc-
tion, and the special case just considered, argue that each A% has a
length two finite generated free resolution. Clearly then the same
holds for H^C) = (x)p^(C),.

Step 2. There is no loss in supposing j Φ m. Consider the
exact sequence

0 > K, > C< > K^ > HUC) — - 0 ,

where Kt = kernel^). Using this sequence, SchanuePs Lemma, and
Step 1, argue that Kt is stably free for all i ^ j . In particular,
H3 (C) has a finitely stably free resolution

0 >Cm > >Cj+1 >K3 >Hό{C) > 0 .

TorsCfly has a finite stably free resolution by Step 1. It follows
that the quotient of these two modules, Hj(C)/Toγs(Hj), also has a
finite stably free resolution. But since this last module is torsion
free, and with finite projective dimension, it must be projective,
[see 5.1 in 13]. Finally a projective module with a finite stably free
resolution must be stably free, so iί i(C)/Tors(iϊ i) is stably free as
claimed.

2. Notations* For two primes P, Q> \L) equals + 1 if q is a

square modp, and equals —1 otherwise.
The calculations needed to prove 0.1, which are purely algebraic

in nature, are gathered together in the following lemma.
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Any Hermitian for λ: Z(ZP) x Z{ZP) —> Z(ZP) is represented by
a matrix [a], where aeZ(Zp) with cc = a. This means that
λ(l, 1) = a> so X(x, y) = xya follows from the properties of a her-
metian form. For specific a, iy{[ά\) calculates as follows:

LEMMA 2.0.

(a) iη([t{p~1)/2 + t{*~1)/2+1]) = 0 for p = 4g + 1.
(b) iη{[l + aη\) — 2q for p — 2q + 1, a — any integer,
(c) iv([a{\) — 4 mod 8, for p — 8g + 1, I an odd positive prime

'V
KVJ

integer less than p/2 with — 1, and

P-21 + D/2+1

Proo/ o/ 2.0.
Pαrί (a). Let Wd(Z(Zp)) be generated over Z by {t - 1, ί2 - t,

f - t\ , ̂ - 1 ) / 2~ 1 - ίcp-D/2-2jβ τ h e n w i t h r e s p e c t t o t h e transfer

pairing, W±W, and άimQ(WJ-/W) = 2. A Q-basis for TΓ 1 /^ is
given by

if (p-D/2 f,n 1 \ \ / (p-D/2 / ^ 1

{f, w} = ( Σ ί2i - ( ^ + l ) ) , ( Σ ί2i+1 - ( ^

Then

p - l p-1
2

\

w, v) (w, w)

where < > is the transfer pairing associated to [pp~1)/2 + ί(p"1)/2+1].
Since the latter matrix has index zero (see pages 7-11 of [3]), there
is v'eWL/W(g)zR so that « <> = 0 (JK = real numbers). Now
W' = {V'\JW®ZR} satisfies: W1. W; dim(T7') - l/2dim((Z(Zp)),(8)FB).
So the index in question is zero.

Part (b). With respect to the real basis {ί - 1, ί2 ~ t, ί3 - ί2,
• , ί2*"1 — ίp~2}, the index in question is computed from the (p — 1) x
(p — 1) matrix

- 1
- 1

2
- 1

- 1
2 j^

- 1 2

2 - 1
- 1 2-1
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which has 2's down the diagonal, — Γs on either side of the dia-
gonal and zero's elsewhere. The index of this matrix is p — 1 (see
pages 7-11 of [3]).

Part (c). Set λ = [αz]. Then iη(X) = i(λ) — i,(λ). λs is represent-
ed by [2lp] so i,(λ) = + 1 . Thus it suffices to show that i(λ) = + 5 mod 8.
To do this we'll need the results of Appendix 4 in [2]. In the
notation of that Appendix L will denote the Z-module Z(ZP) provid-
ed with the ^-valued symmetric bilinear form λ. Note that
χ(t\ t*) — OV i where t is a generator for Zp, thus X(x, x) = o mod 2
VxeZ(Zp). So L is of type II and Milgrams Theorem (pg. 127 [2])
applies. L# is the subgroup of L(g) Q generated by L and η/2l, where
η = l + t + t2+ + tp~\ Thus ΊJ\L ^ Z2Z and has x = 77/2? for
generator,

So by Milgram's Theorem i(λ)=+5mod8 if and only if
(πik\pjU)) is a positive real multiple of exp(2πΐ 5/8).

We will show this in several steps. First we claim

(2πik

exp

This follows by splitting ΊJjL into its primary components

Note, this is an orthognal with respect to the quadratic function
φ, i.e.,

<p(χ ®v) = <p(χ Θ o) + φ(0 0 y)

for any xeZ2,ye Zx. So

= Σ Σexp(2τu?>(a; φ 2/))

= ( Σ exp(2ττί<p(a; φ 0))) ( Σ exp(2τrΐM0 0 y))

In the notation of pg. 85 [9], β = G(p, I). The computations of
pages 85, 87 [9], show
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ίίP ( l / l ) if. i = Imod4

if I = 3 mod 4 .
I

Also, since 3? = 8q + 1=> Zp = I mod 4; so

if Z =
4

1 + exp(2τri 3/4) if I = 3 mod 4 .

these calculations for β and a it follows that a-β = ( ? )τ/

i). Since p = 8g + 1 and ( )=—1, by quadratic reciproci

From

(1 + i). Since p = 8g + 1 and ί b )— — 1, by quadratic reciprocity

(p. 78 [9]) we g e t ( j ) = - l . So α / 9 = - v / T ( l + i) = ι/2Γexp(27Γ<5/8)

as desired'

LEMMA 2.1. Lei [m^] denote a symmetric matrix with integer
entries, satisfying: index {[miά\) = k, det([mίi]) = ± l . Then the moάp
reduction of [mo ] equals k[l] in Gp.

Proof of 2.1. [mi5\, [mίy] Θ 1 Λ a r e equal in Gp. Since the

latter matrix is indefinite it is congruent over Z(l/2) to

[ i ] θ [ i ] θ θ [ i ] 0 [ -

where kλ — k2 = k (see Theorems 1, 2 in [11]).

In the remainder of this section we give a algebraic version of
Theorem 0.1. We need the following notation. If R denotes a
module over the group ring Z{ZP), then ( ) ®ZZp R will denote the
tensor product over Z(ZP) with R. For example each of Z(θ), Z, Zp

is a module over Z(ZP) via the following scheme of ring homorphisms

Z(ZP) >Z{β)

Here Z{θ) is the ring of integers augmented by a primitive pth root
of unity θ, and the group Zp acts trivially on each of the Z{ZP)-
modules Z and Zp. For any hermetian form λ: F x F-* Z(ZP) de-
fined on a ^(^p)-module F, there are the hermetian forms



CONSTRUCTION OF ^-ACTIONS ON MANIFOLDS 121

λ ®ZZp Z{θ)

X ®zzp Z

λ ®ZZp Zp ,

over the rings Z(θ), Z, Zp.
Let λ: F x F -> Z{θ) denote a hermetian form defined on a free

Z(0)-module F. We define and index-type invariant, ind(λ), to be
the index (as a symmetric form over Z) of the composition

F x JP —

where ψ(α0 + aφ + + αp_1^"1) = pα0 — (α0 + αx-l hαp_1). Then
note, for X a hermetian form defined on a free Z(Zp)-module F,

(2.2) i,(λ) = ind(λ (g)ZZp Z(θ)) .

PROPOSITION 2.3. IfX:FxF-+ Z(θ) is a nonsingular hermetian
form (F a free Z(θ)-module), and X ®z{θ) Zp = 0 in Gpf then ind(λ) = 0
mod 8.

COROLLARY 2.4. In general, if X: F x F —> Z(β) is a nonsingu-
lar hermetian form over the free Z(θ)-module F, then ind(λ) depends
(mod 8) only on the value of X ®7Λθ) ZP in Gp.

Before proving 2.3, we derive from it and 2.4 some tables es-
tablishing the relations between ind(λ) mod 8 and the value of
λ <g)ziθ) Zp in Gp.

PROPOSITION 2.5. F denotes a free Z{θ)-module, and X:FxF->
Z(β) a nonsingular hermetian form. Then the following relations
always hold between ind(λ)(mod 8) and the value of X (x)ZL0) Zp in Gp.

TABLE 1. If p = 2q + 1, q = odd.

λ 0

[1]

TABLE 2. If p =

Z(θ) Ά p HI ^ p

[1]

[1]0[1]

0[1]Θ[1]
0

Aq + 1, q = odd.

ind(λ) mod 8

2q

4

-2(7

0
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TABLE 3. p

ΛJ yyz(O) £*p Ail

[1]

[2]

[1] θ [2]

0

= 8ί + l f ί =

λ» Y9/ΛO) ZP m

[1]

ra
mem

0

LOWELL JONES

Gp

odd.

Gv

ind(λ) mod 8

4

0

4

0

ind(λ) mod 8

0

4

4

0

Here I is any positive which is not a square mod p.

Proof of Proposition 2.5. It suffices (see 2.4) to check that the
values in the tables hold for some choices of λ. We shall choose
X = X(g)ZZpZ(θ), where X: F x F-*Z(ZP) is one of the hermetian
forms given in 2.0 above.

Table 1. To verify line 1, set X = [1], λ = X®ZZpZ{β). Then
ind(λ) = iη(X) (see 2.2), and iη{X) = 2q (see 2.0(b))Γ Obviously
λ 0z(θ) Zp = [1] in Gp. This verifies the first line. The other three
lines can be deduced from line one and the addativity of the invari-
ants X®Z{0)Zpj ind(λ).

Table 2. To verify line 1, set X = [1] and λ = X (g)ZZp Z(θ). Then
ind(λ) = iη(X) (see 2.2), and iη(X) = 4g (see 2.0 (b)). So ind(λ) = 4
mod 8 (q = odd). Obviously λ ®z{0) Zp = [1] in Gp. This verifies line
1 in Table 2.

To verify line 2 in Table 2, set X = [t{p~1)/2 + t{9~1)'*+1], X = λ (g)ZZp

Z(θ). Then ind(λ) = iη(X) (see 2.2), and iη(x) = 0 (see 2.0 (a)). Ob-
viously λ (g)z(θ) Zp = [2] in Gp. This verifies line 2.

The other lines in Table 2 follows from lines one and two, and

the addativity of the invariants λ< 'JZ(O) Zp, ind(λ).

TABLE 3. To verify line one, set λ = [1], λ == λ ®ZZp Z(β). Then
ind(λ) = iη(X) (see 2.2), and iη(X) = 8g (see 2.0(b)). Obviously λ (x)z(^
Z p = [1] in Gp. This verifies line one.

To verify line two, set X = [at]t where at is given in 2.0 (c),
and X^X®ZZ Z{θ), Then ind(λ) = iη(X) (see 2.2), and iη(X) = 4
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mod 8 (see 2.0 (c)). Also λ(x)^) Zp = [21] = [I] in Gp (because 2 is a
square moάp). This verifies line two.

The other lines are deduced from lines one and two and the ad-
dativity of the invariants λ ®z<*> Zpf ind(λ).

This completes the proof of 2.5.

Proof of Proposition 2.3. Assume λ ®z{0) Zp = 0 in Gp. Then
det(λ ®Z{Θ) Zp) = α2 for some α 6 Zp. Choose 6 6 {1, 2, 3, •••,(?>- l)/2}
so that cΓ1 equals the modp reduction of 6. Set a = l + θ + θ2 +

hfl6"1. Note α is a unit in Z(0) (see 1.1 in [4]). Thus a is also
a unit in Z(β). But det(λ) is a unit in Z(β) by the hypothesis of
2.3, so det(λ) is also a unit in Z(β)9 where

λ = λ <
Ό a
a 0

Set

By assumption λ<
Satisfying

>)ZP equals zero in Gp, so there is T eGL(Zp).

T\miό\T =
Ό 1

1 0

Ό 1

1 0
w-fold

We claim that T is the reduction modp of an integral matrix s
with det(S) = ± l . In fact det[m4i] = 1, so det(Γ) = ± l in Zp. So T
is the product of elementary matrices, permutation matrices, and
diagonal matrices having ± 1 down the diagonal. These matrices
are the moάp reduction of integral valued elementary matrices,
permutation matrices, and diagonal matrices having ± 1 entries
down the diagonal. Multiply these last matrices together to get S.

Now recall that Z(ZP) can be displayed as the fiber product of
Z(θ) and Z over ZP9 by the diagram

Z(ZP)

A
Z(θ)

where

= Σ a{ mod p
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j(n) = n mod p

In the same way the nonsingular hermetian forms over Z(ZP) are a
fiber product of the nonsingular hermetian forms over Z(θ) and Z
over the nonsingular hermetian forms over the field Zv. In parti-
cular the diagram

2.6.

Jiόλ

Ό 1

1 0

Ό 1

1 0

n-fo\ά

0 α"

a 0

defines a nonsingular hermetian form [β(j] over Z(ZP), as the fiber

product of λ©[° £] with (SO"1 [[£ J ] θ θ [ i JJJS-1 over [m,,].
Note that all of the last three forms are nonsingular because det(S)

± 1 , a is a unit in Z(θ), and λ is nonsingular by the hypothesis of

2.3.
We remark that any nonsingular hermetian form λ over Z(ZP)

is even if λ< Z is even. By 2.6,

(Qt\-ί
0 1

1 0

0 1

1 0 s~

which is even. So [βiό\ is even.
Now we complete the proof of 2.3. There are the following

equalities.
2.7.
(a) ind(λ) - iη[βiά\

(c) i[βij] — 0 mod 8
(d) i.[/3«y] = 0.
Note that 2.3 follows direct from 2.7.
To verify 2.7 apply 2.2 and 2.6.
To verify 2.7 (b) review the definitions of ί89 ίη, i.
To verify 2.7 (c), recall that [βiό\ is even and nonsingular.

[βij] is even and nonsingular over the integers.
To prove 2.7(d) note i.[/3<y] = i([βti] ®ZZZ). By 2.6

So
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0 11 _ _ Γ0 1"
IPijj wz,z,p — v— / I I 1 Q | V U ' ^ 1 i Λ S ' -1

This completes the proof of 2.3.

LEMMA 2.8. Let λ: F x F-+ Z(ZP) be a hermetian form, with F
a finitely generated free module over Z(Z{p)). Then mod 8 we have

iη(X)=-(p - I)i(λ)mod8 .

Proof We first remark that the equality holds for λ of the

form ? Λ or [1]. Also, the equation holds for a general λ iff it
|_1 UJ ΓQ γn

holds for λ φ , J or λ ® [ l ] . So without loss of generality we

may assume
(2.9) rank(λ) = any convenient number mod 4 .

pZ) = ±l in Zp .

Next, we remark that by 2.2 we have

(2.10) ind(λ) = i(λ) mod 8

where

λ = λ (g)ZZp Z(θ) .

Case 1. p = 4q + 1. We take rank(λ) = 0 mod 2 (2.9). Then
i(χ) = 0 mod 2. So the equation in 2.8 take the form iv(\) = 0 mod
8. By 2.10, 2.5 takes 2, 3, it suffices to show λ (g)z{θ) Zp equals zero
in Gp. This follows from 2.9 and the choice rank(λ) = 0mod2.

Case 2. p — 2q + 1, q = odd. We choose rank(λ) = 0 mod 4. Then
the equation in 2.8 takes the form i9(λ) = 0mod8. By 2.10, 2.5
table, it suffices to show μ ®z{θ) Zp — 0 in Gp. Because rank(λ) = 0
mod 4, rank(λ ®zm Zp) = 0 mod 4. Moreover det(λ ®z(θ)Zz)= + 1 (2.9).
This implies λ ®zmZp = 0 in Gp.

This completes the proof of 2.8.

3* In this section, the actions Zp x M-+M are constructed,and
their homological properties are determined.

Let [e^] be a symmetric matrix with integral entries, so that
the det[αti] is a unit mod p. Note that [aiβ\ 0 Mr i is congruent
over the integers localized at p to [bu] with bu = 0 (p = odd). Using
plumbing, construct a framed cobordism extension TΓ of JD4 which
realizes [6<y] as its 2-dimensional intersection pairing: there are
framed embeddings S} x D*<zW — dWj = 1,2, , I representing a
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Z-basis for H2(W, Z) with respect to which the intersection pairing
is represented by [bi5\. [W] will denote the orientation of (W, dW)
which gives this intersection pairing. Note that dW is a ^-homo-
logy 3-sphere. L will denote an arbitrary homotopy lens space of
dimension 4k — l(fc ^ 1) with πt(L) = Zp. L comes equipped with
an integral orientation [L], An invariant a([L])eZ2oί the oriented
lens space is defined as follows. Let link: H^^L, Z)xH2k_1(L, Z)-*
Q/Z denote the linking pairing determined by the orientation [L].
Then a([L]) = 0 if link(#, x) = ajp where the integer ax is a square
mod p Vxe H2k^x{Ly Z). Set a([L]) = 1 otherwise. Note that if
α([L]) = 1, then link(#, x) = ax/p with ax = square mod p holds only
if x = 0.

If a([L]) == 0 then we can find, for any I > 0, pairwise disjoint
embeddings {Lt c L\i — 1, 2, ••-,£} of (2k — l)-dimensional lens spaces
Li in L, which induce isomorphism on fundamental groups, and so
that the universal cover inclusions L^cL, L y c £ link in +lVΐ, j <£ I
with i Φ j . If, on the other hand a([L\) = 1, then for any i we
can find embeddings {Lt c L\i = 1, 2, •••,!!} as before but with all the
universal cover inclusions L; c L, L̂  c L linking in δV i, j <> I with
i Φ j , where 6 is an integer which is not square mod p.

Consider the surgery problem (W, dW) x L^^(D\ S3) x L,
where g: (W, dW)—> (D\ S3) is a degree 1 map which map each of
S] x D2 c TΓ to the point 60 e (D\ S3). Let the {τό\j = 1, 2, , ί}
denote the normal bundle to Lά in L.

First extend g x 1 by adding framed 2-handles to 3 FT x L to
kill πtfWxL). This changes iϊ2(3TΓxL) from {0} to a free
^(ϋ/^-modulo ί7 (use Theorem 1.0, and recall the dW is a ^-homo-
logy 3-sphere).

Now add framed three handles to a Z(<Z3,)-basis for F, killing
F, and extending g x 1 to a normal map /: (X, 3X) -»(J94, <S3) x L
with / | s x a homotopy equivalence. Set

X = X x /U {ί7j=12)| x D2 x r,-}

where the union is taken along S} x D2 x τ, x 1—3D) x D2 x ry. And
extend / to /: (X, X3) -> (J54, S3) x L by letting /ί^x^x^ the projec-
tion to b0 x τό c ΰ 4 x L . Finally extend / t o h: (Γ,V3) -> (D4, S3) x L
by first completing surgery on /: (d+X, d+Xd) —> (D\ S3) x L mod
f\d+xd; and then surgering /: ϊ - > ΰ 4 x L up to the middle dimension
by performing interior surgeries away from the polyhedra (S) x 0 x
Ly) x / U D J x O x L, , i = 1, 2, , I: completing surgery on fHd+χ,d+τd)

mod/ιa+x3 requires the calculation L\(ZP) = 0, which is a direct con-
sequence of R. Lee's calculation Lξ(Zp) — 0 [10], of Lemma 6.7 in
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[12], and of the Rothenberg exact sequence (see [14]).
Note that the original X is equal (Zx/)U{t7j=1J9) x D2 x τ5) and

so is contained in Γ. Add to both the original X, and to Y, the
set Wx cone(L). Then the resulting spaces are the orbit spaces of
PL actions, Zp x A -* A and Zpx B-+B respectively, both having
W for fixed point set.

The Zp x M —> M considered in this section are now obtained by
adding to Zp X B->B the cone action cone (Zp x dB-^dB). The
fixed point set, K, equals WU cone(dW), which is a i^-homology
manifold-[b btj] represents ίp{K) in Gp, where 6 ^ + 1 if a{[L]) = 0,
and 6 is an integer which is not a square mod p if a([L]) = 1. Note
that dB = S4fc+3, so Λf is a PL manifold required.

That dB = S4/k+3 requires some proof. A careful inspection of
the construction of B makes clear that dB = (dWxcone(L)UCU JtsU
5+i:: where (C, d+C) is the surgery cobordism gotten by doing equi-
variant 1 and 2-surgeries on g x 1: 3W x L—> S* x L to get the
homotopy equivalent /: djt —> S3 x L of the last paragraph: X3, d+X
are defined in the last paragraph; and the unions are taken along
3_C = dW x L, d+C = d_(X), 3(3+X) = 3+(X). Note that by construc-
tion d+X is homotopy equivalent to ί) 4 x L, ϊ 3 is the product cob-
ordism. Now a Van Kampen argument (using the above decomposi-
tion for dB) shows that πx{dB) = {1}, and a Mayor-Viotoris argument
shows that H*(dB) = Ha+3(dB) = Z. So dB = S4fc+3 by the PL Poin-
care conjecture.

Note that the action Zp x A -> A is a subset of the action
Zp x B —>B. Calculations shows that ttzjb+2(A, Z) \s a free Z-moάu\e
with Z-basis represented by the polyhedra Pά = (S| x cone(£, ) U
D) x£i) l ^ i ^ i; Ht(A, Z) = 0 for i ^ 2fc + 2 or 2; iί2(A, Z) is a
torsion group of order prime to p on which Zp acts trivially. The
Pά are Zp-invariant, so Z p acts trivially on H2k+2(A, Z) also.

Finally consider the intersection number [P5] n [Pi] of homology
classes. I claim that [P, ] n [PJ = &([Sy] Π [S?]), where [S|] Π [S|] is
computed in the 4-dimensional manifold W. To see this, choose PL
isotopies φi; cone(L) -> cone(L) satisfying

(a) φ{\t = identity
(b) the ψKconeiZj)), φKconeiLi)) intersect pair wise transversely

in a finite number of pts.
By the choice of the embeddings Liy L3 c L the Lif Lά are pairwise
disjoint and have linking number in £ equal b. So the intersection
number of ^(conetLy)), ̂ (cone(£ί)) in cone(£) must be 6 if i Φ j . Set
P; = (SJ x ^ί(cone(£y))) U D) x Lά. Then Pjf P- represent the same
homology class, and the P}, Pi intersect transversely with intersec-
tion number 6 ([SJln[S}]). Thus [PylntPJ - & ([S)]n[S?]) as claim-
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ed. So the ^-intersection pairing

H2k+2(A, Z) x H2k+2(A, Z) > Z{ZP)

is represented by [b'bi3 η], where δ=-f-l if a([L]) = 0 and b is an
integer which is nonsquare modp if α([L]) = 1.

Concerning Zpx B->B: 3*(B, Z) = H2k+2(B, Z), which is neces-
sarily a free abelian group. Also, in the exact sequence

H2k+S((B, A), Z) -?-> H2k+2(A, Z) ^ - > H2k+2{B, Z)

> H2k+2((B, A), Z)

there exists a left inverse, i, to the map i modulo the class of
p*-torsion groups £fPt: this is so because det[6i5] is a unit modp. So
mod £fp.H2k+2((B, A), Z) is a free abelian group and Ht((B, A), Z) = 0
for i Φ 2k + 2. Moreover, Z^ acts trivially on the torsion subgroup
of H2k+2((B, A), Z) and Ht((B, A), Z) for ί Φ 2k + 2, because Z p acts
trivially on H*(At Z). So Theorem 1.0, as applied to the Z(Zp)-fτee
cellular chain complex of the relative space {B, A), shows that
H2k+2((B, A), Z)/Toτs(B, A) is a stabily free Z(Zp)-moάale, where
Ύovs(B, A) denotes the torsion subgroup of H2k+2((B, A), Z).
H2k+2(A, Z)aU has quotient equal an element of S^p*. Zp acts trivi-
ally on U because it does on H2k+2(A, Z), and the restriction to U
of the ^-intersection pairing in B is congruent modp to [6-δ^ ].

I'll end this section with a list of the things to remember.
We have constructed a PL group action ψ: Zp x M—> M, on a

4(fc + l)-dimensional manifold M, satisfying
3.1. (a) M is an almost parallizable, oriented PL manifold, and

ψ is orientation preserving.
(b) The fixed point set of ψ is Wl) cone(dW), so it has mid-

dimensional intersection pairing represented by [&,,-], which is con-
gruent over Zip) to [aiά\ φ L J where [αίy] comes from 0.1.

(c) The orbit space of the slice action of ψ is the homotopy
lens space L.

(d) H2k+2(M, Z) = U®F, where F is a free Z(Zp)-mod\ήe, and
Zp acts trivially on the torsion free module U.

(e) The restriction to U of the intersection form on M is re-
presented by y)[Cij\, where ^ = l + £ + ί2H h tp~\ ci3 are integers,

[c^] is congruent modp to ί> [(%]® I o " ^ e r e ^a^ comes from
0.1 and b = 1 if a[L] = 0 and 6 is a positive integer not equal a
square mod p if a[L] Φ 0.

(f) Note that the intersection form (over Z) is nonsingular on
(because M is a PL manifold) and is an even form (because
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M is almost parallizable). Thus the index of this form equals 0
mod 8.

4* In this section we shall complete the proof of Theorem 0.1.
The proof will depend on the following two lemmas.

NOTATION. Let λ: (UφF) x (U®F)-+Z(ZP) denote the inter-
section for Zp x B —> B. Let λ ,̂ Xσ denote its restriction to F x F,
U x U, etc. Let Z(Θ) denote the integers with the primitive pth
root of unity θ adjoined. Each of Z, Z(θ), Zp is a ^(^-module, and
Zp is a Z and Z(θ)-module, via the augmentations

S Z{θ) ^
Z(ZP)

 >βv Thus there are the tensor product forms
\ z /

p XF ®zz,pZ, XF ®ZZpZv, etc.

LEMMA 4.1. detXF(g)ZZpZ(θ) is a unit in Z(β).

LEMMA 4.2. ip(K) equals XF®ZZpZp in Gp.

Before proving 4.1, 4.2 we shall complete the proof of Theorem
0.1.

Proof of Theorem 0.1. Set λ = XF®ZZpZ(θ). By 2.2 we have
ind(λ) = iη(XF). Also.

iη{M) = iη(Xu0F) = iη(\F) .

So

4.3(a). ind(λ) = iη(M)

By 4.2 we have

4.3 (b). ip(K) = X ®zmZp in Gp.

Now by, by 4.1 λ must be nonsingular, so Proposition 2.5 is applic-
able to λ. Applying 2.5, 4.3(a), (b) gives the tables in 0.1.

Thic sompletes the proof of Theorem χ.l.

Proof of 4.1. Note that det(λ)= ± 1 (see 3.1(f)), so if xu x2, , xn

are a Z(^)-basis for F3 a dual free ^(Z^-module F *
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generated by xf, xt, , xt satisfying [X(xif xf)] =
1 0

o .

rs e U so that xf - r5 e FV3. Then [XF(xi9 xf - rs)] =

ίfei] for some integral matrix (ciό), which gives

"1

. Choose

1 0
0\

, xf - rs)] =
1 0

0 .

This completes the proof of 4.1.

Proof of 4.2. We divide the proof into two cases, depending on

whether (~£)=+l or(-£)=-l .

Case 1. Suppose p = 4q + 1. Such p satisfy ί ~ \ Λ = + l . In

this case, to show ip(K) = λF g)^^ Z^ in Gp, it suffices to show that

τ&ήk(ip(K)) — rank(λ^ ®ZZp i^)mod 2

det(ip(K)) = det(λ7, ®ZZp Zp) in ί

Note that if rank(iJ)(iίL)) = 1 mod 2 then the ̂ -rank of U is odd,
and consequently the Z(Zp)-rank of F is odd (see 3.1(f)). Thus the
ranks of ip(K) and λ^ ®ZZp Zp are equal mod 2. Next note that for
any Z-basis yίt y2y , y for U we have

[X(yif Xj)] = Ύj - [dtj]

where this equality defines the integral matrix [diά\. So Uf±F,
where U' is generated by the y[ = yt — ΣsV'dij x*. Consequently

BF) = det(λΓ7,) det(λF). Moreover

for some ai5 e Z(ZP); so λ̂  equals λ̂  mod p. In particular άet(ip(K)) =
det(^0 in Z*/(z{) (see 3.1(c), and the definition of ip(K) U'ξ&F
generates f / φ f m o d ^ * , so det(Xu>$F) = ±a2, where a is a unit

mod p. Using the last three determinant equalities, and ( ) = + l ,
one gets άet(ίp(K)) — det(λF) in Z*/(ZP)

2. It remains to see
det(λF) = det(λy ®ZZp Zp) in Z*/(Z*)2. Let [α^ ] be a matrix repre-
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sentation for XF, then there is an exact sequence
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0 X 0

of Z(ZP)-moάxiles where ε is given by [α i 3 ] and X is a finite p*-
torsion module on which Zp acts trivially (det[α i3] is a unit in Z(θ)
by 4.1)). Tensoring with Z over Z(ZP) gives the exact sequence
of ^-modules

0 F( X- 0

where e' has [aug(αo )] for associated matrix. The first of the above
sequences displays det(λ,,)=±|Xj, while the second displays
det(λF ®ZZp Z)=±\X\. Thus det(λ,, ®zz>> Zp) = det(λ,) in Z*\{Z*)\

Case 2. Suppose p = 2q + 1, q = odd. For such p we have

We begin by constructing from (X, Uφ F) another hermetian
form (V, U'φF') as follows.

Choose F c U so that U/V is all p*-torsion, and det(λ,) = ± l
mod p. Then, if [mi:j] represents \v with respect to a Z-basis
Vi, y%, •• ,Vι of V, there will exist TeGL(Zp) so that T{mι3\T and
ip(K) are related by the table

"0

Γ~

[-110

r
o_
0

1

} ί L

Γ(
i_]

T'[mtί

0

ί]«
1 0

lί]

0

0

IT

θj"

•a

1 0

)
"0

1

0

Γ

0

Ί

1

0

0

1

0

1

] 1 Ί

0

o.J

"0 n

[1]

[i
[-

°Ί
ί

il

Here [m3] denotes the mod production of [« ( j ] . Necessarily det(T) =
± 1 , so T is the moάp reduction of a matrix >S, with integral entries
satisfying d e t ( S ) = ± l . S represents a transformation of {yu •• ,yι)
to a new Z-basis (y[, • • •, • • •, y\) for V with respect to which λΓ

has S'lm^S for matrix 'representation. S*[mtJlS can be written as
[d.j] — p JAί] where [dtj] is the appropriate one of the unimodular
matrices listed in the left hand column of the above table. Consider
the Z(ZP)-Heτmitian form X, defined on the Z{ZP) free-module F10 Ft
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which, with respect to a basis xlf x2, ---,Xι for Ft and a "dual"

basis a?*, x?, x?, -", x* for F*t has ^cψ Q for matrix representa-

tion. Set λ'Ξ=λ©λ 1; set LΓ = ©,[!/"] where yϊ = y'i — η xt; set
^ ^ - f θ ^ i θ ^ If F 2 -* (If© F2)/ίΓ denotes the composite F2cz
U®F2->(U{BF2)/U', there will be an exact sequence

0 U/V

From this we deduce that (Ef© F2)/U' is a stably free
as follows. U/V is all p*-torsion, and (Ef0 F2)/U' is a torsion free
ϋΓ-module (in fact a calculation shows det(λ^/)=±l): so 3 a Z(ZP)-
module homomorphism h: (Ef0 F2)/U' —> F2 having finite cokernel X
of order prime to p and having zero kernel. This shows that
(U + F2)jUr is a protective module. Since Zp acts trivially on U/Vf

SchanueΓs lemma in conjunction with Theorem 1.0 and the exact
sequence immediately above show that ( Ϊ 7 0 F2)/U' is (stably) free
as a £(Zp)-module. Thus U® F2 - C7'0 F* with F' = {U@F2)jU\
This completes the definition of (V, Uf 0 F').

Now we shall list the properties of (λ', U' 0 F') which we shall
need.

4.4. (a) \'r.®M.Z,= zΏ.
(b) λ̂ / and ip(K) are related by the following table.

[

~1

0

"0 1

.1 0

1 ] 0

0"

1

•i] ©

•Ί,

LΓ
0

.1

"0

_1

"0

1

9 φ L i
1"

0_ 0 0

r
o_ ίp ••• ί:
11

0
Θ Q

i l
oj
Γ°
Li

D L I
Γ0

11

0_

1"

oj
11

0

i,(K) in

~o r
J- o_

[1]

"1 0"

-0 1_

[-i]

(c) det(λ^) is a unit in Z(ZP).

To see 4.4(a), note that λ^ (g)zι

f = V
position

Jl.
ZP = (XFmFlβF*) ®Zzp ZP because

Let h: F 0 F, denote the com-

Note that Λ. induces an isomorphism
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XFf ®ZZp Z(θ) .

So

We leave the routine verification of 4.4(b) to the reader.
To see 4.4(c), consider the form [bti] over Z defined by

η[bi5\ = X\Vi\ Xj), where x[, x'h , xq is a Z(Zp)-basis for F\ If
[b.j] = [0], then det(λ') = det(λ^) det(λj.). Because both det(λ') and
det(λ^) one units in Z it follows that det(λ^,) is also. So det(λ^)
must be a unit in Z(ZP). Now if [btί] Φ [0], choose z[, z'2, , z'q in
£7' satisfying λ'O/Γ, ^)=-η[btj\. Then replace F' by the Z(ZP)-
module having x[ + z[, x'2 + z'2, , xf

q + x'q for basis, and note that
the above argument can now be carried out.

We can now complete the proof of 4.2. We do this by consider-
ing each of the possible values for ip(K) in GP.

an eveniJK) = y Λ in G,. In this case [ciό\ above will be
L1 UJ r\c Λ in

symmetric matrix over Z. So λ' = λ 0 i i3} Q will be an even

hermetian form. Thus XF'®Zzp Z will be an even symmetric form
over Z with unit determinant (4.4c). So index 0V(x)^ Z) = 0 mod
8. Now it follows from Lemma 2.1 that XF>®ZzpZp — 0 in Gp. So
ip{K) - XF ®zzp ZP in Gp. '

= [1] in Gp. Recall that λ has even rank, because it is

an even symmetric form over Z with unit determinant (3.3). So

λ' = λ © £<y Q also has even rank. By 4.4(b) λ£, must have odd

rank. So X'F>®Zzp Z must also have odd rank, implying that index
(SF>®ZZPZ) — ± l m o d 4 . If this index is + l m o d 4 , then XF*®ZzpZp

equals [1] in Gp by Lemma 2.1. So ip(K) = XF'®ZZp Zp in Gp as
claimed. Now suppose index (XF>®ZZv Z) = — 1 mod 4. We will
derive a contradiction from this assumption. By Lemma 2.1 and
inά(\'F,®ZZ9Z)= - 1 we get \'F.®ZZp Zp = [-1] in GP. From 2.2,
2.5 Table 1, and this last equality, we get iv(XF,) — — 2q mod 8, where
p = 2^ + 1. From 4.4(b) we get i(λ^) = + 1 . But i(λ^) + i(λi /(g)^p

^) + ir/λi O = i(λ') and i(λ') = i(λ) = 0 mod 8. This leads to

1 + ( - 1 + 4m) + (-2q) = 0mod8

is c

1 0"

which is impossible when q is odd.

or [ — 1] in
0

These two cases can be settled by arguments similar to the pre-
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vious cases. The remaining details are left to the reader.
This completes the proof of 4.2.
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