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BOUNDS FOR THE EIGENFUNCTIONS OF A
TWO-PARAMETER SYSTEM OF ORDINARY

DIFFERENTIAL EQUATIONS
OF THE SECOND ORDER

MELVIN FAIERMAN

In previous papers the author has shown that, in con-
trast to the one-parameter case, the normalized eigenfunc-
tions of two simultaneous Sturm-Liouville systems in two
parameters are not necessarily uniformly bounded. More-
over, best possible bounds for the normalized eigenfunctions
were also derived. However these results were only es-
tablished under the assumption that the coefficients of our
differential equations satisfied certain special conditions.
Hence, in order to deal with problems which often arise in
physical practice, it is important to extend our results to
the case where the coefficients of our differential equations
satisfy more general conditions then hitherto supposed.
Accordingly, it is the object of this paper to derive best
possible bounds for the normalized eigenfunctions of the
simultaneous two-parameter systems in question under much
weaker restrictions on their coefficients than was previously
assumed.

The study of the behavior of the eigenvalues and eigenfunc-
tions of multiparameter Sturm-Liouville systems was initiated by
F. V. Atkinson [1, §4] who pointed out that the theory related to
this subject was still far from clear. Since the appearance of
Atkinson's paper, the author has obtained some relevant results, the
most important of which are contained in papers [4] and [5] mentioned
above. The results given in this paper therefore constitute a further
stage in the development of the theory related to this subject.

Finally we mention that the methods used in this paper are
quite different from those used in [4] and [5] wherein techniques
from transition point theory and the method of asymptotic integra-
tion were employed. Here our results are established by utilizing
the information given in [4] and [5], by making a through study
of the general character of the solutions of our differential equations,
and lastly, by making use of a Sobolev type inequality.

l The main theorem* We shall be concerned here with the
simultaneous two-parameter systems

VΪ + (λΛfo) - μBfa) + q,{x1))yι = 0 ,
( } 0 ^ xx ^ 1 , ' = d/dx, ,

335
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2 2/i(0) cos aλ - i/I(0) sin a, = 0 , 0 ^ αx < TΓ ,

yx{l) cos A - i/ί(l) sin β, = 0 , 0 < & ^ TΓ ,

and

Vί' + (-λA2(x2) + μB2(x2) + q2{x2))y2 = 0 ,
( } 0 ^ α;2 ̂  1 , ' = d/dx2 ,

2/2(O) cos α2 - 2/5(0) sin α2 = 0 , 0 ^ α2 < π ,

!/2(l) cos ft - j/ί(l) sin ft = 0 , 0 < ft ^ π ,

where it will be supposed that, for i = 1, 2, gt is real and continu-
ous, and Ai9 Bt are real and analytic in 0 ^ xt ^ 1. We shall also
suppose that zί = AγB2 — A2BX Φ 0 in P (the product of the intervals
0 ^ #i ^ 1, 0 ^ ίc2 ^ 1). Furthermore, there is no loss of generality
in assuming henceforth that the Aif Biy and A are all positive for
all values of xι and x2 in /2, since this can always be achieved, if
necessary, by introducing a nonsingular transformation in the para-
meters λ an μ (see [4, Appendix A]).

Recall from [4, §2] that by an eigenvalue of the system (1-4) we
mean a pair of numbers, (λ*, μ*), such that for λ = λ* and μ = μ*,
(1) and (3) have nontrivial solutions satisfying (2) and (4), respec-
tively. If 2/1O1, λ*, μ*) and y2(x2f λ*, μ*) denote these solutions,
respectively, then the product, ΠLi Vi(%if λ*, μ*)9 is called an eigen-
function of the system (1-4) corresponding to (λ*, μ*). Important
results pertaining to the eigenvalues and eigenfunctions of the
system (1-4) were recorded in the reference just cited, and in
particular it was noted that the eigenvalues were all real and could
be expressed in the form (xJtkf μjtk), j , k = 0, 1, 2, , where, with
φi (i = 1, 2) denoting the solution of (2£ — 1) satisfying ^(0, λ, μ) =
sin aί9 φi(Q, λ, μ) = cos au φx{xlf Xj)k, μjlk) has precisely j zeros in 0 <
xλ < 1 and φ2(x2f λi>fc, μάtk) has precisely k zeros in 0 < x2 < 1. In the
sequel we shall let f fk(xlt x2) = ΠLi^fe, λifJfc, ft ,fe) and ψifJb =

^i**(»i, «2)/llti**IL w h e r e H / l l 2 - S S / 2

J ( ^ ^ ) l / f e , x2)\2dxxdx2 for a n y
function / which is square-integrable in J2. Then putting Δi =
A'tBi - AiB- (' = d/dXi) for ί = 1, 2, we have from [4, Theorems 3.5,
4.3 and Subsection 4.4].

THEOREM 1. Suppose that Λi(xt) vanishes identically in 0 <; xt ^ 1
yor ΐ = 1, 2. Γ/ieti £ftβ absolute values of the ψjtk(xl9 x2) for
(x19 x2) e /2 remain less than some bound independent of x19 x29 j ,
and k.

We remark that this result is also true under much weaker
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conditions on the Ai and Bt than have been supposed here (see [4,
§1]).

Our main concern in this paper will be the proof of the follow-
ing theorem.

THEOREM 2. Suppose that for at least one i, 1 ^ i ^ 2, Δt{x^
is not identically zero in 0 <̂  xt <Ξ 1. Then the absolute values of the
(1 + j + k)~mψjtk(xlf x2) for (xlf x2) e P remain less than some bound
independent of xu x2, j , and k.

It is important to observe from [5, §6] that the exponent 1/3
appearing in Theorem 2 is the best possible in the sense that if it
is replaced by 1/3 — ε, ε > 0, then the theorem may no longer be
true.

2* Preliminaries* Before we can prove Theorem 2, we shall
require some further information. Accordingly, let Px(Xι, λ, μ) —
\Aλ{xx) — μB^x,), P2(x29 λ, μ) = — XA2(x2) + μB2(xz), and denote by bx

and b2 the infimum and supremum, respectively, of Ax(xx)/Bx(xx) in
0 <* xx <̂  1 and by ax and α2 the infimum and supremum, respectively,

of A2(x2)/B2(x2) in 0 ^ x2 ^ 1. Let hx(t) = [ Pϊ\xu 1, t)dx, for -<χ> <

t < blf h2it) = [ Pl/2(x2, 1, t)dx2 for α2 < ί < oo, and g(t) = h^Jh^t)
Jo

for α2 < t < bx (here and in the sequel it is always assumed that
fractional powers of positive quantities have their positive values).
Let « = (&!- α2)/100, tλ = a2 + δ/2, t2 = bx - δ/2, and θt - tan"1 g(tt)
for i = 1, 2, where the principal branch of the inverse tangent is
taken. Note that 0 < θλ < θ2 <π/2. Let Ω denote the sector in the
(x, ?/)-plane defined by the inequalities θx ^ θ ^ θ2 and Ωx (resp. i22)
the sector defined by 0 <: θ < θx (resp. θ2 < θ <* π/2). Then guided
by future requirements, we are now going to collect some facts con-
cerning the behavior of the Xjik and μjik for (j, k) e Ωλ. To this
end we first observe from [4, Eq. (4.2)] that there exists the posi-
tive numbers M1 and M2 such that

( 5 ) Mi < Xj>k/f < Ml

when (j, k) e Ω1 and j is sufficiently large. Furthermore,

LEMMA 1. If Δ2{x2) does not vanish identically in 0 ^ x2 <̂  1,
then aλ < ηSt0 < ηjtl < < ηith* < a2 + δ for all j sufficiently large,
where ηβik — μj,k/Xj,k and k* = k*(j) denotes the greatest integer less
than j tan θx.

Before proving the lemma let us collect some of the definitions
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and results given in [4, §2]. Recall that for each real λ, the totality
of the values of μ for which (1) has a nontrivial solution satisfying
(2) forms a countably infinite set of real numbers which we denoted
by μJS), n ^ °> where μo(X) > μλ(X) > , μn(X) -> — °° as n -> oo,
0i(&i, λ, μΛ(λ)) has precisely n zeros in 0 < x± < 1, and, for each n,
μn(X) is analytic in — °o < λ < oo and satisfies here bx ^ dμn(X)/dX ̂  δ2.
Analogous definitions and results also held for the system (3-4), the
analogue of μn(X) being denoted by μί(λ), and it was remarked
that ax ^ dμ%(X)/dX<^ a2 for — oo < \ < oo and n ^ 0. Recall also
that when X ran from -oo to oo, the μn(X) (resp. μ£(X)) determined
disjoint analytic curves in the (λ, μ)-plane which we denoted by Cn

(resp. C*)9 and it was noted that when j , k were any nonnegative
integers, then Cό intersected C* in precisely one point, namely at
the eigenvalue of the system (1-4), (Xjyk, μίtk).

Proof of Lemma 1. We shall henceforth assume that j is large
enough so as to ensure that μ^O) < min {0, ju*(O)}. Then in light
of the preceding discussion it is clear that Xj>k+i > X3 ,k for k Ξ> 0.
We now assert that if ax ^ t <; α2 + δ, then the equation μό(X) = Xt
(X real) has precisely one solution, and if we denote this solution by
X(t) and put λ* = λ(αx), V = λ(α2 + δ), then 0 < λ* ^ X(t) ^ V and
X(t) is a strictly increasing, continuous function of t. This assertion
is easily proved by appealing to the implicit function theorem and
to the fact that if F(X, t) = μ, (X) - Xt, then F(0, ί) < 0 and F(X2, t) -
F(Xlf t) ^ (&! - t)(X2 - λx) > 0 for λ2 > λx. Hence it follows that
μ3 (X)/X strictly increases as X runs from λ* to λ+, assuming the value
aλ at X = λ* and α2 + δ at X = X\

To complete the proof of the lemma it remains only to show
that λ* < λy,0 and λiffc* < λ+. To this end we may appeal to the
results given in [6, Theorem 1] and to arguments similar to those
used in [2, pp. 212-213] to establish that aλ < μo(X)/X < a2 for all
large λ. Hence if j is sufficiently large, then it follows from (5)
and the discussion immediately preceding this proof that αx <
/̂ OS'.oV^o < 2̂> and the first inequality follows. Turning to the
second inequality, we note from [4, Theorem 3.4] that ηjik

f = tj}k +
O(i~2) as j -* co 9 where fc1 = k\j) denotes the smallest integer greater
than or equal to j tan θlf thk denotes the point of (α2, bλ) at which
g(t) — (&+ + v2)/(y + vx), and, for i = 1, 2, vt denotes a constant
satisfying 0 £ vt £ 1. Since (1 - j-1) tan θ1 < g{t5j) < tan θ1 + 2j~x

for j > 1, it therefore follows from the definition of g (see also [4,
Subsection 3.2]) that tj>k = ίx + OO'-1), and hence i?ifJfc

τ = tx + O^'"1) as
j-*°°. Thus if i is sufficiently large, then α2 < ^(λ^^Vλ^^ < α2 + δ,
and the second inequality follows.

For later use we shall also need the following result (see [7,
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Theorem 3.1]). Here we denote by D the class of continuously
differentiable (complex-valued) functions on 0 S s ^ 1.

LEMMA 2. Given any ε > 0, there is a y(ε) > 0 such that

\f(s)\*ds + Ύ(6) [ \f(s)\*ds ^ ε |
J

for every f(s) e D, where ' = d/ds. This result also remains valid
if in the right-hand side of the above equation we replace /(0) by

/(I).

3* Proof of Theorem 2* We shall firstly introduce certain
assumptions which will enable us to reduce our work somewhat.

Assumption 1. We shall henceforth suppose that Bt(xt) is con-
stant in 0 5g xt <; 1 for i = 1, 2 and prove the theorem for this case
only.

It is clear from [3, Eq. (20a), p. 292] that the proof of the
theorem for the general case follows from this result.

Now we already know from [4, Theorem 3.5] that the absolute
values of the ψj,k(%i, #2) for (xlf x2) e P and (j, k)eΩ remain less than
some bound independent of x19 x2, j , and k, and hence it remains
only to prove the assertion of Theorem 2 for (j, k) in each of the
sectors Ω1 and Ω2. However, since the proof for (jf k) e Ω2 is similar
to that for (j, k) e Ωlf we shall only prove the assertion for this
latter case. A further simplification of our work is again possible;
for we know from [4, Theorem 4.3] and [5, §6] that when A2(x2) = 0
(resp. Δ2(x^) ΦQ) in 0 <; x2 <; 1, then the absolute values of the
ψjAχi> x*) (resp. j~iβψjAχi, #2)) for (x19 x2) e Γ and (j, k) e Ωt remain
less than some bound independent of xu x2, j , and k. Thus it is
clear that it remains only to verify the assertion of the theorem
under the following hypotheses.

Assumption 2. We shall assume from now on that ax < α2, that
A2(x2) vanishes in 0 ^ x2 ^ 1, and that (j, k) eΩx.

Let uίth(xd = Φi(Xu^i,k>μj,k)IJι(0,k) and vi,k(x2)=φ2(x2,XStk,μjth)/J2(j,k),

G l \ 1/2

Φl&tf ^>j,k, i*j,k)dxt) for i = 1, 2. Then in light
of (5) and Lemma 1, we may argue precisely as we did in [4,
Theorem 4.3] to verify that the absolute values of the uίtk(Xj) for
0 ^ xλ ^ 1 remain less than some bound independent of x19 j , and
k. Thus in order to complete the proof of Theorem 2 it remains
only to prove the following assertion.

PROPOSITION 1. It is the case that the absolute values of the
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3~ι/*VjAχϊ) for 0 ^ x2 ^ 1 remain less than some bound independent
of x2, 3, and k.

Before passing to the proof of Proposition 1, let us simplify our
notation by henceforth dropping subscripts and writing x for x29 A
for A2, B for B2, P for P2, and q for q2. Putting r(x) = A(x)/B(x)9

let 0 <̂  xf < x2 < < x* ^ 1, p ^ 1, denote the critical points of
r(x) in 0 ^ ίc ^ 1, m<(^2) the order of the zero of r(x) — r(xf) at
xf, and let Rt = r{mί)(xf), where {n) = dn/dxn. Choose the positive
constant d* small enough so that d* < min {(xf+1 — &*)/100}, 1 ^ i <;
p - 1, if p > 1, d* < αf/100 if α? > 0, and d* < (1 - α?*)/100 if
#* < 1. Put xf = 0, #*+1 = 1, and let c* be a positive number
chosen small enough so that i f θ ^ m < ^ ^ p + l and r(xZ) Φ r(xt),
then |r(a?l) — r(o5j)| ^ c*. Let c be a positive number not exceeding
c*/100 choosen small enough so that c <; \r(xf ± d*) — r(a?*)| for
i = 0, , (p + 1), where, of course, only the + or — sign is taken
if xf is an end point of the interval [0,1]. If 1 ^ i <£ p and 0 <
α;? < 1, then let ^ and JB? denote the intervals xf — dz < x < xf + dt
and fie* — dτ/2 < x < xf + df/2, respectively, where the xf ± df denote
the points of [xf - d\ xf + d*] satisfying \r(xf ± df) - r(xf)\ = c.
If i = 1 (resp. ΐ = p) and αtf = 0 (resp. x* = 1), then let E19 Ef
(resp. Ep, E*) denote the intervals 0 ^ x < dt, 0 ^ x < df/2 (resp.
1 — dp < 05 ̂  1, 1 — dp/2 < x ^ 1), respectively, where dί (resp. 1 — d~)
denotes the point of [0, d*] (resp. [ l -d # , 1]) satisfying | r ( d ί ) - r ( 0 ) | = c
(resp. | r ( l - dp) - r ( l ) | - c). If a?f > 0 (resp. x*v < 1), then let Eo

(resp. Ep+1) denote the interval 0 <̂  x < d0

+ (resp. 1 — dp+1 < a? ^ 1),
where d?" (resp. 1 — dp+1) denotes the point of [0, d*] (resp. [1 — d\ 1])
satisfying |r(d0

+) - r(0)| = c (resp. | r ( l - d,"+1) - r ( l ) | = c). If a?? = 0
(resp. x$ = 1), then put d0

+ = df and JE70 = J5Ί (resp. d~+1 = dp and
Ep+1 = S p). Finally, let iV denote the infimum of \ra)(x)\ in [0, 1] -
\Ji=1Ef9 2d the minimum of the df, 0 ^ i <̂  p + 1, Q the supremum
of \q(x)\ in [0, 1], and put 6 = B(x)f ε0 = | co tα 2 | if α2 > ττ/2 (see (4)),
ε0 = 0 if a2 ^ ττ/2, εx = cot β2 if ^ 2 < π/2, and sx = 0 if β2 ^ π/2.

ASSUMPTION 3. We shall assume from now on that j exceeds

103[(l + ΛΓ*)(e0 + eλ + Q2 + Q1/2'+ d-1 + c~λ + (N + l)/iVd)]3/2

and is large enough to satisfy the assertions of both (5) and Lemma
1, where Λf* = (bM?)~1/2 and δ is defined at the beginning of §2.

Proof of Proposition 1. Let us fix (j, k) and for simplicity of
notation write λ, η, v(x), and P(x) for bXj)k, r]όtki vjtk(x), and

%f \ ,fc» Λi,fc)> respectively. We are now going to prove that
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( 6 ) U = Γ (v'(x))2dx ^ K*X and v2(^) ^ K*X
Jo

for 0 <; x <; 1, where ' = d/dx and 1£* denotes a positive constant
independent of x, j, and &. To this end we first argue with (3) and
(4) to show that

U Γ IP + q I Λta + ε0ι;
2(0) + 6^(1) ,

Jo

where the e< are defined in the preceding paragraph. If ε0 > 0, then
it follows from Lemma 2 (with ε = 4ε0) that e0v\0) ^ (U + τ(4εo))/4,
with a similar result holding for ε^2(l) if εx > 0. In light of (5)
and Lemma 1, the assertion concerning [/follows immediately. The
second inequality in (6) also follows easily if we observe from
Lemma 2 that v\0) <; U + 7(1). Next we may argue with the above
bound for U as in [3, pp. 334-335] to show that | (v'(x))2 + P(x)v\x) \ ^
K2λ for 0 ^ x ^ 1, where K denotes a positive constant independent
of x, j, and k. From these results we draw the following

CONCLUSIONS.

1. If η - r{x) ^ j ~ m , then \v(x)\ ^ Kjι/\
2. If η - r(aθ ̂  -2Q/λ (i.e., if P(x) ^ -2Q), then \v\x)\ ^ JSΓ*i,

where K%^>1) denotes a constant independent of x, j , and Λ.
3. If a2 > π/2 and r(0) - 37 ̂  yv\ then 0 < v(0) ^ ίΓ*i1/3.
4. If /32 < π/2 and r(l) - η ^ i~2/3, then |v(l) | ^ iΓ#i1/3.
5. If 0 ^ ^ < a;2 ̂  1, if J = {a? I a?! ̂  aj ^ x2}, and if P(x) + q(x) ̂  0

for x 6 J, then | v(a ) | < | v(a;2) | + ?>K*jι/z for aj e J .
6. I f 0 £ xλ < x2 ^ 1 , i f J = { x \ x λ ^ x ^ x2}, a n d i f P{x) ^ - 2 Q

for xeJ, then there is an ξe J such that \v\ξ)\ < ZK*j1/3(x2 — Xi)"1.

7. If 0 ^ α?x ̂  1 - i~2/3, if J = {α?!^ ^ a? ̂  α?x + i"2/3}, if P(xλ) ^
-2Q, and if P(x) + ί(a?) ̂ O f o r a j e J , then \vixdl < 3if*i1/3.

Conclusions 1-4 follow immediately from the foregoing discussion
and (5). Conclusions 5-7 are not obvious. However in order not to
impair the continuity of the proof, we shall not elaborate upon them
until the final stage of the proof.

We are now going to utilize the above information to investigate
the behaviour of v(x) and P(x) + q(x) in various subintervals of
[0, 1], The proof of Proposition 1 will then follow from these
results.

Case 1. Suppose that x0 e [0, 1] - \Jζ±l En and η = r(x0). We
note that for this case xf < x0 < xf+1 for some i, 0 ^ ί ^ p. Now
let xλ and x2 denote the points of the interval (x0 — d, x0 + d) at
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which r(fic) = η + Q/λ and r(x) = η — i~2/3, respectively, and assume
firstly that r'(x0) < 0. Then (x2 — xj < 2N~1j~2/* and from conclusions
1 and 2 above we also have | v(x2) | ^ Kj1/3 and | v\x) | ^ i£#i in x1 <̂
a? ̂  x2. Hence | v(a ) | < KJ1'* for ^ ^ x ^ a?f+1 and P(a?) + q(x) < 0 for
xΐ <Lx< xlf where l ζ = K + 2N~ιKK Similarly, if r'(x0) > 0, then
I v(x) I < i£Ίi1Λ for xf ^x ^ x, and P(a) + q(x) < 0 f or x, < x ^ α;?+1.

Case 2. Suppose that for some i, 1 ^ i 5£ p, 0 < sc* < 1, mi is
even, and iϋ* > 0 (see the paragraph following the statement of
Proposition 1 for terminology). For simplicity of notation let us
write x* for xf and assume firstly that 2Q/λ <̂  η — r(x*) < c. Let
xι and x2 denote the points of the interval (x*f x* + dt + d) at which
r(x) = η — Q/X and r(x) = η + Q/λ, respectively. Then P(x) + g(x)
is positive in [as*, ccx), negative in (x2f x*+1], and — Q ^ P(a?) ^ Q for
xλ <L x ^ x2. Hence it follows from Conclusions 5-7 that | v{x) \ <
I v(xλ) I + K2j

1/3 for a?* ^ a? ̂  ajt, | v(x2) \ < K2j
1/Z, and there is an ξ,

%i ^ ί ^ ^2, such that

(7) b'(ί)| < KJ^/fa - xj ,

where K2 = K + ZKK Since we may argue with (3) as in [8, p.
167] to show that

( 8 ) I v(x) - v(ξ) - v'(ξ)(x - ξ) I ^ 4Q(x2 - ^) 3 / 2/3 , x, ^ x ^ x2 ,

we therefore conclude that | v(x) \ < 6KJ1/3 for x* <^ x <^ x2 and P(a?) +
q(x) < 0 for x2 < x <L xf+1. Similarly we can show that | v(x) \ < 6K2j

1/3

for x\ ^ x <: x* and P(a?) + ?(a?) < 0 for xf^ <Lx<x\, where a ϊ denotes
the point of the interval (a?* — dT — d, a?*) at which r(x) -= 7) + Q/λ.

Assume next that —Q/X < η — r(x*) < 2Q/X and denote by xx

the point of the interval (a?*, x* + dt) at which r(x) = rj + Q/λ.
Then - Q ^ P(a;) < 2Q for x* ^ x ^ xλ and P(a;) + q(x) < 0 for x1 <
x ^ a?*+1. From Conclusions 6 and 7 it follows that | v(xx) \ < K2j

1/3

and that there is an ζ, x* <£ <J ̂  ŝ , such that

( 9 )

Since

(10) I v(x) - v(f) - v\ξ)(x - ζ) I ^

we therefore conclude that \v(x)\ < 5K2j
1/d for x* ^ x <̂  ̂ . Similarly

we can show that | v(a ) | < 5K2j
1/s for a?I <£ a? ̂  x* and P(a ) + g(a ) < 0

for &*_! ̂  a? < a?I, where a?ί denotes the point of the interval (a?* — dτf x*)
at which r(x) = η + Q/λ.

Finally, if 27 ̂  r(a?*) - Q/λ, then P(a?) + q(x) ^ 0 for xf_x ^ a; ^
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Case 3. Suppose that for some ί, 1 <* i <̂  p, 0 < x* < 1, m* is
even, and Rt < 0. Writing x* for ajf, let us assume firstly that
— c<Ύ] — r(a?*) ^ — 2Q/λ. Let a?x, a?2> and #3 denote the points of the
interval (x*, x* + di + d) at which r(x) = η + Q/λ, r(aj) = ^ — Q/λ,
and r(x) = 27 — j ~ 2 / d , respectively. Then — Q^P(x)^Q for xt <̂
a? <; x2 and it is easy to see from Conclusions 1, 5, and 6 that
I v(x) I < K2j

m for x2<^x^xs and that (7) is valid for some ξ in
[xlfx2]. In light of (8) we conclude that \v(x)\ < 5K2j

1/z for x, ^
x ^ a?*+1 and P(x) + g(a?) < 0 for x* ^ a? < a?lβ Similarly we can show
that I v(x) I < 5K2j

1/3 for «?_! ^ x ^ a I and P(a ) + q(x) < 0 for a ί <
x ^ a;*, where ccj denotes the point of the interval (sc* — di~, OJ*) at
which r(a?) — η + Q/λ.

Assume next —2Q/X <η — r(x*) < Q/λ and denote by xλ and α;2
the points of the interval (a?*, #* + dί) at which r(x) — η — Q/λ and
r{χ) = 77 - j - 2 / 3 , respectively. Then - 2 Q < P(a?) ^ Q for a?* ^ a? ̂  ^
and it is easy to see from Conclusions 1, 5, and 6 that \v(x)\ < K2j

1/3

in xx ^ x ^ x2 and that (9) is valid for some ξ in [x*9 a J . Hence we
conclude from (10) that | v(x) \ < 5K2j

1/s for #* ^ α? ̂  a;*+1. Similarly
we can show that | v(x) \ < 5K2j

L/3 for a;*-! ^ x ^ x*.
Finally if ^ *> r(a?*) + Q/λ, then we may argue with Conclusions

1 and 5 above to show that \v(x)\ < K2j
1/3 for xf^ ^ x ^ a?*+1.

Case 4. Suppose that a;* = 0 and J?! > 0. Then it follows from
Case 2 above that if -Q/λ <η - r(0) < c, then | φ > ) | < 6iΓ2i

1/3/ for
0 ^ a? ̂  a?! and P(a?) + g(a?) < 0 for x± <x ^ x*f where x1 denotes the
point of the interval (0, di + d) at which r(x) = η + Q/λ. If η ^
r(0) — Q/λ, then P(ίc) + q(x) ^ 0 for 0 <; x ^ cc2* and we see from
Conclusion 3 above that the only further problem which requires
investigation here occurs when — j ~ 2 / z < η — r(0) <; —Q/λ and α2 > ττ/2.
Accordingly, fixing our attention upon this situation and observing
that v(0) > 0, let us firstly suppose that v(x) > 0 in 0 ^ x ^ j ~ 2 / \
Then it follows from (3), (4), and Assumption 3 that in this interval
v'(x) ^ v(fl) cot α2, v(a?) > v(0)/2, and hence we conclude from the
equation

vJLJU 1 V \JbJU/JU — J-

Jo

that v(O) < 2j1/3. Similar arguments also show that v(x) cannot
vanish in [0, j~ 2 / 3 ] .

Case 5. Suppose that xf = 0 and R1 < 0. Then it follows from
Case 3 above that \v(x)\ < 5K2j

ί/3 for 0 ^ x ^ xf if η > r(0) - 2Q/λ.
If -c<Ύ]- r(0) ^ -2Q/λ, then | v(x) \ < 5K2j

1/3 for xx ^ x ^ a?2*, P(a?) +
g(a?) < 0 for 0 ^ a; < ^ (where xγ denotes the point of the interval
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(0, dt) at which r(x) = η + Q/λ), and the only further problem which
requires investigation here occurs when — j ~ m < η — r(0) ^ —2Q/X
and α2 > ττ/2 (see Conclusion 3 above). However, for this situation
we may argue as in Case 4 above to show that v(0)<2jlf* if x^j~2/z

and v(0) < 2v(xλ) < 10KJ1'* otherwise (recall that v(0) > 0).

Case 6. Suppose that xf > 0. Then the results of Case 4 (resp.
Case 5) above, with dt and #2* replaced by df and $?, respectively,
remain valid for this case if r'(0) > 0 (resp. r'(0) < 0).

Finally, results analogous to those above hold for v(x) and
P{x) + q(x) in the intervals [x*_lf 1] if x* = 1, [α£, 1] if OJ? < 1, and
[x*-lf x*+1] if 1 ^ ί ^ p, 0 <xf <1, and m< is odd. The proof of
Proposition 1 is then completed by appealing to Lemma 1 and to the
fact that if 0 <£ xx < x2 ^ 1 and P(x) + q(x) ^ 0 in [x19 x2], then in
this interval v(x)v'(x) is monotonic increasing and \v(x)\ ^ max {1 (̂̂ )1,
\v(x2)\}.

We now fulfill a commitment made earlier to explain in greater
detail how Conclusions 5-7 were arrived at. Accordingly, let us
firstly fix our attention upon Conclusion 5, assume that | v(x) | attains
its absolute maximum in J at the point x09 and put v0 = i;(Xo)> v* —
v(x2). It is clear that we need only consider the case \vϋ\ > \v2\.
Suppose firstly that v(x) > 0 for xeJ. Then

v(x) ^ v2 + (v0 - v2)(x2 - x)/(x2 - xQ)

for x0 ^ x ^ x2, and hence it follows from (11) that (v0 — v2)\x2 — x0) < 3.
On the other hand we see from Conclusion 2 that v0 — v2 ^ K*j(x2 — x0),
and so Conclusion 5 follows for this case. If v(x) vanishes in J or
if v(x) < 0 for x 6 J, then Conclusion 5 is arrived at by using similar
arguments.

Turning next to Conclusion 6, assume that | v\x) \ ̂  7 =
3K*j1/3/(x2 — Xi) for x e J. Then a simple integration shows that for
x 6 J, 7"11 v(flj) I exceeds (x — αjj if v(x)v'(x) > 0 for all x in J, exceeds
(flc2 — «) if i;(α5)vf(a;) < 0 for all α? in J, and is not less than \x — xo\
if £oe Jand v(x0) = 0. Hence it follows from (11) that (3K*j1/s)2(x2 -
xx) < 24, and since 7 ^ ίΓ#i (see Conclusion 2), we arrive at the con-
tradiction that 27(X*)2 < 24.

Fixing our attention lastly upon Conclusion 7, assume that v1 =
t fo) ^ SK*j1/3. If v'(a?x) ^ 0, then it follows from (3) that v(x) ^ v,
for x e J, and hence we conclude from (11) that (2>K*)2 < 1, which
is a contradiction. Suppose next that v'fa) < 0 and v(x) > 0 for a? 6 /.
Then v\x)^ —K*j (see Conclusion 2) and I (OJ) ^ 2X*i1/8 for xeJ,
and hence it follows from (11) that (2K*)2 < 1, which again is a
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contradiction. If v\x,) < 0, if xx < x0 ^ x1 + j ~ 2 / \ if v(x) > 0 for
Xi ̂  % < xQ, and if v(x0) — 0, then v\x) ^ —K*j for ^ <S x ^ #0, and
hence we arrive at the contradiction that vx ^ K*j1/Z. Similarly we
can show that the supposition vt ^ — ZK*jm is untenable.
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