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INTEGRALLY CLOSED IDEALS AND ASYMPTOTIC
PRIME DIVISORS

L. J. RATLIFF, JR.

The first theorem characterizes local (Noetherian) domains
that have a height one maximal ideal in their integral
closure as those local domains whose maximal ideal M is a
prime divisor (= associated prime) of the integral closure
Ia of all nonzero ideals I contained in large powers of M.
The second theorem describes (modulo a mild assumption)
all local domains R that have the following property: for
each ideal I in R and for all large n, all the ideals In and
(In)a have the same prime divisors.

1Φ Introduction* In [12, (9)], local domains that have a depth
one prime divisor of zero in their completion were characterized as
those local domains whose maximal ideal M is a prime divisor of all
nonzero ideals / contained in large powers of M. Also, a similar
characterization of a subclass of the class of local domains whose
completions have a depth one minimal prime ideal was given in
[12, (11)], but I was unable to give an analogous characterization
of this entire class in [12]. The first of the main results in this
paper, Theorem 1, gives the desired characterization, which was
described in the abstruct. This result is actually proved for local
rings, and the result [12, (9)] is also extended to this case (in
Theorem 0).

As an application of this result, we consider, in §3, the following
class of local domains R: for each ideal I in R and for all large n,
all the ideals In and (/*)β have the same prime divisors. Concerning
this class, McAdam and Eakin showed in [4, Prop. 24] that for each
ideal I in a Noetherian UFD of altitude two and for all n ^ 1, all
the ideals I* and (JΓΛ)β have the same prime divisors. On weakening
the conclusion to "for all large n," McAdam showed in [5, Thm. 6
and Prop. 8] that this continues to hold for all integrally closed
Noetherian domains of altitude two and "integrally closed" is a
partly necessary hypothesis. In [13, Prop. 12], I added two other
types of local domains that have this latter property, and the second
of the main results in this paper, Theorem 4, describes all Noetherian
domains that have this property (assuming that integrally closed
local domains of altitude three are catenary). The proof of Theorem
4 requires consideration of several cases, and Theorem 1 plays an
important role in some of these cases.

Concerning this second class of rings, I am indebted to S.
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McAdam for a stimulating conversation that showed me it was of
some interest, and the reader will note his large contribution to the
description of the rings in it.

2* Note on the prime divisors of (!*)„• We begin by fixing
some notation.

If R is a ring, then Rf denotes the integral closure of R in its
total quotient ring. And if R is local with maximal ideal M, then
iϋ* denotes the M-adic completion of R.

For an ideal I in a Noetherian ring R, the integral closure of
I in R is the set Ia — {x e R; x is a root of a polynomial of the
form Tn + ^T*-1 + ••• + in, where idel3'}. It is well known that
Ia is an ideal in R and / £ Ia £ Rad /.

We can now prove the first of the main results in this paper.
Before this, however, since Theorem 1 is proved in more generality
than the analogous result in [12], we first generalize that result to
local rings. (Concerning the condition (0): M = (0), it is shown in
[15, (3.15.1)] that if M is a prime divisor of zero, then M is a prime
divisor of all ideals contained in large powers of M.)

THEOREM 0. The following statements are equivalent for a local
ring (R, M) such that (0): M = (0):

(0.1) There exists a depth one prime divisor of zero in R*.
(0.2) There exist integers n such that M is a prime divisor of

all regular ideals contained in Mn.

Proof The proof given in [12] carries over to this more general
case, but three minor changes should be made: for (9.1) => (9.2), I
is a regular (instead of nonzero) ideal in R; and, in the second
paragraph of the proof of (9.2) => (9.1): a should be chosen to be a
regular element in M (instead of a nonzero element); and (ii) should
be changed to: the intersection of each infinite subset of &*t is a
prime divisor of zero.

We now state and prove the first of our main results.

THEOREM 1. The following statements are equivalent for a local
ring (R, M) such that altitude R Ξ> 1:

(1.1) There exists a depth one minimal prime ideal in iϋ*.
(1.2) There exists a positive integer n such that M is a prime

divisor of Ia for all ideals / £ Mn such that height Z >̂ 1.
Moreover, if Radi? = (0), then these are also equivalent to:
(1.3) There exists a height one maximal ideal in R\

Proof. It was shown in [8, Prop. 3.5] that (1.1) <=̂  (1.3) when
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R is a local domain, so it readily follows they are equivalent when
Radi2 = (0).

Assume (1.1) holds, let Λf * = M#* be the maximal ideal in j?*,
and let Z — Rad-R*. Then it will first be shown that

(*) z = n (M**)a.

For this, it is clear that Z £ (ikf *%)α for each n, so Z £ f\>o (M*n)a.
Therefore [ΓL>o (M**)Λ]/Z £ ΓL>o [(M**)JZ] £ f\>o [(M*« + Z)/Z]a =
ΓL>0 [(M*/Z)*]a. Now R*/Z is analytically unramified, so ((M*/Z)*)aQ
(M*/Z)m{n) with m(n) -> oo with w, by [16, Lemma 3], so
ΓL>o [(M*/Z)*]a £ f|m>o (ilf W - (0) in R*/Z. Therefore (*) holds.

Next, since (1.1) holds, let Π? Qi be a normal primary decomposi-
tion of the zero ideal in j?*, where depth q1 = 1 and height ^ = 0.
Then, since height QΊ = 0, there exists an element x e (Π? ?i) — ̂ a ( i Qi>
so ccίZ. Therefore, by (*), there exists an n such that x£(M*n)a.
Also, since depth q, = 1, xe Ker (Λ* -> i?ί) for all P e Spec # * -
{Rad glf M*}, so if I is an ideal in R such that height 1 ^ 1 and
I: M— /, then it follows (by considering a primary decomposition of
IR*) that # e / # * . Therefore if IQ Mn then Iα £ (Mn)a £ (lί*%)α,
so x ί IJt* (by the choice of n), so it follows that M is a prime
divisor of Ia. Therefore (1.1) => (1.2).

Finally, assume (1.2) holds. Then it continues to hold for R\Z^
where ZQ = Rad R, since Zo £ Ia for all ideals / in R. Also, there
exists a depth one minimal prime ideal in iϋ* if and only if there
exists a depth one minimal prime indeal in R*/Z0R* = (R/Z0)*f so it
may be assumed that Radi? = (0). Let & be a regular element in
M. Then, by hypothesis, M is a prime divisor of (bnR)a for all
large n. Hence, since φnR)a = bnR' Π R, there exists a (height one)
prime divisor p' of bnR' that lies over M. Thus p' is a maximal
ideal, so (1.2) => (1.3), and (1.3) => (1.1) when Zo = (0), as noted above,
so (1.2) =-(1.1). •

We next give two corollaries of Theorem 1. The first of these
is closely related to two results of Nagata concerning the prime
divisors of principal ideals.

COROLLARY 2. (Cf. [6, (33.11) and (12.6)]). Let Bbea Noetherian
domain and let b be a nonzero nonunit in B. Then the following
statements hold:

(2.1) // P' 6 Spec B' is a prime divisor of bB\ then Pf Π B is
a prime divisor of {bnB)a for all large n.

(2.2) //PeSpecjBis a prime divisor of (bnB)a for some n^l,
then there exists an integer n such that P is a prime divisor of Ia
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for all nonzero ideals I £ P ( Λ ) = PnBP f] B.

Proof. (2.1) Let P' be a prime divisor of bB' and let P = P' n £ .
Then P'B\B_P) is a height one maximal ideal in the integral closure
•BCB-P) of Bp, so P 5 P is a prime divisor of φnBP)a for all large w, by
(1.3) => (1.2). But φnBP)a = φnB)aBP, so (2.1) holds.

(2.2) If P is a prime divisor of φnB)a, then there exists a (height
one) prime divisor P' of δ B' such that P'nB = P. Therefore if n
is large and I is a nonzero ideal in B such that lQP{n), then PBP is
a prime divisor of IαjBP = (IBP)a, by (1.3) => (1.2), so (2.2) holds. •

The next corollary concerns the Rees ring. By definition, the
Rees ring of B with respect to an ideal I in B is the graded sub-
ring & = &{β, /) = B[tl, u] of B[t, u], when t is an indeterminate
and u = 1/ί. It is readily seen that w * ^ Π J5 = In and ( Ή Λ ^ ) Λ Π
5 = (I )β for all τι ̂  1.

It was shown in [11, Thm. 2.5] that (3.1) <=> (3.2), so the main
new result in Corollary 3 is that (3.4) ==> (3.1). However, Rees rings
play an important role when considering asymptotic prime divisors,
so it was decided to include all four statements in the corollary for
ease of reference. Corollary 3 together with [4, Cor. 17] give a
useful description of the relationship between the prime divisors of
(In)a and those of In for large n.

COROLLARY 3. Let I be an ideal in a Noetherian domain B
and let & = £%{By I) be the Rees ring of B with respect to I. Then
the following statements are equivalent for a prime ideal P in B
such that I £ P:

(3.1) P is a prime divisor of {In)a for all large n.
(3.2) P is a prime divisor of (In)a for some n ^ 1.
(3.3) There exists an integer m and a prime divisor Q of (um&)a

such that Q Π B = P.
(3.4) There exists a (height one) prime divisor Q' of u&f such

that Qf C\B = P.

Proof. It is clear (3.1) =>(3.2). Also, (3.2) =>(3.3), since (un&)a Π
B = (In)a, and (3.3) => (3.4), since um&' Γ) & = (um&)a and since
u&' and um&' have the same prime divisors.

Finally, if (3.4) holds, then Q — Q' n & is a prime divisor of
{un&)a for all large n, by (1.3) => (1.2). Therefore the proof of [11,
Thm. 2.5] shows that tI£Q and Q Π B is a prime divisor of (In)a

for all large n, so (3.4) => (3.1). •

3* On the asymptotic prime divisors of In and of (In)a+ Before



INTEGRALLY CLOSED IDEALS AND ASYMPTOTIC PRIME DIVISORS 449

stating the main result in this section, we first give three additional
definitions

An integral domain R satisfies the altitude formula if for all
finitely generated extension domains A of R and all prime ideals P
in A, height P + trd (A/P)/(R/p) = height p + trd A/Rf where p =
Pf)R and trd D/C denotes the transcendence degree of the integral
domain D over its subdomain C.

It was shown in [1] that all large powers of an ideal I in a
Noetherian ring R have the same prime divisors, and we let A*{I)
denote this set, so A*(I) = Ass (R/In) for large n. Also, it was
shown in [11, Thm. 2.5] that for all large n, the ideals (/*)β have
the same prime divisors, and we let A*(I) denote this set, so A*(I) =
Ass (R/(In)a) for large n.

It was shown in [11, Thm. 2.5 and Cor. 2.6] that A*(I) £ A*(I)
always holds. The following result, which is the main result in this
section, characterizes (modulo the assumption that all integrally
closed local domains of altitude three are catenary) when equality
holds for each ideal I in a Noetherian domain. This is a desirable
property, since, given: I; an integer k Ξ> 1; and, an ideal C such
that Ca = (P)a; then for all ideals K such that CQKQ (P)a and
for all large n, all the ideals Kn, (Kn)a, Ikn and (Ikn)a (and hence
also In and (In)a) have the same prime divisors. It is therefore
somewhat disappointing that the class of such integral domains is
rather small.

THEOREM 4. Let ό^f he the class of Noetherian domains B such
that A*(I) = A*(I) for each ideal I in B. Then the following state-
ments hold:

(4.1) If altitude B > 3, then BίJ^ί
(4.2) If altitude B <£ 3 and if one of the following statements

holds for each maximal ideal M in B, then B e Sxf\
(4.2.1) Height M^ 1.
(4.2.2) Height M— 2 and either BM = (BM)' or there exists a

height one maximal ideal in (BM)'.
(4.2.3) Height M = 3, there exists a height one maximal ideal

in (BM)r, and for all height two prime ideals PdMeither BP — (BP)'
or there exists a height one maximal ideal in (BP)'.

(4.3) The only other possible local domains in *S%? are integrally
closed local domains of altitude three that do not satisfy the altitude
formula. In fact, assume (R, M) is such an integral domain and
let W be the intersection of the depth two minimal prime ideals in
i2*. If Rejxf, then each pair of analytically independent elements
δ, c in R remains analytically independent inR*jW. The converse
holds if R/M is infinite.
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Before beginning the proof of Theorem 4, the following remarks
should be made.

REMARKS. (5.1) It has been an open problem for more than
20 years whether all integrally closed local domains R are catenary.
If this holds at least for the case altitude R = 3, then Theorem 4
describes all Noetherian domains in ^f (see Remark 10).*

(5.2) It is shown in [3, Thm. 7 and Remark, p. 728] that there
are at most finitely many height two PczM for which the condition
(in (4.2.3)) "there exists a height one maximal ideal in (BPY" can
hold.

(5.3) Nagata's examples in [6, Ex. 2, pp. 203-205] in the cases
m = 0 and r = 1 or 2 are in X by (4.2.2) and (4.2.3).

(5.4) It is clear that Stf is closed under localizations, and using
Nagata's example in the case m = 0 and r — 2 it can be shown that
j ^ is not closed under passing to factor domains. And, if (R, M)
is a local domain such that R{X) — R\X\Mmx\ € <$/, then R e Jzf, and
the converse in an open problem. (If the converse holds, then
(concerning (4.3)) it can be proved that an integrally closed local
domain of altitude three that does not satisfy the altitude formula
is in j y if and only if the following condition holds: for all pairs
of analytically independent elements δ, c in R(X), b, c remain
analytically independent in R(X)*/W*, where W* is the intersection
of the depth two minimal prime ideals in R(X)*. The proof is quite
similar to the proof of Lemma 11.)

(5.5) Lemma 11 proves a somewhat stronger statement than
that in (4.3).

Proof of Theorem 4. It clearly sufficient to prove the theorem
for the case B is a local domain R and M is its maximal ideal, and
it is clear that if height M = 1, then R e J%f.

Now assume height M = 2. If R = R', then Re^f by [5, Thm.
6]. If R Φ R' and R satisfies the altitude formula, then R& j*f by
[5, Prop. 8]. Finally, if R Φ R' and if R does not satisfy the
altitude formula, then there exists height one maximal ideal in Rf

by [8, Thm. 3.1 and Cor. 3.4(i)]. Let J be a nonzero ideal in R.
(It is clear that A*((0)) = A*((0)), so it suffices to restrict attention
to nonzero ideals.) Then MeA*(I), by (1.3) => (1.2), so MeA*(I),
by [11, Thm. 2.5 and Cor. 2.6]. Also, if P is a height one prime
ideal in R, then clearly PeA*(I) if and only if PeA*(I). Therefore

Next, assume height M = 3 and that there exists a height one
maximal ideal in R'. Let / be a nonzero ideal in R. Then by
(1.3) => (1.2) and [11, Thm. 2.5 and Cor. 2.6], Λf 6 A*(J) Π A*{I). Let
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P be a height two prime ideal in R. Then going through the same
three cases as in the preceding paragraph, it follows that PeA*(I)
if and only if PeA*(I) when RP = (RP)' and when there exists a
height one maximal ideal in (RP)' (so RP Φ {RP)

r and RP does not
satisfy the altitude formula), and RP£j*f if RPΦ(RP)

f and RP

satisfies the altitude formula (and this clearly implies Rg Jzf). From
this it readily follows that R e <$/ if and only if the conditions of
(4.2.3) hold, and this complies the proof of (4.2).

To complete the proof of Theorem 4, it remains to consider the
cases: height M = 3 and there does not exist a height one maximal
ideal in R'\ and, height M ^ 4. For these cases, some preliminary
information is needed, so the rest of the proof of this theorem is
contained in Lemma 6, Corollary 9, Remark 10, and Lemma 11.

Lemma 6 describes a class of altitude three local domains that
are not in

LEMMA 6. Let (R, M) be a local domain such that altitude
R = 3. Assume R Φ Rf and that there does not exist a height one
maximal ideal in Rf. Then R $

Proof. Since R Φ R', let b e M such that bR c φR)a. Let y e
φR)a - bR and let I = φ, yM)R. Then it is shown in [5, Prop. 8]
that MeA*(I), so to complete the proof, it suffices to show that
M$A*(I).

For this, let & = R[u, tb] be the Rees ring of R with respect
to bR, let ^ = R'[u, tb], and let S? = R'[tb9 1/tb]. Then S? = &",
since tb is transcendental over R', so & Q ^ £ &' Q S^ = ^[1/tb]
(since u = b(l/tb)eS^). Suppose there exists a prime divisor p of
u&' such that M = p f}R. Then the proof of [11, Thm. 2.5] shows
that tbgp. Hence p£f Φ Sf, and so p£^ Π R' is a maximal ideal
(since p Π i? = M). However, since tb is transcendental over Rf and
height p = 1, p ^ = ( p ^ Π J2')^1 lience height pSf Π S' = 1. But
by hypothesis there does not exist a height one maximal ideal in R\
so no prime divisor of uέ%f lies over M. Therefore M&Ά*φR), by
(3.1) => (3.4). Finally, bR £ I £ φR)a, so (In)a = φ»R)a for all w,
hence Λfί A*(I). Π

It follows from Lemma 6 and the proof of (4.2.3) that the only
local domains of altitude three whose inclusion in J%7 has not been
determined are those which are integrally closed. We explicitly
consider these rings in Remark 10 and Lemma 11.

The following lemma is of some interest in itself, since it can
frequently be used to show that given an ideal J and a prime ideal
P such that J Q P, PeA*(I) for some ideal I between J and Ja.
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(For example, let J = Kw in Corollary 8.) The lemma will be used
to show that if either altitude R > 3 or altitude R = 3 and R
satisfies the altitude formula, then R £ J^f.

We consider the analytic spread of an ideal / i n a local ring in
several of the following results. The analytic spread of /, denoted
1(1), is defined by 1(1) = depth (M, u)&(R, I). Therefore 1(1) ^
altitude R.

LEMMA 7. Let K £ P be ideals in a Noetherian ring B such
that P is prime, let h > 1, let Km be the ideal generated by the hth
powers of the generators of K, and let I = (Kw, PKh)B. If, for
infinitely many n, KWnBP Φ KhnBP, then PeA*(I). Moreover, if
BP is an integral domain that satisfies the altitude formula and
height P>l(KBP), then P$A*(I).

Proof. It may clearly be assumed that B is local and P is its
maximal ideal. Then we have In £ Khn and In = Kw% + PKhIn~ι

for all n, so Γ £ KWn + PKh*. Therefore, if I* = Khn, then it
follows that Khn = I% = KWn, since (B, P) is local. On the other
hand, if Q e Spec B is such that iQQaP, then clearly ΓBQ = KhnBQ

for all n. Therefore since In £ Khn it follows (on considering primary
decompositions) that if KWn Φ Khn for infinitely many n, then P
must be a prime divisor of In for infinitely many n, hence PeA*(I),
by [i]

If Bp is an integral domain that satisfies the altitude formula
and heightP> l(KBP), then P i A*(K)by [5, Thm. 3]. But clearly

£ Kh £ (KW)a, hence K™^I^(K*\. Therefore (Kkn)a =
ηa = (j )β for all w, so 1*(7) - A*(K), and so P i A*(I). Π

COROLLARY 8. Lei blf - -,bg (g > 1) δe analytically independent
elements in a local ring (R, M), let K = (6^ , bg)R, let h > 1,
omd Zβί I = (iΓfΛ:i, MKh)R, where Km = (δf, δ2\ , 6*)^. Γfee^ M e
A*(I). If R is a domain that satisfies the altitude formula and if
g < altitude R, then M&Ά*(I).

Proof. Let v(J) denote the number of elements in a minimal

basis of an ideal J. Then v(Khn) = (hn +_f-f" 1 ) (binomial coefficient)

and v(KW*) = (n+l~1^ since b b and 6f bh bh areand v(KW*) = ( n + l ~ 1 ^ , since blf - , bβ and 6f, bh

2, '- ,bh

g a re

analytically independent in R. Therefore Khn Φ Kmv>, hence the
conclusions follow from Lemma 7 (and the fact that 1(1) ̂  v(I) by
[7, Lemma 4, p. 151]). •

Corollary 9 contains a proof of (4.1).
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COROLLARY 9. Let R be a local domain such that either
altitude R = 3 and R satisfies the altitude formula or altitude R > 3.
Then

Proof. Assume first that altitude R > 3. Then it is shown in
[2, Cor. 2.25] that there exist prime ideals P in R such that
height P = altitude R — 1 and RP is unmixed. Fix such a P, so
height P ^ 3 and RP satisfies the altitude formula, by [8, Thm. 3.1].
Therefore, since the altitude formula is preserved under localization,
it suffices to prove that R £ ̂ f when altitude R = 3 and R satisfies
the altitude formula. For this, let M be the maximal ideal in R,
let 6, c e M such that height (6, c)R = 2 and let I = {¥, c\ Mbc)R.
Then MeA*(I) - A*(I), by Corollary 8, hence Rg Ĵ T •

Concerning Corollary 9, it should be noted that it follows im-
mediately from [5, Thm. 6 and Prop. 8] that a local domain R of
altitude ^ 2 that satisfies the altitude formula and is not integrally
closed is not in

REMARK 10. It is readily seen that if all integrally closed local
domains of altitude three are catenary, then all such local domains
satisfy the second chain condition for prime ideals, and hence satisfy
the altitude formula, by [8, Thm. 3.1]. Therefore if this holds,
then jzf has been completely determined. If if does not hold, then
we have shown (by the proof of (2.4.3), lemma 6, and Corollary 9)
that the only other possible local domains in Stf are integrally
closed, have altitude three, and do not satisfy the altitude formula.
We next consider what can be said in this case.

LEMMA 11. Let (R, M) be a local domain such that altitude
R == 3 and R = Rf. Assume R does not satisfy the altitude formula
and let W be the intersection of the depth two minimal prime ideals
in R*. Then the following statements hold:

(11.1) If RβtSϊf, then each pair of analytically independent
elements in R remains analytically independent in R*/W.

(11.2) If l((IR* + W)/W) = 2 for all ideals I in R such that
1(1) = 2, then Rej^f.

(11.3) If R/M is infinite and if each pair of analytically in-
dependent elements in R remains analytically independent in R*/W,
then the hypothesis of (11.2) holds, so the converse of (11.1) also
holds.

Proof. Note first that since R does not satisfy the altitude
formula, there exists a minimal prime ideal z in iϋ* such that
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depths < 3 by [8, Thm. 3.1]. Since R = R\ depths > 1 by (1.1) =>
(1.3), so depth z = 2, and so the ideal W exists.

(11.1) Assume Rejzf and let δ, e be analytically independent
elements in R. Let 1 = (δ2, c\ Mbc)R, so MeA*(I) by Corollary 9,
and so Me A*(I) = l*((δ, c)Λ), by hypothesis. Therefore by (3.1) =>
(3.4), there exists a prime divisor pf of u&f that lies over M,
where ^ = R[u, tb, tc\. Let N = (M, w)̂ ?> so .ΛΓ is a depth two
prime ideal (by [9, Lemma 4.3] (applied to R[u]{M)U) and u, δ, c)
together with [9, Lemma 4.2], since δ, c are analytically independent
in R). Now, by the proof of [11, Thm. 2.5], £δ£p' or tcφp' and
P = p' Π ̂  is not maximal. Therefore, since N £ P, either
depth P = 2 (so P = N) or depth P = 1. We will first show that

Let ^ * = #*[%, ίδ, ίc] and P* = P ^ # . Then &P is a dense
subspace of ^?p#, by [9, Lemma 3.2], Also, there exists a depth
one minimal prime ideal in ( ^ P # ) * = C^P)** by (1.3) => (1.1) (since there
exists a height one maximal ideal in (&P)

f), so there exists a depth
one minimal prime ideal in ^j!#, since ^ J # is pseudo-geometric. Let
w be this ideal, so z = w f) R* is a minimal prime ideal, by [14,
Thm. 1.5]. Also, &*l(w Π ^ ' ) = ^ ( Λ * / « , (δ, c)Λ*/«) = (say)^0, by [14,
Lemma 1.1], and so P*/(w Π ̂ 0 = (say)P0 is a prime ideal that con-
tains (M*/z, u)&0. Now R*/z satisfies the altitude formula and
height P*/(w D ̂ * ) = 1, since depth w = 1, so we have height Po +
trd (.&JP0)/((R*/z)/(M*/z)) = height Λf*/« + trd £?J(R*/z). Thus
height M*/s - trd (έejP0)l(R*/M*) = [6, (14.6)] altitude ^ O / P o , so
height M*/z - depth Po ̂  2 (since ^ / P = ^ * / P * = ^o/Po). But
height M*/z = depth z ^ 2, so depth s = height M*/« = depth Po = 2.
Therefore depth P = 2, so P = N, and so Po = (M*/z, u)&0. Let
L = (R*Jz)[u]{M*/8pU). Then (M*/z, u)L[tb, tc] is a depth two prime
ideal, since Po is, so u, 6, c are analytically independent in L, by
[9, Lemma 4.3], and so δ, c are analytically independent in R*/z.
Therefore, since W Q z (since depth z = 2) and δ, c are analytically
independent in i2*/«, [10, Remark 4.3(i)] shows that δ, c are analy-
tically indepedent in R*/W.

(11.2) Assume the condition on ideals of analytic spread two
holds. Fix a nonzero ideal I in R and let PeSpecί? — {(0), ikf}.
Then RP = (i?P)', since # = i?', so PeA*(I) if and only if PeA*(I)
(by [5, Thm. 6] if height P = 2, and clearly if height P = 1). There-
fore it remains to show that MeA*(I) if and only if MeA*(I).

For this, if 1(1) = 1 then 1{IR(X)) = 1. Since R(X)/MR(X) is
infinite, there exists an element δ in iϋ(X) such that bR(X) C
IR(X) C (bR(X))a, by [7, Cor., p. 151]. Thus, since i2(X) = i2(X)',
φR(X))a = bR(X), hence IR(X) is principal, "and so I is principal.
Therefore /* = (7*)α for all n, so Λ*(/) = A*(I) and Λfί Λ*(I). If
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1(1) = 3, then let & = &(R,I). Then depth {M,u)& = 3, by hy-
pothesis, so height (M, u)& — 1 (since altitude & = altitude R + 1).
Therefore there exists a height one prime ideal Q in & such that
(M, w ) ^ £ Q, so Q is a prime divisor of u& and of (u&)a. There-
fore Λf = Q n Λ 6 iί*(J), by (3.3) =-(3.1), so ΛfeA*(/), by [11, Thm.
2.5 and Cor. 2.6]. Finally, if 1(1) = 2, then the hypothesis implies

W)jW) - 2. Let & = &(Ry I), ^?* = ^(Λ*, /i2*), ^ 0 =
, (IR* + WO/TF), and W* = TFB*[ί, w] ΓΊ ̂ ' . Then by the

definition of analytic spread, there exists a depth two minimal prime
divisor Po of (M*/Wf u)^Q. Since ^ o = ^yw\ by [14, Lemma 1.1],
let P* be the pre-image in ^ * of Po Then P # is a depth two mini-
mal prime divisor of (M*9 u)&*. Also, with P = P* f) &, &P is a
dense subspace of .^J#, by [8, Lemma 3.2]. Now altitude ^?0 =
altitude i2*/W+l = 3, so depth P0 = 2 implies height P0 = l. Therefore
height P*{W% = 1, so there exists a depth one minimal prime ideal
in ^p#. Therefore there exists a depth one minimal prime ideal in
C.^P*)* — C^!P)*» S O there exists a height one minimal ideal, say N,
in (.5?p)', by (1.1) => (1.3). Therefore M=NΓiReA*(I), by (3.4) =>
(3.1), and so MeA*(I), by [11, Thm. 2.5 and Cor. 2.6].

(11.3) Assume R/M is infinite and let I be an ideal in R such
that 1(1) = 2. Then, since ϋj/jlf is infinite, there exist analytically
independent elements b, c in R such that (6, c)i? S J ς (φf c)R)a, by
[7, Cor. and Thm. 3, p. 151] (applied to /) together with [7, Thm.
4, p. 152] (applied to (δ, c)R). By hypothesis, 6, c remain analytically
independent in R*jW, and clearly (6, c)i2*/ΐ^£ (IB* + W)/WQ
(((b,c)R)aR*/ + W)/WQ((b,c)R*JW)a, so ί((Ii2* + T7)/T7) ^ 2, by [7,
Thm. 2, p. 151]. But altitude R*/W=2, so ί((IR* + W)/W) ^ 2.
Therefore the hypothesis of (11.2) holds, so R e Jzf, and so the
converse of (11.1) holds. •

This paper will be closed with the following question and
remarks.

QUESTION. If I is an ideal in a local ring such that 1(1) ̂  2,
then do there exist integers h such that Γh}n Φ Ihn for infinitely
many ni

REMARKS. (12.1) It seems to me the answer to the question
must certainly be yes, but I have not been able to prove it. If it
does hold, then with R as in Lemma 11, R e jzf if and only if the
condition in (11.2) holds. For, let Rej&Ί let 1(1) = 2, let h such
that F^n Φ Ihn for infinitely many n, and let K = (I™, MIh)R. Then
MeA*(K), by Lemma 8, so ΛfeA*(ϋΓ) since Ressf. Therefore
MeA*(Ih) = A*(I). Thus essentially as in the proof of (11.1) (but
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using the definition of 1(1) to get a depth two prime divisor of
(M, u)&(R, I) rather than analytical independence), it follows that
depth (M*/W, u)&(R*/W, (/#* + W)/W) = 2, so l((IR* + W)/W) = 2.

(12.2) Actually, for the result in (12.1) to hold, it would be
sufficient for the following to hold: if 1(1) — 2, then there exist
integers g and h and ideals C and K such that Ca = (Ig)a9 C £ K S
(I9)a9 and Kmn Φ Khn for infinitely many n. (For then, by Lemma
8, MeA*(K*)f where K* = (Kίh\ MKh)R, so MeA*(K*)f since
Re,s*f, and so Λ f 6 i * ( F ) = λ*(Ph) = A*(I).)

m proof. It was recently shown by T. Ogoma in Non-
catenary pseudo-geometric normal rings, Japan J. Math., (to appear),
that there exist integrally closed local domains of altitude three
which are not catenary.
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