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HOLOMORPHY ON SPACES OF DISTRIBUTION

PHILIP J. BOLAND AND SEAN DINEEN

If £ is a locally convex space and U C E is open, then
H(U) is the space of holomorphic functions on U (i.e., H{U) =
{f: U—C, f G-analytic and continuous). 7, is the topology of
uniform convergence on compact subsets of U. 7z, is the
Nachbin ported topology defined by all semi-norms on H(U)
ported by compact subsets of U. (A semi-norm p on H(U) is
ported by K if whenever V is open and KCcV c U, there
exists C, such that p(f) < Gylf|» for all f€ H(U).) z;is the to-
pology defined by all semi-norms » on H(U) with the following
property: if (U,) is a countable increasing open cover of U,
there exist C > 0 and Uy such that p(f)=Cl}|y, for all fe
H(U). Hgy(U) is the space of hypoanalytic functions on U —
that is Hy,y(U) = {f: f is G-analytic and the restriction of f to
any compact set KC U is continuous}.

If 2 is open in R”, then Z(2) and Z/(2) are respectively
the Schwartz space of test functions and the Schwartz space
of distributions on 2. We prove that H(Z'(2)) + Hgr(Z(2))
and that 7, = 7, = 7; on H(Z'(Q)) while H,(Z/(2)) = H(Z/(2))
but 7, # 7, + 75 on H(Z'/(Q)).

1. Holomorphic and hypoanalytic functions on countable
direct sums. In this section, we will prove two lemmas which are
useful in the construction of holomorphic and hypoanalytic functions
on countable direct sums. If E, + 0 is a locally convex space for
each n, then £ = 32, E, is the countable direct sum of the E, with
the finest locally convex topology such that E, — E is continuous for
all n. [IZ., E, is the product of the E, with the product topology.

LEMMA 1. Let E=>3.E, =EQQE PE,D--- where each
E,+#0. For each n >0, let «,€ E!, +,+0. Let (¢,)>-: S E;. Then
D= Doy Gutrn € Pyy(CE) (i.e., 18 a hypocontinuous polynomial of degree
2 on E), and pe PCE) if and only if there exists an absolutely
convex meighborhood V, of zero im K, such that [g,|,, < +o for
each m, (i.e., (¢.)7=1 S Ey(VY)).

Proof. Since each compact subset of £ is contained in E, P - - -
@ E,, for some m, it follows that p is a hypoanalytic polynomial of
degree 2. Now if p is continuous (p € P(*E)) there exists an absolutely
convex neighborhood of zero V=V, @V, DV,D --- such that |p|, <
1. Now if » =1 is given and y,€ V, is such that +,(y,) # 0, then
|4 lvy = 1/|9a(¥a) |-
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Conversely suppose V, is an absolutely convex neighborhood of
zero in E, such that for each =, |¢,|,, = C,. Now choose V, an

absolutely convex neighborhood of zero in E, such that |y,|,, =
1/C,2". Then p is bounded on the neighborhood V=V, V. PV.H---
of zero in E and hence p is continuous at zero. Similarly, one may
show that p is bounded on a neighborhood of an arbitrary point,

and hence p is continuous on E.

COROLLARY 2. Let E=EQE DE, D --- = >0 E, where E,
18 a metrizable nonnormed space. Then P(E) # Pyy(CE), and hence
H(E) + Hyy(E).

Proof. Since E, is metrizable and nonnormed, there exists a
neighborhood basis (W,) of zero in E, and a sequence (¢,) of con-
tinuous linear forms on E, such that |g¢,[,, < 4+, but [g.lw,_, =
+co for each n. Hence, constructing (¢,) as in Lemma 1, we see

P = 371 $uvrs € PuyCE)\PCE).

LEMMA 3. Let E=E PE,PEPD--- = >u.E, Suppose f,c
H(E,), f,(0) = 0 for each n, and let g, be a continuous polynomial
on B, ---DE, (ie., g,cPE.D---DE,) for each n. Then if
there exists a meighborhood U of zero in E such that |g,|, < + oo for
all m, then F = >, 9.f. € HE).

Proof. By the nature of compact sets in F, it is clear that F
is always hypoanalytic (on each compact subset K of E, F' reduces
to a finite sum of analytic functions).

Now suppose U is a neighborhood of zero in E such that |g,|, <
+ o for each n. Without loss of generality we may assume U =
U BU,PU,P --- where U, is an absolutely convex neighborhood
of zero in FE, for each m. Now let V, be an absolutely convex
neighborhood of zero in FE, such that V, cU, and

1
2“‘9,,,'”

for each n =1. Then V=V, pV,6 --- is an absolutely convex
neighborhood of zero in E and

| falv, =

Fly S 31061l = B l.lolfilr, = 32 = 1.
Hence F is locally bounded and therefore continuous at zero. We
now show that F' is also continuous at any x € E.

Given xc K, there exists an m such that =2, + --- + 2, €
E®---E, Since g, is a polynomial and is bounded on U, it
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follows that g, is bounded on z + U.
For each % let W, be an absolutely convex neighborhood of zero
in E, such that W,c U, and

_1
anlg” |x+U

Let W:W1® Wz@ ¢ @Wm@Wm'l-l@ Tt
Then ¢ + Wcx + U, and

}f‘n ]:c+Wn <

Ms

[F(:v-l-W = gnfn

1 z+W
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] I g%fﬂ |x+W
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= S g lrlfuloir, < L =1,
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EXAMPLE 4. Let g,€¢ P(E, D --- @ E,) for each n, and f, € H(K,)
such that f,(0) = 0 for each n. Then if E, is normed for each n, F' =
Z;:;l gfnf'n e H(E)'

ExAMPLE 5. Let ¢,€ E,, and f, € H(E,) for each n where £,(0) =
0. Then F =376 - - ¢,f, € HE).

2. Holomorphic and hypoanalytic functions on & and &,
If 2 is an open subset of R", &Z/(2) and <'(Q) are respectively the
Schwartz space of test functions and the Schwartz space of distribu-
tions on 2. The topologies on these spaces are normally described
in terms of inductive and projective limits. Valdivia [7] has shown
that for any n and any open 2 CR", () =>,ns and Z'(Q) =
Tl 8’ (where s is the Fréchet nuclear space of rapidly decreasing
sequences and s’ is its dual). As we will see, this simplifies con-
siderably the study of holomorphic functions on these spaces. Because
of this characterization of Valdivia, we will use the notation & and
=" in place of respectively 2(R) and 2'(2). Hence we will write
I =3wns and 2’ = [Iwm s.

In this section, we will show that H(U) # Hyy(U) for U open
in & but that H(U) = Hy,(U) for U open in &',

Since & = 3 s, where s is the (nonnormed) Fréchet nuclear
space of rapidly decreasing sequences, we see that by Corollary 2,
PC) # Prpy(*<7) and hence H(U) = Hyy(U) for U open in =,

PROPOSITION 6. Let U be open in 2'. Then there exists a compact
subset K of U with the property that if fe Hyp(U) and f|x =0,
then f = 0.
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Proof. 1t suffices to consider the case when U is an absolutely
convex neighborhood of zero in <&’. For each n, lets, =s. Then
2" = [1¢-.8,, and we may assume U is of the form U, X --- XU, X
Ileoms 8, Where U, is an absolutely convex neighborhood of zero in
s,. Since s, has a continuous norm, there exists a compact set K, =
V3ic U, which has dense linear span in s, for each n. Now K =
K, XK, X K;X--- is compact in &’ and we claim that if f € Hy(U)
and f|gx =0, then f =0.

If fe Hyy(U) where f|x =0 and f = >, », is the Taylor series
expansion of f at 0, it follows from the Cauchy inequalities that
|,z = 0 for each ». It suffices to show that p, = 0 for all ». Now
$i X ++- X 8 is a 2F_4" space (in particular a k-space) and hence
(P)n = Prlsjx...xs, 18 continuous for each » and n. But K, X --- X K, has
dense linear span in s;x --- Xs;, and thus (p,),=0 since (9,), |x,x...xx, =
0. Nowif xe 2’ and (2),=(x, ---, %, 0, ---) € [I3-: s, then (), — 2
and {x, (x);,, (x), ---} is compact. Therefore, since p, is continuous
on compact sets, p,.(x) = lim, p,((x),) = lim,(p,).((x),) = 0. Henece p, =
0 for all », and f = 0.

PROPOSITION 7. If U is open in ', then Hyy(U) = H(U).

Proof. Without loss of generality, we may assume U is of the
form U, X --- XU, X IIz-ms: s, as in Proposition 6. Let I7,: [[>., s, —
s X --+ X s}, for each n. We claim that if f € H,,(U), then f factors
through some I7,, i.e., there exists n =m and f a mapping from
I1,(U) to C making the following diagram commutative:

v—"" s my )

AN /4
N ST
C

If such a factorization does exist, then clearly f is G-analytic.
Since I7,(U) is a k-space (s;X --- X s, is 2.%_4"), and compact subsets
of II,(U) can be pulled back to compact subsets of U, it would follow
that f and hence f is continuous.

Suppose f does not factor for any ». Then there exist two
sequences (x,), (¥,) c U where I1,(z,) = ,, II,(y,) = 0 and f(x, + ¥,) —
f(x,) #= 0 for each n.

Let K be a hypoanalytically determining set for H,,(U) as in
Proposition 6. Now for n > m,

9.2 — f(z + y,) — f(2) € Hyy(U)

and therefore there exists z, € K such that
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f(zﬂ_}_yn)_f(zn)io'

Furthermore, for fixed n > m, N — f(2, + My,.) — f(z,) is analytic
on C and nonconstant. By Liouville’s theorem there exists A, € C such
that | (2, + M¥.)| > n. But then f is unbounded on the relatively
compact subset (2, + Mu¥a)usm in U, contradicting the fact that fe
Hy(U).

COROLLARY 8. Let U be open in =2’'. Then t, bounded subsets
of H(U) are locally uniformly bounded (i.e., uniformly bounded in
a meighborhood of each point in U).

Proof. Without loss of generality U =U,X :-- X U,X Il5cmtish
as in Proposition 7. We proceed as in the proof of Proposition 7.
If (f)ses 18 7, bounded in H(U), we claim it is uniformly factorizable
through some I7,(n > m). If not, we may as before find a relatively
compact subset (2, + \,%,), in U on which (f,)... is not uniformly
bounded. Hence (f,),.. factors uniformly through some I7,, (n > m).

But if UCE where E is a 2.%_4" space or a Fréchet space,
then 7, bounded subsets of H(U) are locally uniformly bounded [1].
Hence (f,oIl,),c. is locally uniformly bounded and therefore so is

(foae a-

3. Topologies on H(Z') and H(Z'). In this section, we will
prove the promised results concerning the three topologies z,, 7, and
7, on the spaces &2 and &22’'. We will use duality theory and some
results already known about topologies on H(XE) when E is a Fréchet
nuclear space or a Z.%#_4" space, ([3], [4], [6]).

Initially, we review some basic results in duality theory for
holomorphic functions.

A locally convex space E is fully nuclear if E and E’ are complete
reflexive nuclear spaces. =, 2’ and Fréchet nuclear or 2.F_y~
spaces are fully nuclear. FE is fully nuclear with a basis if E is fully
nuclear and has a Schauder (and hence absolute) basis. & and =’
are fully nuclear with a basis. If (e,)7, is a basis for the fully
nuclear space E and m e N, then

2 =2znen—_’zm=z?“"'z7"
n=1

is a monomial in z. In [3] it is shown that if E is fully nuclear
with a basis, then the monomials form an absolute basis for H(FE)
for both of the topologies 7, and z,. Furthermore, 7, = 7, on H(E)
if and only if 7z, and 7, are compatible if and only if Hyy(0z) =
H(0;) (the space of hypoanalytic and analytic germs at 0 in £'). In
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particular, it follows that 7, = z, on H(E) whenever E is a Fréchet
nuclear or dual of Fréchet nuclear space with a basis.

There exist Fréchet nuclear spaces with a basis E where 7, =
7, # T, on H(K). However, Dineen has shown in [6] that if F = s,
then 7, =7, = 7; on H(s). We will use this fact together with the
above duality theory to show that ¢z, = ¢, = 7, on H(Z).

PROPOSITION 9. 7, =7, =17, on H(Z).

Proof. We have seen that H(U) = Hyy(U) for all U open in &2"'.
Hence H(0,/) = Hyy(0..). Since &7 is a fully nuclear space with a
basis, it follows by the above that z, = 7, on H(&). We will now
show that 7z, =17, on H(Z). Initially however, we will introduce
some further notation concerning & = >\7_; s,.

For each =, let (e,,); be an absolute basis for s,. Then if 2=(z,) €
<, each z, is of the form z, = (2,,);. If m, € N then 2 = zRhizhiz - - -
Now let m = (m,, my, ---) € D\mn(N). Then z€ ZF — 2™ = zMzye . - -
is a monomial, and the set of monomials form a basis for H(<), 7, =
H(=), t,. Note that a monomial on & is simply a finite product of
monomials on s.

Now let » be a 7z, continuous semi-norm on H(<Z). We wish to
show that » is a 7, continuous semi-norm. It suffices to show that
p is the extension of a 7, continuous semi-norm on H(s, P - - P s,)
for some n. For in this case, since s,P --- Ps,=s, and 7, = 7, on
H(s)([6]), it would follow that p is 7, continuous.

As p is 7, continuous on H(<Z), p is of the form p(f) =
> pj(ti" £(0)/71) where p; is a continuous semi-norm on P(*<7). But
T, =T, = T, on P(E(Z)) for each j, and since every compact subset
of & is contained in s, --- @ s, for some n, it follows that there
exists a minimal %; such that f|,,1+..‘+sﬂj =0=2p;,(f) =0 for all fe
H(=). We claim that the sequence {n;}; is bounded.

If not there exist two increasing sequences of integers (r;); and
(s;); and a sequence of monomials k; = 27" - -+ 2777% € P("7<Z) such
that

m,; # 0 and p,(h;) # 0.

Now let k; = h;/p,,(h;). Then k; = g,,f,; Wwhere g,,; is a monomial
and f,, € H(F,,) such that f,,(0)=0. Now there exists a neighborhood
of zero U in 3.7, s, on which each monomial is bounded (each s, has
a continuous norm). Hence if F' = >3, k;, then F e H(Z) by Lemma
3. But p(F) = 37 p,;(k;) = + oo, a contradiction. Hence (n;); is
bounded, and there exists an » such that if f e H(2), fl,e..0s, = 0,
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then p(f) =0. It is clear then that p|gue...es, iS @ 7, continuous
semi-norm on H(s, P --- @ s,) from the definition of the z, topology,
and this completes the proof.

PROPOSITION 10. 7, # T, # T5 = To = Tw, 00 H(Z').

Proof. We have seen that H(Z) + Hyy (<) and therefore it
follows that H(0,) # Hy(0,). Hence in particular z, and 7, are not
compatible on H(="'), and therefore 7, +# 7,.

Now &2’ = ], s,, and in particular contains a sequence (¥,.).(¥, # 0)
which econverges to zero very strongly (i.e., A%, — 0 for each sequence
(M), of complex numbers). Hence 7, # 7,,, (bornological topology
associated with z,): see for example [5]. In particular ¢, +# 7; since
7; is bornological [5].

Finally we show that z,, = 7,, = 7;. Since it is easy to see from
the definition of 7; that sets of holomorphic functions which are
locally uniformly bounded are z, bounded on H(Z'), it suffices to
show that z, bounded subsets of H(<') are locally uniformly bounded.
But this is precisely Corollary 8.

REMARK 11. It is interesting to note that z,, 7, and z; are three
distincet nuclear topologies on H(=') (2], [3], [6], [8]) while z, = 7, =
7, on H(<) is nuclear but not sequentially complete.

REMARK 12. Since &7 and &’ are fully nuclear with a basis,
we may define open polydises in these spaces. If U is an open
polydise in the fully nuclear space FE, then U” (the multiplicative
polar of U) is a compact subset of E’. [4].

The results of Propositions 9 and 10 may be extended to show
that 7, = 7z, = 7; on H(U) whenever U is an open polydisc in & and
that 7, = 7, # 7, = To» = Tw,; On H(U) whenever U is an open subset
in &',

In [4] it is shown that 7, is bornological on H(U) if and only if
the space of germs H(U*)=lim,_,» H*(V) is a regular inductive limit.

Hence if U is an open polydisc in & (respectively <&’) then
H(UY) is regular (H(U™) is not regular).
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