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HOMOTOPY CLASSIFICATION OF LENS SPACES
FOR ONE-RELATOR GROUPS WITH TORSION

SUSHIL JAJODIA

Let Ξ be a one-relator group with presentation & —
($i, •" ,%n Rp) where R is not a proper power and p ^ 2.
Then given any integer q, relatively prime to p, we can
construct the Lens space ^(pf q) for Ξ from the cellular
model C(&) of the presentation & by attaching a 3-cell
via the attaching map Rq — 1, which generates the ideal
ZΞ(R — 1) « τr2(C(^)). In this paper we classify these Lens
spaces up to homotopy type. We also discuss the non-
cancellation aspect of these Lens spaces.

Introduction* In this paper we are interested in Lens spaces
for one-relator groups with torsion. Given relatively prime integers
p and q, with p ^ 2, we have the ordinary Lens space L(p, q) with
fundamental group finite cyclic of order p. The 2-skeleton of L(p, q)
is the cellular model C(&) of the presentation

& = (x: xp)

and L(q, p) is obtained from its 2-skeleton by attaching a 3-cell via
the attaching map xq — 1, which generates the ideal ZZp(x — 1) ^
π2(C(&)). The cellular chain complex of the universal covering
L(p, q) of L(p, q) is given by

G*(L(p, ?)): ZZ, —h ZZP LtfLtllL±£^ ZZ9

 X-^> ZZP

where x is a generator of the cyclic group Zp. J. H. C. Whitehead
[11] has shown that L(p, q) and L(p, r) have the same homotopy
type if and only if qr or — qr is a quadratic residue mod p. We
consider the following analogue: Let Ξ be a one-relator group with
presentation

(1) & = {xu •• ,*.:Λp)

where R is not a proper power and p ^ 2. Then given any integer
q, relatively prime to p, we can construct the Lens space £f($9 q)
obtained from the cellular model C(^?) of the presentation R by
attaching a 3-cell via the attaching map R9 — 1, which generates
the ideal ZΞ(R - 1) ** π2(C(&)). Clearly the fundamental group of
J*f(p, q) is isomorphic to Ξ. The cellular chain complex for the
universal covering J??(p, q) of the Lens space Sf(p, q) is given by

)): ZΞ ^ ^ i > ZΞ -^-> {ZΞY Λ+ ZΞ
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where d1 = (xλ — 1, , xn — 1) and 32 is Jacobian matrix of the
presentation & described in the free differential calculus of R. H.
Fox [2].

DEFINITION. An element R of free group F generated by
x19 - , xn is primitive if it is a member of a free basis for F.

THEOREM 1. Let Ξ have presentation (1) with single relator Rv

a power of a primitive element R of F. Then two Lens spaces
£f(p, q) and £f(j>, r) for Ξ have the same homotopy type if and
only if qr or —qr is a quadratic residue mod p.

Thus for these "power of a primitive" one-relator groups, the
homotopy classification for the Lens spaces J*f(p, q) for B is identical
to that for the ordinary Lens spaces L(p, q) for the cyclic group Zp.
We are able to solve the classification problem for the Lens spaces

, q) for the remaining one-relator group modulo this conjecture:

CONJECTURE. Let B be a one-relator group given by the presenta-
tion (1). If R is not primitive in the free group F generated by
#i> * *', χ

n> then each automorphism a e Aut B is induced by an auto-
morphism of the free group F. (See S. Pride [7].)

THEOREM 2. Let Ξ have presentation (1) with single relator Rp

a power of a nonprimitive element R of the free group F. If the
above conjecture holds for Ξ, then two Lens spaces Sf(p, q) and
£f(Pi r) fov Ξ have the same homotopy type if and only if q =
±r mod p.

The outline of this paper is as follows. In §1, we give the
proofs of Theorems 1 and 2. In §2, we discuss the automorphisms
of one-relator groups and give several examples for which the above
conjecture holds. Finally, in §3, we discuss the non-cancellation
aspect of these Lens spaces.

§()• Notation* For simplicity, we employ the same notation
for elements of F and B. We let ZΞ denote the integral group
ring of B. All Z^-modules are left US-modules. Any element w e
ZΞ defines a left ZS-module homomorphism w: ZΞ —> ZΞ given by
the right multiplication. For w eΞ and a positive integer s, we let
(w, s) = 1 + w + + w8'1 and (w, — s) — —w~s(w, s) in ZΞ. We
have the following < >-identities

(w — ϊ)(w, s) — ws — 1 , {w, s) + ws(w, t) = (w, s + t) ,

{w, s)(w% t) = (w, si} .
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If w 6 Ξ has order p, then ζw, s}(w, p) = s(w, p).
All the spaces in this paper are connected CTF-complexes with

some zero cell chosen as basepoint which is preserved by all maps
and homotopies.

1* Proofs. Throughout this paper Ξ will be a one-relator group
given by presentation (1). We denote by S the element <72, p) —
1 + R + + R^1 of the integral group ring ZΞ.

The following is a ^-resolution of the trivial fi'-module Z (see
R. Lyndon [4]):

. . . > 2S > Z& > Z5

( y ^ - > Z >0

where ε: ZΞ —> Z is the augmentation homomorphism,

d, = (x, - 1, , xn - 1) , and d2 = S(dR/dx19 , dR/dxn) .

To the Lens space J*f(pf q) for Ξ, we can associate its algebraic
3-type T(£f(p, q)) = (Ξ, ZΞS, k) where ^Jif(p,q) = S, πs(Jίf(p,q))=ZΞS
and k e H\Ξ, ZΞS) is the obstruction invariant of MacLane-Whitehead
[5]. An isomorphism

(Φ, Ψ): T(J^(p, q)) > T(J^(p, r)) - (Ξ, ZΞS, k')

between the algebraic 3-types consists of a group isomorphism Φ:
Ξ -> Ξ and a ZΞ-modύle isomorphism Ψ: ZΞS —> ΦZΞS for which
φ*(fc') = ψ^k) in the diagram:

H\Ξ, ZΞS) — iϊ4(^, ΦZΞS) S- H\Ξ, ZΞS) .

Note that we view ΦZΞS as a Zi?-module this way: w a = Φ(w)a
where weZΞ and α 6 ZSS. It is known that two Lens spaces £f(p, q)
and J*f(p, r) are homotopically equivalent if and only if T(J*f(p, q))
is isomorphic to T(£f(p, r)). (See Theorems 4 and 5 of MacLane-
Whitehead [5] and Theorem 15 of Whitehead [12]).

The cellular chain complex CtX^f(p, q)) provides us with a partial
free resolution ε: C*(^(p, q)) —> Z which we can extend to get a free
resolution ε:C*(Ξ) -> Z of the trivial module Z over ZΞ (see [3]).
Likewise we also obtain the free resolution ε: C*{Ξ) —> Z of the
trivial module Z over ZΞ by extending the partial free resolution
ε: C+iJ^ip, r)) -» Z. Let u be any chain map

extending the identity map on Z. Thus we have the commutative
diagram:
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-*ΦZΞ

• ZΞ-

ΦZΞ κ ~L > ΦZΞ

where u also denotes the restriction of the chain map uz to ZΞS.
The commutativity relation uzd± = 34w4 implies that u*(Jc) = Φ*(k').
(See [1].) Therefore «Sf(p, g) and -Sf(2>, r) are homotopically equi-
valent if and only if for some chain map u, u = uz \ ZΞS: ZΞS —>, ZΞS
is a ^S-module isomorphism; for then (Φ, u) constitutes an isomor-
phism of their algebraic 3-types.

We recall now the following two results of R. H. Fox [2] which
are crucial to the following lemma.

I. Fundamental formula of free calculus.
Let F denote the free group generated by xlf -—,xn and let

v e ZF. Then

p-(x, - 1) = v - 6(v)

where ε:ZF—>Z is the augmentation map.
II. Chain rule of differentiation.
Let λ be a homomorphism from a free group Y into a

group X. Then, for any veZY,
free

LEMMA 1. Let Φ: Ξ —> Ξ be a group homomorphism such that
Φ(JR) = R\ (s, p) — 1. Then the following commutes:

ίdR dR\

SEL^EL ^ - ^ z

Ξ-^ Z — 0

where

dxn

dΦ(xn) dΦ(xn)

\ dxn jn x n .
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Proof. To see that uod1 = d^, we consider the ith column of
the matrix 9 ^ :

-fφfe)fe - 1) + . + ̂ -Φ{χι){xn - 1)

= Φ(Xi) — 1 [by the fundamental formula of free calculus], which is
the ith column of the matrix uQdx. That uxd2 — d2u2 follows from the
relations

= S(φ(ψ-)±ΦM + ... + φ(ψ-)i-

= s(-^-Φ(R), , ̂ -Φ(R)) [by chain rule]
\ 9a?! oxn /

= d2u2 . This completes the proof. D

The above lemma can be used to simplify the proof of Theorem
1 of [3].

Next we show that all inner automorphisms of Ξ are contained
in the image of the evaluation homomorphism #: ̂ (^f(p, q)) —• Aut Ξ
where ίf(Jίf(p, q)) is the self-equivalence group of the Lens space

, q) for 3.

LEMMA 2. Let Φ be an inner automorphism of the one-relator
group Ξ given by presentation (1). Then Φ

Proof. We may assume that Φ(g) — x^xΐ1 for all g in Ξ. Then
we have the diagram:

): 0 —

(
\dχj

fdR"\

Zφ

Ϊ-^Z-^O
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where uγ is as in Lemma 1. Again, using the chain rule, one can
show that uλ and u2 make the diagram commute. Because the multi-
plication xt: ZΞS —> φZΞS by the group element x1 is clearly an iso-
morphism, there is a self-homotopy equivalence /: =S (̂p, q) —> Sf (p, q)
inducing the inner automorphism f% — Φ on the fundamental group
(see the preliminary remarks at the begining of this section). •

PROPOSITION 1. Let Φ: Ξ —»Ξ be an automorphism. Then there
is a positive integer s such that Φ{R) = gRsg~ι where g e Ξ and
(pf s) = 1. Moreover there exists a homotopy equivalence

inducing Φ on the fundamental groups.

Proof. By Theorem 4.13 on page 269 of Magnus, Karrass, and
Solitar [6], there is a positive integer s such that Φ(R) = gRsg~u,
moreover, {p, s) = 1 since Φ(R) has order p. Since Lemma 2 handles
the problem of conjugation, we may assume that Φ{R) = Rs and so
we have Φ(S) — S. Thus in view of Lemma 1, we have the com-
mutative diagram

q))ι 0—»ZΞS—~ZΞ

C*(J2?(P, qs")): 0 —tZΞS—tZΞ

Because (qs2, p) = 1, there exist integers a and b such that aqs2 +
bp — 1. We let uz = (R, qs)(R, s}(Rqs2, a) which makes the square
commute since

, s) = (R'° - 1)<Λ, s)

and

<Λ, qs)(Rf s)(R«*\ a

, s)(R - 1) .

Let 6: ZΞ —• ^ZffS be the Z'S'-module homomorphism given by 1 —> bS.
Then Us + b restricts to ZΞS to give the ZS-module homomorphism
u: ZΞS -+ φZΞS which maps 1 S -> (α^s2 + 6p)S = 1 S; so u is an
isomorphism. Thus u0 ±= ZΦ, uu u2, and u3 + b constitute a chain
map C*(^f(p, q))-> C*(£?(p, qs2)) which restricts to give an iso-
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morphism on the third homotopy module ZΞS. Hence there is a
homotopy equivalence /: J*f(p, q) —> J*f(p9 qs2) inducing Φ on the
fundamental group. •

PROPOSITION 2. Two Lens spaces £f{pf q) and Sf{p, r) for Ξ
are homotopically equivalent via the identity homomorphism on the
fundamental groups if and only ifq = ± r m o d ^ .

Proof. First we assume that Jίf(p, q) and £f{p, r) are homo-
topically equivalent via the identity homomorphism on the funda-
mental groups. Because (r, p) = 1, we may choose an integer rf

such that rrf = 1 mod p. Then we have the diagram

ZΞ -^

Uz-:<R,q><Rr,rf>

C*{£f(pf r)): 0 —ZΞS— ZΞ RT~X > ZΞ -^ (ZΞ

which commutes. Because J*f(p, q) and J*f(p, r) have the same
homotopy type, there is a Z#-homomorphism 7: ZΞ —> ZffS such that
uz + 7: ZΞ —> Z5 restricts to ZSS to give an isomorphism u: ZΞS ->
ZSS. 7 is given by the formula (3.5) in Eilenberg-Maclane [1].
Now we have commutative diagram

Therefore by Five lemma, u3 + 7 is an isomorphism. But then
e(uB + 7) = qr' + pe(v) = ± 1 for some veZΞ. Therefore qrf =
±lmodί?, i.e., g = ±rmod?).

Conversely, let us assume that q = ±rmoάp. We may choose
an integer k such that kp — q + r. Also, because (r, p) — 1, there
exist integers rf and p' such that r r ' + ppf = 1. As above, we may
take the chain map uz = <S, g><i?r, r;>, and let -fcr' ± p': ZΞ -> ^^iS
be the ZS-module homomorphism given by 1—>( — krf ± p')S. Then
6̂3 + ( — fcr' ± pf) restricts to ZΞS to give ZEΓ-module homomorphism

which takes 1 S -> (grf — fcr'p ± pfp)S = ±1S, so that this restric-
tion is an isomorphism. Therefore by the preliminary remarks at
the start of this section, «Sf (p, q) and Jϊf(p, r) have the same
homotoy type. Π

In our attempts towards proving the general classification we
are faced with the following problem:
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Given any integer s, relatively prime to p, does there exist an
automorphism Φ e Aut Ξ with Φ(R) = RSΊ

In §2, we show that if the single-relator Rp is power of a
primitive, the answer to the above question is in the affimative.
This allows us to "shuffle" the ^-invariants of the Lens space
=2f (p, q) for Ξ, and the classification for these Lens spaces is identi-
cal to that for the ordinary Lens spaces L(p, q) (Theorem 1). On
the other hand, if the single-relator Rp is not power of a primitive,
Pride conjectures that every Φ e Aut Ξ is free in which case we
show that Φ(R) = gR^g"1 for some g in Ξ. Thus we do not have
the freedom of "shuffling" the ft-invariants; and so the solution to
the general problem of homotopy classification for these Lens spaces
is finer than that for the ordinary Lens spaces. Indeed it is identi-
cal to one where we insist on the identity homomorphism on the
fundamental group (see Proposition 2 and Theorem 2).

PROPOSITION 3. // there is an automorphism Φ e Aut Ξ with
Φ(R) = gRsg~x where (s, p) ~ 1 and g e Ξ, then there is a homotopy
equivalence between the Lens spaces Jΐf(p, q) and J*f(p, r) for Ξ
inducing Φ on the fundamental group if and only if qs2 ΞΞ ± r mod p.

Proof, By Proposition 1, there is a homotopy equivalence
between £f(p, q) and J*f(p, r) inducing Φ on the fundamental group
if and only if there is a homotopy equivalence between Jzf(p, qs2)
and Jzf(p, r) inducing the identity on the fundumental group and,
by Proposition 2, this is the case if and only if qs2 = ±rmodp. We
are done. •

THEOREM 1. Let Ξ have presentation (1) with the single-relator
Rp a power of a primitive element R of F. Then two Lens spaces
^f(p, q) and Sf{p, r) for Ξ have the same homotopy type if and
only if qr or —qr is a quadratic residue modp.

Proof. We first note that since R is primitive, given any s,
relatively prime to p, there is an automorphism Φ e Aut Ξ such that
Φ(R) = Rs (see §2). Thus, by Proposition 3, £?(p, q) and £f{p, r)
have the same homotopy type if and only if for some s, (s, p) — 1,
we have that qs2 = ±rmodp, i.e., (qs)2 = ±qr modp, and this is the
case if and only if qr or — qr is a quadratic residue modp. Π

THEOREM 2. Let Ξ have presentation (1) with single relator Rp

a power of a nonprimitive element R of the free group F. When
conjecture stated in the introduction holds for Ξ, then two Lens
spaces J*f(p, q) and Jϊf(p, r) have the same homotopy type if and
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only if Q = ±rmodp.

Proof. Because R is a nonprimitive element of the free group
F9 the conjecture gives that for any automorphism Φ e Aut Φ,
φ(R) = gR±1g~\ geΞ (see §2). The theorem now is immediate from
Proposition 3. •

2* Automorphisms of one-relator groups*

DEFINITION. An automorphism a: Ξ —> Ξ is free on a presentation
& for Ξ if it can be induced by an isomorphism on the free group
on the generators of &.

LEMMA 11. Let a: Ξ -> Ξ be a free automorphism on the
presentation & for Ξ. Then a{R) — gR^g"1 for some g in Ξ.

Proof. By Theorem N5 of [6], page 172 (see also A. J. Sieradski
[10, page 91]), we have that a(Rp) is freely equal (as a word in xt)
to gR±ιpg~x for some g in Ξ. This implies that a(R)p is freely
equal (gR^g-1)*. But then by Exercise 2, page 41 of [6], a(R) =
gR±lg-\ D

Thus if a: Ξ —> Ξ is an automorphism for Ξ with a{R) = Rs

where s Φ ± 1 , then a is not free.

EXAMPLES. (1) G. Rosenberger in [9] has shown that every
automorphism a of the group H9}n given by the presentation

(al9 --,ag, tlf ulf , tnun: (an^ ap Π [tif u

(p ^ 2, % ̂  2, for j = 1, , g) is free.
(2) Let Cn>p be the group presented by

For any integer s such that (s, p) — 1, there is an automorphism a
of cnιl, with as{c) = cs. This is simply given by taking at -»α^,
i = 1, , w — 1, and c —> cs. In fact the following example gener-
alizes this situation.

(3) Let S be a group given by presentation (1). If R is
primitive in the free group F generated by xlf , xn, then for all
s, (s9 p) = 1, there is an automorphism a of Ξ such that a(R) = iϋ*.
This follows because R primitive implies that Ξ is isomorphic to
CntP9 and therefore AutS is isomorphic to AutCntP. Now it is easy
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to get a required a.
(4) Let π be the group presented by

(a,, x,: Qq)

where Q is not a proper power and q > 1. Suppose also that Q is
not primitive in the free group F generated by x19 x2. Then for
any a in Aut π, a(Q) = gQ±ιg~x for some # in π. This follows from
a result of S. Pride [8] which states that π has only one Nielsen
equivalence class.

3* Non-cancellation penomenon* In this section we show
that although two Lens spaces £f(p, q) and £f(p9 r) for Ξ may have
distinct homotopy type, J*?(p, q) V S3 and Jίf(p, r) V S3 are always
homotopically equivalent.

THEOREM. For every pair of Lens spaces £f{p, q) and ^f{p, r)
for Ξ, there is a homotopy equivalence

, q) V S 3 > £f(p, r) V S3

inducing the identity on the fundamental group.

Proof. We will show that the theorem holds for the pair
<2f(p, q) and £f{p, 1). Because q and p are relatively prime, there
exists positive integers q' and rr such that qq' + ppf — 1. We have
the commutative diagram

Ξ-^Z~-0

L ZΞ ^Z — 0

where % = ( ; p ' * \ / D ^ / V J Clearly u is an isomorphism with
\ ~ \̂ > v? \ n i q //

inverse w1 — ( ) Ώ 'J(/ /p^.\ ). Hence we can construct a homotopy

equivalence between £f(p9 q) and -Sf (p, 1) inducing the identity on
the fundamental group. •
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