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A NOTE ON THE AUTOMORPHISM GROUPS OF
SIMPLE DIMENSION GROUPS

CHAO-LIANG SHEN

We study the automorphism of simple dimension groups
with underlying group Zι (which are of the form (2Γ2, Pα), a a
positive irrational) and find out the necessary and sufficient
condition for the dimension group {Z2

y Pa) having nontrivial
automorphisms is a being a quadratic surd. In this case we
also obtain the classification of the automorphism via the
Bratteli diagram of the dimension groups.

Introduct ion. In his paper [6], George Elliott proposed the
notion of dimension groups for the approximately finite C*-algebras
(AF algebras) which were originally studied by J. Glimm, J.
Dixmier, and 0. Bratteli [1]. He showed that the classification of
the dimension groups is equivalent to the stable classification of AF
algebras. He also found that the dimension groups satisfy the Riesz
interpolation property (see §1) and raised the problem of intrinsic
characterization of dimension groups. An ordered group (see §1)
which satisfies the Riesz interpolation property is called a Riesz group.
It is shown by Effros, Handelman, and the author [5] that Riesz
groups are in fact dimension groups.

Although we know that Riesz groups are dimension groups, for
the practical applications, we still have to have a method for finding
the corresponding Bratteli diagram [1]. In [3], [4], we have studied
this problem for certain classes of dimension groups. On the other
hand, it is also important to understand the structure of the auto-
morphisms of AF algebras and the relation of those to the auto-
morphisms of the corresponding dimension groups. This question
has been studied by Elliott [6], Effros and Rosenberg [2] (also see
I 5]). By their results, we see that automorphism of dimension groups
tells us a certain amount of information about the approximately
inner automorphisms of AF algebras.

In this note, we study the automorphism groups of the dimension
groups of the form (Z2, Pa) (see §1 for definition) where a is irra-
tional. In this case, the continued fraction analysis of [3] makes
theory particularly transparent. We also provide some information
about the automorphisms of higher rank simple dimension groups.
In $2, we give a necessary and sufficient condition for when the
automorphism group is nontrivial, we also obtain the classification
of the automorphisms via the Bratteli diagram of the dimension
groups. As pointed out in [6], [5], the automorphism groups of
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dimension groups have certain relations to the algebraic units in the
given groups. In §3, we make this correspondence explicit. At the
end, we mention some unsolved problems.

Finally, the author wishes to thank his teacher and advisor
Professor Edward G. Effros for his encouragement and suggestions.

1* Preliminaries, In this section we shall recall some definitions
and theorems which we shall use in §§2, 3.

By an ordered group we shall mean an abelian group G together
with a subset G+ (called the positive cone of G) such that 0eG+,
G+ + G+ c G+, G+ -G+ - G, and for neN,ngeG+ implies g e G+.
We shall denote g ;> 0 if g e G+. By an order homomorphism ¥: G -*
H, where G and H are ordered groups, we mean a group homomor-
phism Ψ with the property: Ψ(G+) c H+. By an order isomorphism
Ψ: G —> H we mean that Ψ is a group isomorphism and Ψ(G+) = H+.
Ψ is an (order) automorphism of G if Ψ: G ~> G is an order isomor-
phism. The group of automorphisms of G shall be denhted by AUH
G.

Given the group Zn, we assign it an ordering, which is defined
by the positive cone

{Zny = {(alf , an): a^O for all i)

the group Zn together with the above ordering is called a simplicial
group. Given an inductive sequence {Zn, ψknk+1), where Znk are sim-
plicial groups and φk}k+ι: Z%k ^Z are order homomorphisms, we define
an ordering on \\m^{Zn\ Ψktk+1} = G by letting G+ = U*ai 0*((Z**)+),
where θk: Z

nk —> G are the canonical homomorphisms. The group G
together with the ordering assigned above is call a dimension group.

A dimension group G must satisfy the following Riesz interpola-
tion property: If a, b <* c, d in G, then there exists an e in G such
that a,b^e^c,d. A dimension group G is simple if for any a e
G+\{0), {b e G: 0 ̂  & ^ wα for some n 6 iV} = G+. We have the following

THEOREM 1.1. // (Z2

f P) is a simple dimension group, then it
must be totally ordered. Furthermore, one may assume that the
positive cone P is given by

P = {(&, y): ax + y S 0} ,

where a is a positive irrational number. We denote P by Pa. (Z2,
Pa) is order isomorphic to (Z2, Pβ) if and only if there exists Ψ =

Rj ^ΊeGL(2, Z) such that
(1) aa + 6 > 0, ac + d > 0,
( 2 ) β = (αα + δ)/(αc + d).
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Furthermore, φ is an order automorphism of (Z2, Pa) if and only if
( i ) <peGL(2,Z),

(ii) if we write φ — ? % , then aa + b > 0, ac + d > 0, and

a = (aa + b)/(ac + d).

Proof. We need only prove the last part of the theorem, for
the rest, see [10, Prop. 4.5], [10, Lemma 4.7], [3, Th. 2.1].

If φ is an automorphism of (Z2, Pa), it is clear that φ eGL(2, Z).

Let us write φ — \? c, . Since (1, 0), (0, 1) e Pa, if φ is an order

automorphism, we must have φ(l9 0), φ(0, 1) e Pa, and hence aa + 6 >
0, αc + d > 0. On the other hand, since φ is an order automorphism,
(x, y) ePa if and only if φ(x, y) ePa, i.e., ax + y ^ 0 if and only if
a(ax + cy) + (bx + dy) ^ 0, i.e., if and only if (aa + b)x + {ac + d)y ^ 0.
Since ac + d> 0, the latter is equivalent to

((aa + 6)/(αc + d))x + 2/ ^ 0 .

Thus α — (aa + 6)/(αc + d). The converse is obvious. (Also see the
proof of [10, Lemma 4.7]).

Given an irrational number aeR+, we can associate with it a
unique simple continued fraction (see [8])

where a0 e Z+, aneN for all n ^ 1, such that if we define

Po = α0, Pi = αA) + 1, , pn = anpn_λ + pn-2 ,

q0 = lfq1 = al9 , 9» = αΛ9n-i + ^-2 ,

then p2nfq2n is an increasing sequence, p2m-jQ2m-i is a decreasing
seqtence, pjqln < p2m-i/Q2m-i for all n, m, and

lim pjq2n = lim p2m^\q^-i = « .

We have

THEOREM 1.2 [3, Th. 3.2]. Let [α0, αly •] be the simple continued

fraction expansion of a9 and define Ψk: Z
2 -> Z2 by the matrix ?fc Q •

Then lim{Z\ ψk) = (Z2, Pa).

Two irrational numbers a and β are equivalent if their simple
continued fractions agree after some stage. Theorem 1.1 just means
that a and β are equivalent.

A simple continued fraction [α0, αlf •] is periodic if am = am,.k
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for a fixed k and for all m >̂ L, we use the notation [α0, au •] =
[α0, alf , a*-!, άL, , ά^*^, •], where αz, , αL+Λ_! is a period.
Replacing a periodic irrational number a by an equivalent irrational
if necessary, we may assume that its period starts from α0, i.e., a =

For the periodic irrational numbers, we have the following

THEOREM 1.3 [8, Ths. 176, 177]. a is a periodic irrational number
if and only if it is a zero of a Q-ir reducible integral quadratic
polynomial, which has postive discriminant.

THEOREM 1.4 [8, Th. 172]. a is irrational If \% f\ e GL(2, Z)
such that c > d > 0 and a — (βa + b)/(βc + d), and [α0, , an] the
simple continued fraction of ajcy then there exist an+1, e N such
that

( 1 ) a = [α0, , aΛ, an+1, •] is the simple continued fraction
of a, and β = [an+1, •••],

( 2) α = pn, b = pn_l9 c = qn,d = qn_,.

L E M M A 1 . 5 [ 8 , p . 1 4 0 ] . If a — [ά0, •• , ά L _ 1 , • • • ] , t h e n a =

i<x + QL-*)

2. The classification of the automorphisms of (Z2, Pα)*

THEOREM 2.1. (Z2, Pa) has a nontrivial automorphism if and
only if a is a periodic irrational number.

Proof. By Theorem 1.1, feAUT(Z2, Pa) if and only if ψ =
5 ^ U GL(2, Z), where αα+ δ > 0, ac+ d > 0, and a - (αα + b)/(ac + d).

If ψ is nontrivial, then c Φ 0, otherwise α = a(a/d) + (b/d) implies
a = d,b == 0, and Ψ is trivial. Thus we have

ca2 + (d — α)α — 6 = 0,

i.e., α is periodic.
Conversely, given a = [d0, , άL_l9 •], we have α = [α0, ,

a>L-i, <A> and thus α = (pL^a + PL-^KQL-^ + 0i-8)
 b y Lemma 1.5.

Letting Ψa = Γ^-1 ^ " 1 Ί , by Theorem 1.1, and gL_3 ^ 0, Ψa is a desired
LPL-2 QL-2J

automorphism.

DEFINITION 1. The automorphism Ψa in Theorem 2.1 is called
the canonical automorphism of (Z2, Pα).
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By Theorem 2.1 we see that the continued fraction of provides
us a nontrivial automorphism Ψa. We note that the automorphism
Ψvγ is precisely the automorphism of (Z2, Pji) studied by Elloitt in
[6]. It is very natural to ask the question whether all automorphisms
arise in this manner. We shall give an affirmative answer in Theorem
2.3.

LEMMA 2.2. Given a — [ά0, , άL_u •]. Then

PnL-l QnL-1

JPnL-2 QnL-2
, n ^ 1 .

Proof. We shall use induction on n. If n = 1 this is trivial.
Assume that

PnL-l QnL-

PnL-2 QnL-2 _

Observe that (see [3, §3])

Pln+DL-l Q(n+l)L-l

_P(n+l)L-2 Q(n \l)L-2.

PL-2

PnL-l QnL-1 ]

_PnL-2 QnL-2 _

1 Pίn+

?<»+l)L-3 J

α u + 1 ) i _ 1 1]

i ' o J -
aL-i 1

1 0

an

o
PnL-l QnL-ί

JPnL-2 QnL-2 _

PnL-l QnL-1

OJ lPnL-2 QnL-i _

PL-I QL-I

PL-2 QL-2_

ψn+1
* a

PnL-l QnL—1

PnL-2 QnL-2

Thus we are done.

Ψ =THEOREM 2.3. // Ψ = fjj ^Ί e AUT(Z2, PΛ\ a periodic, then

Ψl for some neZ.

Proof Ψ e AUT(Z2, Pa), we have (aa + b)/(ac + d) = a.

Case 1. c > d > 0: In this case, by applying Theorem 1.4 we
have a — pn,b = pn_lf c — qn, d = qn^x for some neN, and thus n =
kL — 1 for some & 6 JV, where α0, , αL_! form a period of the simple
continued fraction of a. Thus, by Lemma 2.2, we have
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ψ =
PkL-l QkL-l

JPkL-2 qkL-2.

Case 2. c > 0, d > 0: Let

ψ' =

Since p ^ c + qL-Ld > ^-9^ + QL-A > 0, the previous Case 1 implies
that r - Ψk

a

+1 for some fc, and thus Ψ = Ψk

a.

Case 3. No restriction on c, d: Choose k sufficiently large such
that VkL-x\(lhL~i > 1, PkL-jQkL-2 > 1 (this is legitimate since a > 1) and
cPkL-i + dqkL_t > 0, i = 1, 2 (this is also legitimate since cα 4- rf > 0,
and lim(pkL_i/qkL_i) = α). Let

£-2 9*7.

Li 1

7.-2 J
α c

Ψ" is of the form considered in Case 2. Thus Ψ" = Ψ™ for some
meZ. Hence ?/ = WZ~k.

For the simple dimension group (Zn, P), ̂  ^ 2, we have the
following result (this was suggested by Edward G. Effros).

THEOREM 2.4. Suppose that Ψ e GL(w, Z) has strictly positive
entries. Let G be the inductive limit group of the sequence

Then AUTG is nontrivial, and ΨeAXJΎG.

Proof. Since the connecting isomorphisms are constant, a result
of Elliott implies that G is a simple dimension group with a unique
extreme state η (see [4, Prop. 2.2]) (roughly speaking, this means
that G+ = {{zlf - - , O 6 Z : ̂ ^ , zn) > 0} U {(0, , 0)}). We also
know that, if we view 77 as a vector in Rn, η is an eigen vector of
the Perron eigenvalue λ of Ψ* (see [4, §2]). Given

αe(?+\{0}, v(Ψ(a)) = Ψ*(y)(a) - 0,

0 .

Thus f eAUTG.
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REMARK. Another proof can also be derived by using the defini-
tion of the positive cone of G.

By using [5, §4], it is easy to see that if (Zn, P) is a simple,
totally ordered group, then AUT(Z%, P) is abelian. Given any simple
dimension group (Zn, P), it is still not clear to us how to determine
the generators for AUΎ(Zn, P), when n > 2. It seems to us that
the number of generators would be determined by the Diophantine
properties of the extreme states of (Zn, P) (i.e., it will depend upon
whether or not the coefficients of the extreme states are algebraic
or transcendental).

3 Algebraic units in a real quadratic field and the automor-
phism group of {Z2, Pa). An alternative approach to the study of
AUT(Zn, P) is provided by the theory of algebraic units (see [5]).
Since various difficulties arise in the continued fraction theory for
n > 2 (see [4]), we feel that it is useful to explain how the algebraic
method applies to (Z\ Pa).

Given a positive, periodic irrational number a, we can view
(Z\ Pa) as G — {m + na: m, n e Z), a dense subgroup of R with the
usual ordering. Since 1 e G+, an order automorphism of G must be
the form

(3.1) geG\ > ug ,

where u, u~ι e G+ are algebraic units, and conversely any such u
determines an automorphism of G. It is important to know the
connection between the algebraic units in G+ and the result of
Theorem 2.3. For this, let

a = [d0, •• , άL_l9 •••]

be the simple continued fraction of a. Define pn, qn as before. We
know from §2 and Theorem 1.4 that

(3.2) q^of + (gfcL_2 - PkL-Ja - pkL_2 = 0 .

Thus we have (recall that pnqn-L — pn-xqn = ( —I)"" 1).

QIL-A2 + QkL-liQkL-2 - PkL-l)(X - PkL-2QkL-l = 0

= " PkL-lQkL-2 - PkL-ϊQhL-l = PkL-lQkL-2 + QkL-l(PkL-\ ~ QkL-i)**

- qΪL-iOί2

= = > ( - 1 ) * L = (pkL_Λ - qkL-ι0ί)(qkL-2 + QkL-iU)

)](-2 + QkL-lOί) .

Hence ( - l ) ^ ^ ^ — qkL^a) is an algebraic unit with qkL_2
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as its inverse. Using Theorem 2.3 and the above observation, we
have the following.

THEOREM 3.1. The positive algebraic units in G form a group
r&fGy which is generated by ( — l)L(pL-i — QL-I&) Moreover, we have

(1) [ ( - 1 ^ - qL^a)]k = ( - 1 H P ^ - q^ά),
(2) [ ( - 1 ) ^ ^ - qL^a)Yk = qkL_2 + qkL_xa for k ̂  1.

Proof, It is clear that the positive algebraic units in G form
a groups. It is cyclic (for this, we use the fact that the positive
units of a real quadratic field form a cyclic group [9, p. 63, Prop.
1]). Thus, it suffices to show that ( — l ) 7 ^ - ! — qL-i<*) is the generator
and the identity (1) holds.

Let us first prove (1): Assume that (1) holds for k,

= ( - i y k + 1)L[PL-lPkL-l - (pL-lQkL-1 + PkL-lQL-l)(X

where, by using the equalities in Lemma 2.2 and (3.2), we have

PL-lPkL-l - (PL-lQkL-1 -f PkL-lQL-l)<X + QL-IQUΠ^

= PL-lPkL-l - (PL-lQkL-1 + PkL-lQL-l)a + QL-l[PkL-2 + (PkL-1 " QkL-d<*\

= (PL-lPkL-l + QL-lPkL-2) - (PL-lQkL-l + QL-lQkL-2)a

Thus (1) holds.
On behalf of ( — l ) ^ ^ - ! — QL-I0L) generating ^/G, letting u + va

be a generator of //(; such that (u + va)τ — qL_2 + ̂ L-i^, ΐ > 0. Then

(3.3) (u + vα)α = %' + v'a

for some ^', vr e Z, where, as ^ + vα is an order automorphism of
G,aeG\ so we have u' + v'aeG+. Since π + vαeAUTG, the
following equation

(3.4) (u + va)(m + M ) = α + 6α

is integrally solvable, i.e., there exist m, %eZ such that (3.4) holds,
where a and 6 are given integers. By using (3.3)

a 4- ba = (u + va)(m +

-4- (vm -r 6̂?̂ )α 4-

%m H- (vm + u^)α + ̂ [u' + v'a —

= (um + ̂ ^') + (vm 4- wv')«
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(urn + u'n = a

\vm + v'n — b

is solvable over Z for any given a, b e Z. This implies that

det [JJ jf] = ±1. By (3.3), or = (v'a + %f)/(̂ α + w), v'a + u'>0,va +

u > 0, [*', ζ]eGL(2, Z). Thus [*', £ | e AUT(Z2, Pβ). By Theorem
2.3, v = ^ L _i, w — qkL_2 for some & e N. But as O + va)* — (qkL-2 +

QkL-iOiy = ?tjbL-2 + ?<*L-i«, ifc = 1, and hence w + vα = ^,_2 + qL-xa.

The proof is now complete.

Finally, we wish to mention some problems: Suppose we are
given a dimension group G as that in Theorem 2.4, is AUT G cyclic?
is it generated by ¥1 If not, what can we tell about the AUT G
from Ψ1 How to distinguish two dimension groups arised in the
same manner as that in Theorem 2.4? The answers of these questions
would be helpful for the classification of topological Markov chains
considered by Krieger and Cuntz.
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