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MAPS ON SIMPLE ALGEBRAS PRESERVING
ZERO PRODUCTS.
II: LIE ALGEBRAS OF LINEAR TYPE

W. J. WoNG

The study of maps on an algebra which preserve zero pro-
ducts is suggested by recent studies on linear transformations
of various types on the space of # X n matrices over a field,
particularly Watkins’ work on maps preserving commuting
pairs of matrices. This article generalizes the result of
Watkins by determining the bijective semilinear maps f on a
Lie algebra L with the property that

[x,y]1=0=—=1[f(x), /W]=0,
where x, yeL, for a class of Lie algebras constructed from
finite-dimensional simple associative algebras.

Introduction. In [8] we began the study of the semilinear
maps on an algebra over a field ¥ which preserve zero products, a
problem arising from recent investigations characterizing the linear
transformations on the n X » matrix algebra M,(k) over k& which
preserve various properties, particularly the work of Watkins on maps
preserving commuting pairs of matrices [7]. If L is a Lie algebra,
this means that we are concerned with the bijective semilinear maps
f on L such that [f(z), f(¥)] = 0 for all pairs of elements %, ¥ of L
such that [z, y] = 0. We say that f preserves zero Lie products.

If L is finite-dimensional, these maps f form a group G(L) [8].
Clearly G(L) contains the group G, of all semilinear automorphisms
and anti-automorphisms (semilinear maps which are automorphisms
or anti-automorphisms of the multiplicative structure of L), the group
of units G, of the centroid of L (the algebra of linear transforma-
tions which commute with left multiplications in L), and the group
G, of all bijective transformations f of the form f(x) =z + g(x),
where ¢ is a linear map of L into its center Z(L). Let G (L) =
G.G.G;.

In this paper we determine G(L), for a class of simple Lie al-
gebras L. These are obtained by taking finite-dimensional simple
associative algebras A over a field £ and forming the Lie algebra
L = [A, Al/[A, A1 N Z(A), where [A4, A] is the subspace spanned by
all the commutators [z, ¥y] = #y — yx, and Z(A) is the center of A.
If A is noncommutative, then L is a simple Lie algebra, except when
A has characteristic 2 and is 4-dimensional over Z(4) [1, p. 17].
Except for cases of “small length,” we show that G(L) = G(L) for
such a Lie algebra L. In fact, we can deal with a wider class of
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Lie algebras, including the case L = A (Theorem II and Corollary 9).
We say that these are Lie algebras of linear type, since A is iso-
morphic with the algebra of all linear transformations on a vector
space over a division algebra. Our result includes that of Watkins
[7], and its extension to nonalgebraically closed ground fields by
Pierce and Watkins [6].

The proof of Theorem II uses a result about maps between tensor
products of vector spaces, preserving rank 1 elements, modulo a
certain subspace (Theorem I), and a knowledge of the structure of
linear transformations on a finite-dimensional vector space over a
finite-dimensional division algebra, generalizing the usual elementary
divisor theory for fields (§ 2).

It would be interesting to find G(L) for the cases not covered
by Theorem II. A particularly intriguing case occurs with the simple
Lie algebra L obtained from a simple associative algebra of charac-
teristic 2 having dimension 16 over its center, where it may be pos-
sible that not all elements of G(L) come from the generalized rank
1 preservers classified in Theorem I.

1. Generalized rank 1 preservers. In [8] we studied maps
FURV—U, RV,

of tensor products of vector spaces over an associative division al-
gebra D, preserving elements of rank 1. Here we shall need to
consider the case when V and U form a pair of dual vector spaces,
f may not be defined on the whole of U® V, and the image of a
rank 1 element under f is only assumed to be of rank 1 modulo a
certain subspace S of U, Q V..

We assume familiarity with the notations and faects concerning
tensor products contained in [8]. If U and V are a right and a left
vector space over a division ring D, then U ) V is an additive abelian
group, which is a k-vector space if D is a division algebra over a
field k. In particular, U V is a vector space over the center Z(D).
The rank of an element x of U® V is the least number » such that
2 has an expression in the form

o=uQu,, (e U, v,e V).
i=1
In this case, the sets {u,, ---, %,} and {v, ---, »,} are linearly inde-

pendent, and span subspaces U(x) and V(x) of U and V, which are
uniquely determined by « [2, Lemma 38.1].

If also U,, V, are a right and a left vector space over a division
ring D,, we can speak of semilinear maps
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g: U— U, , h:V—V,,

with respect to an isomorphism ¢: D — D,. Such a pair of maps gives
rise to a map

IRQhURQV— u,® Vv,

such that (¢ ® h)(u ® v) = g(u) Q h(v). Similarly, if ¢,: D— D, is an
anti-isomorphism, we can speak of semilinear maps

g:V—U,, h:U—YV,,
with respect to ¢,, and these give rise to a map
. URXV—UQRQV,,

such that (¢, ® h)(u Q v) = ¢,(v) ® h,(u).

If V, U form a pair of dual vector spaces over D with respect
to a nondegenerate bilinear form <( , >, and [D, D] denotes the
additive subgroup generated by the commutators ag — Ba, where
a, 3€D, then the map taking the pair u, v to the coset of (v, )
(mod [D, D)) is a balanced map of U X V into D/[D, D], so that there
is a homomorphism

tr: UQ V— D/[D, D] .

This is surjective, and is called the trace map. If D is a division
algebra over a field k, then [D, D] is a k-subspace of D, and tr isa
f-linear map. If U® V is identified with the algebra A of finite-
valued linear maps of V into itself which are continuous with respect
to a certain topology defined by U (discrete if V is finite-dimensional),
then the kernel of the trace map is the commutator [A, A], so that
the subspaces of A containing [A, A] are in one-one correspondence
with the subspaces of D containing [D, DJ.

Because of the possibility of further applications, the result
which we shall prove in this section is placed in a more general
setting than that which is needed for the main purpose of this paper.
The ingredients of the situation are as follows.

HypoTHESES. (1) D and D, are associative division algebras
of finite dimension over a field %, with dim, D = dim, D,.

(2) (V, U) is a pair of dual vector spaces over D.

(3) C is a k-subspace of D containing [D, D], and L is the k-
subspace of U® V consisting of all elements whose traces lie in
C/[D, D].

(4) U, V, are a right and a left vector space over D,, and S
is a k-subspace of U, ® V, containing no elements of rank 1 or 2.
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(5) If S has an element of rank 3, then S is a 1-dimensional
Z(D,)-subspace of U, Q V..

(6) dimV =38, C=+0 if dim V =38, and dim,C > dim, [D,, D,]
if dim V = 8 and S has an element of rank 3.

The technical conditions (5), (6) will be used in the proof of
Theorem I. It is not clear to what extent they are really necessary.
In Hypothesis (6), dim V indicates the D-dimension of V. We make
the convention that the unqualified words dimension, linear, sub-
space, - -- will always be taken to be with respect to D or D, as
appropriate, and not with respect to k.

THEOREM I. Assume Hypotheses (1)-(6), and suppose f:L —
U, Q V, is a semilinear map with respect to an automorphism pof
k, such that, whenever x is an element of rank 1 in L, f(x) is the
sum of an element of S and an element of rank 1 in U,Q V..
Then onme of the following holds.

(i) There exists an element w, of U,, such that

S = S + (u, ® V).
(ii) There exists an element v, of V., such that
fL)yS S+ (U, Q) .

(iii) p¢ can be extended to an isomorphism o: D — D,, and there
exist injective o-semilinear maps g: U— U, h: V— V,, such that

f=0Qh:L+r,

where (g @ h), is the restriction of g Q@ h to L, and r:L— S is a
U-semilinear map.

(iv) ¢ can be extended to an anti-isomorphism o:D — D, and
there exist injective og-semilinear maps g: V— U, h: U— V,, such
that

f=0@Q®h). +r,

where (g X h), is the restriction of g & h to L, and r:L— S is a
p-semilinear map.

The proof of this theorem resembles that of [8, Theorem A],
except that we can use the fundamental theorem of projective ge-
ometry, because of Hypothesis (6).

We shall call a k-subspace of L a rank 1 k-subspace if its nonzero
elements all have rank 1. Such a k-subspace can be obtained by
taking an element u of U* = U — {0} and forming % ® u°, where

w = {ve Vi{v,uyeC},
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a k-subspace of V containing the annihilator u* of . If d = dim, D,
¢ =dim, C, then dim, V/u’=d —¢, dim, V/u'* =d. Since 2d + (d —¢) <
dim, V, by Hypothesis (6), we have

wrNw)rNn@w)Y=-0,

for all u, %/, w” in U. Similarly, if ve V# then »"®@ v is a rank 1
k-subspace of L, where v* = {u € U|<{v, u) € C}.
If an element w of U, & V, has the form

w=s8+1,

where se€ S and ¢t has rank 1, then the rank 1 component ¢ is uniquely
determined by w, since w =s +t =35 +t gives s —s' =t —t, and
the only element of rank at most 2 in S is 0. We shall write w,
for the rank 1 component ¢ of an element w of this form. It will
be convenient also to write w, = 0 for an element w of S. Clearly,
if w, is defined and a €k, then (aw), is defined, and is equal to aw,.

LEMMA 1. If uc U?, then the map x — f(x), is an injective p-
semilinear map of u @ u’ into U,Q V,.

Proof. Our assumption on f shows that f(x), is defined and
nonzero if = has rank 1, and we have f(ax), = (a“f(x)), = a”f(x),, for
aek. Form W= f(u ®u’). Itis enough to prove that if w, w' e W,
w + w' =w", then w, + w, = wy’. Suppose this is not so. Then
w, + wy, — wy is an element s of S having rank 3, by Hypothesis (4).
If w, = u, Q@ v, wo = u, Q v, w' = u; Q vy, then {u,, u;, u;'}, {v, vi, v’}
are linearly independent subsets of U,, V,, generating the subspaces
Uy(s), Vi(s).

If aeZ(D,), we see that w, — as has rank 1 or 3 unless a = 1.
By Hypothesis (5), s is determined by w as the only element of S
such that w,— s has rank 2, and U,(w, —s) = u;D, +u;'D,, Vi (w,—s) =
Dw, + Dw!. If t is any element of W for which (w + t), # w, + &,
then the same argument with ¢ in place of w’ shows that

Uit) c Uy(w, — 8) = wiD, +u'D,
Vit,) © Vi(w, — s) = D! + DY .

Similarly, if (w’ + t), = wi + t,, then U, (t,) Ccu,D, + u'D,, Vi(t,)C
Dw, + Dp?.

Now let Y be the set of all elements of U,® V, of the form
w, @ av, + ul Q gv; + u’ Q vv!’, where a, 38, v€D,. Then Y is a k-
subspace of U, ® V, containing S. Suppose that W is not contained
in Y, and let te W, t¢ Y.

If (w+t),=w,+t, then ¢, has form u, ®v{" or w;”" R, [8,
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Lemma 1]. If (w + t), # w, + &, then ¢, = u!" Qv;”, where u’ ¢
w,D, + u'D,, v/ e Dw, + Dw;. Considering w’ + ¢, we similarly have
the possibilities that ¢, = . @ v"”, u)” Q v}, or u;” Qv;”, where in
the last case w.” eu,D, + w.'D,, v!” € Dw, + Dw;. Combining these,
and using the linear independence of {u, u{, u:'} and {v, v, v{}, we

see that there are seven possibilities for %,

(1) u, ® avy, (i) K av,
(ili) u, ® (av, + Bv!), (iv) (wa +u'B) v,
(v) u ® (av] + pvl), (vi) (uia + uiB) Q@ vi,

(vil) ! @ avy'.

Suppose case (i) holds. Since w + w’ + ¢t lies in W, it is the
sum of an element of S and an element of rank 1 or 0. By Hy-
pothesis (5), there exists v e Z(D,) such that w, + w; + £, + vs has
rank 1 or 0. However, this element is equal to

u, R (v + Do, + av) + ui Q@ (v + Lv; — ul’ K vv! .

Since {u,, ui, w!'} is linearly independent, it follows that {(v + 1l)v, +
av;, (v + 1)v, vv)'} must span a space of dimension 1 or 0. Since
a =+ 0, it is easily seen that this is not so. Case (ii) may be eliminated
in the same way.

Suppose case (iii) holds. Then 8+ 0, since t¢ Y. For ve Z(D,),
we find that w{ + ¢, + vs is equal to

u & (e + Yo, + Bv]) + wi Q@ (v + vl — u’ ® voi .

For this to have rank 1 or 0, we must have v = —1, a = 1. Now,
for 6 € Z(D,), we find that w, + w; + £, + 6s is equal to

@ (0 + 2)v, + o) + ui® (@ + Dol — ul’ @dvy’,

which cannot have rank 1 or 0. Cases (iv), (v), (vi) may be elimi-
nated in a similar way.

Case (vii) ecannot hold, since t¢ Y. Thus, W must be contained
in Y.

Since dim, Y = 3dim, D,, WN S = 0 by our hypothesis on f, and
dim, S = dim, Z(D,), we have

dim, W £ 38dim, D, — dim, Z(D,) .

Since W and u° are isomorphic k-vector spaces, and dim, V/u' =
dim, D — dim, C, we see that V has finite dimension %, and

dim, W = (» — 1)dim, D + dim, C = (» — 1) dim, D, + dim, C

by Hypothesis (1). Since n = 3, we must have n = 3, and dim, C <
dim, D, — dim, Z(D,). This is a contradiction to Hypothesis (6), and
completes the proof of Lemma 1, because of the following result.
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LEMMA 2. If B is a finite-dimenstonal stmple associative algebra
over a field k, then

dim, B = dim, Z(B) + dim, [B, B] .

Proof. Replacement of k& by Z(B) divides all three dimensions
by dim, Z(B). Thus we may suppose k = Z(B). If K is an algebraic
closure of %, then By = B®), K is a full matrix algebra over K, and

dimg Bx = 1 + dimg [By, Bg],

since [Bg, Bx] is just the subspace of matrices of trace 0. Since
[Bx, Bxl=[B, B] ®; K, we have dimy [Bx, Bx] = dim, [B, B], dimx B, =
dim, B, and the result follows.

LEMMA 3. If ueU? then flu@u)SS + (u, Q V,), for some
u, e UL, or fw@u)ES + (U, R v,), for some v, e V£,

Proof. By Lemma 1, {f(x),|x cu @ u°} is a rank 1 subgroup of
U, ®V, and so is contained in %, ® V, for some u,, or in U, R v,
for some v, [8, Lemma 2].

LEMMA 4. It 1s 1mpossible to have

Su@u)SS + w, @ Vo),
S @uHS + (Ui ®wv),

where w, w' € U%, u, € Uf, v, e VE

Proof. We use two injective semilinear maps of k-vector spaces,
wWNu'—u, @V, w’Nu’—U RQwv, given by v— flu®Rv), v—
fw' ® v), respectively. The inverse images A, A’ of u, Q D,v, under
these two maps are k-subspaces of %’ N #”°, each having k-dimension
dim, D,. If d = dim, D, ¢ = dim, C, then dim, V > 3d — 2¢, by Hy-
pothesis (6), while dim, V/u’=dim, V/u®=d —¢. Hence dim, u°Nu" >
d = dim, D,, by Hypothesis (1), and so A, A’ are proper k-subspaces
of u’ N u".

If 0 ~=veu’Nu” then, by symmetry, Lemma 1 applies to v" @ v
in place of u ® %°, and we see that the sum of the rank 1 elements
fu ®v), and f(u' Q v), has rank 1 or 0. It follows [8, Lemma 1]
that either U,(f(»' ® v)) = U,(f(w ® v)o) = u, D), or V,(f(u & v)) =
Vi(f(uw @ v),) = D, so that ve A" or ve A. Since a vector space
cannot be the union of two proper subspaces, this is a contradiction.

LEMMA 5. Ewvery element of L is a sum of elements of rank 1
wn L.
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Proof. Let =3, u,Qv, (u,€ U, v,€ V) be an element of L.
Since the result is trivial when m = 1, we assume m > 1 and use
induction. If {v, u,> = 0, then u, ® v,€ L, and we apply induction
to the remaining m — 1 terms. If {v,, u,> # 0, for some j + i, say
{v,, u,y # 0, then u, ® (v, — av,) € L, where a = {(v,, U, ){v,, u,)7",

r=u & @ — av,) + (u2+u1a>®vz+§ui®v“

and induction can be applied. Finally, if (v, u,) % 0, and <{v;, ;) = 0
for all 5 = 1, then (U, + u,) & (Bv, + v,), U, Q Bv, and u, Y v, all lie
in L, where g8 = — (v, u,){w,, u,)"'; since ¥ — (u, + u,) X (Bv, + v,) +
(u, ® Bv,) + u, ® v, is equal to

w®A— o+ U@,

induction can again be applied.

Proceeding with the proof of Theorem I, we have two possi-
bilities, by Lemmas 3 and 4:
(A) For every we U, there exists u, € U,, such that

fu@u)=S + (u,® V) .
(B) For every ue U, there exists v, € V,, such that
fu@®@u)=S + (U,®,) .

Similarly, we also have two possibilities for the f(v* Q) v):
(a) For every ve V, there exists v, € V,, such that

XSS + (U, Q) .

(b) For every ve V, there exists u, € U,, such that

FORXES + w,Q V).

In all we have four cases, (Aa), (Ab), (Ba), (Bb), where (Aa) means
that (A) and (a) hold, etc. We consider these one at a time.

Case (Ab). Suppose u, '€ U?. Since dim V = 3, we can choose
a nonzero element » of w’ N u”. We have

fu@u)=S + (w, Q@ V),
S @uHNSS + (w® V),
RS + (w.Q V),

where w,, ui, u, € U,. Since f(u @ v) lies in both f(u @ %°) and f(v* ® v),
we have
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wD, = U(f(u ® ) = u,D, .

Similarly, w!D, = u,D,, so that w,D, = w;D,. Thus the same u, may
be used in (A), for every we€ U. From Lemma 5, it follows that
FUHNES + (u, ® V,), and case (i) of Theorem I holds.

Case (Ba). An exactly similar argument shows that case (ii) of
Theorem I holds.

Case (Aa). Let P(U), P(U), P(V,) denote the sets of one-dimen-
sional subspaces of U, U, V,, respectively. We have maps L: Ut —
P(U), R: V#— P(V),), such that

fu@@u)=S + Luw)Q V),
Q0SS + (U, Q RWv)),

where we U¥, ve V% If a is a nonzero element of D, and %' = ua,
let v be a nonzero element of #*. Then

L(u) = U(f(u ® av)) = U(f(w' @ v)) = L(w) .

Thus, uD — L(u) is a well-defined map of P(U) into P(U,).

If wueU?* ve V% and (v, u) = 0, then, for a<c D flua@ v), <
Lua) ® R(v) = L(u) Q R(v). Since a— fluax ®v), is an injective
semilinear map of D into L(u) ® R(v), which is isomorphic to D, as
a k-vector space, it follows from Hypothesis (1) that

L(u) ® B(v) = {f(ua @ v),|a € D} .

If u,uw e U? and L(u) = L(u'), choose a nonzero element v of
u*Nu'*. Then flu' ®v), € L)QR(w) = Lu)RQR®w). Thus, f(u'&®v), =
Jlua @ v),, for some aecD, so that f(u — ua)Pv), = 0. Hence,
%' = wa. Thus, uD — L(u) is an injective map of P(U) into P(U,).

Next, suppose uD, w'D, u” D are three coplanar elements of P(U),
that is, " = ua + w'B3, where @, s D. Let v be a nonzero element
of u* Nwu't. Then,

L") ® R(v) = {f(u"y ® v),|7 € D}
= {fluay ® v), + f(w'BY ® v)|7 € D}
C L(uw) ® R(w) + L(u") ® R(v) .
Since R(v) is one-dimensional, it follows that L(u")< L(uw) + L(u'),
so that L(u), L(u’), L(u'") are coplanar.

If, conversely, L(u")< L(u) + L{u'), choose a nonzero element v
of u* Nw'* Nu". Then,

S @ w) e L(u") @ B(v) < L(w) ® R(v) + L(w) @ R(v) ,



478 W. J. WONG

so that there exist a, g€ D, such that
FW’ Q@ v) = flua @ v), + f(u'8 & v), -

Since the map z — f(x), is an injective semilinear map on +°* ® v, it
follows that w"” = ua + u’B.

Finally, suppose u, v’ € U*, u, € L(w), w; € L(u’). Again let v be
a nonzero element of u* N «'*, and take a nonzero element v, of R(v).
There exist a, g€ D, such that

U, @ v, = flua Q@ v), , u v, = f(u'B ),

and so (u, + %) ®v, = f((ua + w'B) Rv),. If ua + w8 =0, then
U, +u,=0. If ua +u'B +# 0, then w, + u! € L(ua + u’B). Thus the
union of all the L(u), w e U? is a subspace U, of U,.

We can now apply the fundamental theorem of projective geome-
try [4, p. 104]. There exist an isomorphism ¢: D — D, and an injec-
tive o-semilinear map ¢: U — U, (with image U,), such that L(u) =
g(w)D,, for all w e U*. Similarly, there exist an isomorphism z: D— D,
and an injective r-semilinear map h: V — V,, such that R(v) = D,h(v),
for all ve V% Thus, ue U, veV, (v, uycC, we have

Sl @ v)y = g(uw)a(u, v) Q hv) ,

where a(u, v) € D, (and a(w, v) # 0 if w = 0, v # 0).
Suppose ve V* and let w, ' be nonzero elements of . The
equation f((u + ) Q V), = flu Qv), + f(w ® v), gives

g(u + watu + ', v) = gwa(u, v) + glu)aw', v) .

If w, ' are linearly independent, then g(u), g(u') are also linearly
independent, since g is injective. Comparison of the above equation
with the equation g(u + u') = g(u) + g(u’) shows that a(u, v) = a/, v).
If u, « are linearly dependent, we choose u” €%, such that u, u”
are linearly independent. Then we have a(u, v) = a(w”, v) = a(’, v).
Thus, «a(u, v) is the same for every nonzero wcv’. Similarly, if
u € U¥ then a(u, v) is the same for every nonzero v € u’.

If %, w' are any elements of U? v, v" € V* and (v, u), (v, w')eC,
we can choose a nonzero % in ¢* N v". By what we have proved,

alu, v) = a@”, v) = au”, v') = a(’, v') .

Thus, a(u, v) is the same for all pairs u, v of nonzero elements such
that (v, uy € C, say a(u, v) = a«. We can also set a(u, v) = o when
u or v is zero. Since w— g(u)a is an injective semilinear map, we
can change notation appropriately and write

Su ®v), = g(u) X h(v) ,
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for all w, » such that (v, u)eC.

If (w,u) =0, we see from the equation f(ug@ ®v) = f(u Q Bv)
that the isomorphism ¢: D — D, related to g is the same as the iso-
morphism related to . If B ek, we see from the equation f(ugXv) =
B flu @ v) that o agrees with ¢ on elements of k.

The maps g, h giveamap g X h: UR V — U, ® V,, whose restric-
tion to L is denoted (¢ ® h),. Clearly f — (¢ ® h), is a p-semilinear
map of L into U, ® V, which maps elements of rank 1 into elements
of S. By Lemma 5, the whole of L is mapped into S. Thus, case
(iii) of Theorem I holds.

Case (Bb). Take a division algebra D, anti-isomorphic to D,, and
make V, into a right D,vector space U, U, into a left D,-vector
space V, in the obvious way. There is an isomorphism of k-vector
spaces

UKLV, — U QV:,

given by ju, ®v,) =, Qu,. If U, V, D, f, S are replaced by
U,, V,, D, jf, 7(S), then Hypotheses (1)-(6) are still satisfied, and
we are in Case (Aa). We can apply the result we have just proved
for that case, and by the obvious translation obtain case (iv) of
Theorem I. We omit the details.

This completes the proof of Theorem I.

2. Centralizer of a linear transformation. We need some facts
concerning the struecture of a linear transformation on a finite-dimen-
sional vector space over a division algebra. These form a special
case of a more general situation discussed by Jacobson [3].

Let D be a finite-dimensional associative division algebra over
a field %, with center Z. We identify & with a subfield of Z. The
polynomial ring D[t] is defined in the usual way; in particular, the
indeterminate ¢ commutes with elements of D. If a(t) is a nonzero
element of D[t], the right ideal a(¢)D[t] has finite codimension as a
subspace of the right D-vector space D[t]. The codimension is still
finite if D[t] is regarded as a Z-vector space, since dim, D is finite.
Thus, Z[t] N a(t)D[t] is a nonzero ideal of Z[t], since it has finite
codimension over Z. Thus there is a nonzero multiple of a(t) lying
in Z[t]. In the terminology of [3], every nonzero polynomial in D[¢]
is bounded. Because of this, the usual elementary divisor theory
for linear transformations over a field will hold over D, with only
minor modifications.

If a(t), a,(t) € D[t], then a(t) and a,(t) are similar if there exist
monic polynomials b(¢), b,(t) in D[t], such that b(t)a(t) = a,(t)b,(t), where
b(t) and a,(t) have no nonconstant common left factor, and a(f) and
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b,(t) have no nonconstant common right factor. Similarity is an
equivalence relation [5, p. 489], and similar polynomials have the
same degree. In the case of degree 1, t — a and ¢ — 3 are similar
if and only if o and B are conjugate under the inner automorphism
group of D.

Let V be a finite-dimensional left D-vector space, and z a linear
transformation on V. (As in § 1, the unqualified words linear, dimen-
sion, subspace will always be taken with respect to D.) If a(t) =
3. a.t’ is a polynomial in D[t], and v € V, define

a(t)yv = Z a2 (v) .

Then V becomes a left D[t]-module, and a submodule is a subspace
which is invariant under xz. If W, X are submodules, the D[t]-
homomorphisms of W into X form a k-vector space Hom (W, X). In
particular, the endomorphism algebra Hom (V, V) is the centralizer
C(x), consisting of all linear transformations on V which commute
with 2. The order of a vector v is the monic polynomial a(¢) of
least degree for which a(t)v = 0, and its degree is equal to the di-
mension of the submodule generated by ». The order of another
vector generating the same cyclic submodule is similar to a(¢). Thus
one can speak of the order of a cyclic submodule, defined to within
similarity.

If V is indecomposable as a D[¢]-module, then it has a unique
composition series, and its composition factors are all isomorphic.
The order of a composition factor of V is an irreducible polynomial
p(t) in D[t], defined to within similarity, which we call the irreducible
divisor of V. We call the length m of the composition series of V
the length of V. To within isomorphism, V is determined by the
similarity class of the irreducible divisor p(¢) and the length m. We
note that dim V = m deg p(tf). Also, every submodule and every
quotient module of V is indecomposable.

In general, V can be expressed as the direct sum of indecom-
posable D[t]-modules, each of which is as described above.

PROPOSITION 6. Let D be a division algebra of finite dimension
d over a field k, and x a linear transformation on an m-dimensional
vector space V over D. Suppose that the corresponding structure of
V as a D[t]-module is given by the decomposition

V:ZV”' (j*—“l,"-,’)’bl;i:l,-'-,?’),
LN

where each V,; 1s indecomposadble, V,; has irreductble divisor p,(t)

and length m,;;, and mo two of the polynomials p,(t), ---, p,(t) are
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similar. Let C(x) be the algebra of linear transformations on V
which commute with x, and let ¢(x) = dim, C(x).
(1) As a k-vector space, C(x) is isomorphic with the direct sum

> Hom (Vij, Vi) (G, k=1, -, m5 i=1,---,7).
49,

(ii) For given i, j, k, if m = min {m,;, m;}, then Hom (V;, V)
is 1somorphic (as a k-vector space) to the space of all polynmomials
a(t) im D[t] for which deg a(t) < m deg p,(t) and p..(t)a(t) is a left
multiple of p..(t), where p.(t) ts the order of an indecomposable
module with irreducible divisor p;(t) and length m.

(iii) e(@) = d X7, i%- min {m,;, m;}) deg p.(t).

(iv) 3 m;deg pi(t) = n.

Proof. Since C(x) = Hom (V, V), and two V,; having different
values of ¢ do not have any irreducible constituents in common,
assertion (i) is clear.

The image of any homomorphism % of V;; into V,, has length
at most m = min {m,;, m,}. Thus A is essentially a homomorphism
from the unique quotient module of V,; having length m to the
unique submodule of V;, having length m. These modules are each
isomorphic with the indecomposable module W with irreducible divi-
sor p,(t) and length m, and so Hom (V;; V,) is isomorphic with
Hom (W, W). Let w, be a generator of W, with order p,,(f). Each
endomorphism of W is determined by the image of w, which can
be any element w for which p,,(t)w = 0. Every element of W can be
uniquely expressed in the form w = a(t)w,, where a(t) is an element
of D[t] for which deg a(t) < deg p,.(t) = m deg p,(t). The condition
that p..(t)w = 0 is then equivalent with the condition that p,.(t)a(t)
is a left multiple of p,,(tf). This proves assertion (ii).

Assertion (iii) follows from (i) and (ii), since the space of all
polynomials a(t) in D[] for which deg a(t) < m deg p,(t) has k-dimen-
sion dm deg p,(t), and assertion (iv) follows from the equation dim V,;=
m,; deg p,(t). This proves Proposition 6.

A special case of statement (ii) of the proposition is easily
calculated. Suppose p,(t) =t — a and m = min {m,; m;} = 1. Then
we seek the elements g of D for which (¢ — @)3 is a left multiple
of ¢t — a. This means (¢t — a)B8 = B(t — @), so that a8 = ga. Thus,
Hom (V,;, V) is isomorphic with C,(a), the centralizer of a in D.

COROLLARY 7. In the situation of Proposition 6,

c(x) = dnmax {n,, n,, ---, n,} .
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If equality holds, then (a) n, = n, = --- = n,, and (b) for each i, m,;
18 independent of j.

Proof. Let my, = max{n, n, ---, n,}. By Proposition 6 (iii), since
min {m;, m,} = m,,

o@) = d 3y, (3 m,;) deg pt) ,
=1 J=1
and equality implies m,; = m,, for all j, k. Since n, < n,, this gives

c(x) = dny >, my; deg p,(t) = dn,n ,

by Proposition 6 (iv), and equality implies n, = m,, all 7. This proves
Corollary 7.

If e Z(D), then a defines a linear transformation s,: v — av on
V, called a central homothety. This corresponds to the case where
V has m indecomposable components, each with length 1 and irre-
ducible divisor ¢ — «, and then ¢(s,) = dn®. If y is a linear trans-
formation of rank 1 on V, then x = s, + y corresponds either to the
case that V has n — 2 indecomposable components of length 1 and
one of length 2, all with irreducible divisor ¢ — «, and then c(x) =
d(n* — 2n + 2), or to the case that V has n — 1 indecomposable com-
ponents of length 1 with irreducible divisor ¢ — « and one of length
1 with irreducible divisor £ — 3, and then ¢(x) = d(n — 1)* + dim, C,(B).
We show that these are essentially the only cases when ¢(x) =
d(n® — 2n).

ProprOSITION 8. In the situation of Proposition 6, assume that
n =8 and ¢(x) = dn* — 2n). Then one of the following holds.

(1) x is a central homothety; c(x) = dn’.

(2) x is the sum of a central homothety and a linear trams-
formation of rank 1; c¢(x) = d(n — 1)* + dim, C,(B), for some element
B of D.

(8) n=3, and V has a basts for which x has matric
diag {a, «, o}, where dim, Cp(a) = (1/2)d; ¢(x) = 9d/2.

(4) m =3 or n=4, and c(x) = d(n’ — 2n).

Proof. We may suppose n, = n,, all <. By Corollary 7, n, =
n — 2. Also, if n, = n — 2, then every =, is n — 2, m,;; = m, for
all 7, and e¢(x) = d(n* — 2n). In this case, Proposition 6(iv) shows
that » — 2 divides %, so that » =3 or = = 4, and case (4) holds.
We may now suppose n, = n — 1.

If »,=m, then V has n indecomposable components, each of
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length 1, with the same irreducible divisor ¢ — a@. By the remark
following Proposition 6, c¢(x) = n*dim, Cp(e). Since C,(a) is a divi-
sion subalgebra of D, dim, Cy{a) is a divisor of d. We must have
dim, C,(a) = (1/3)d, since (1/4)dn* < d(n* —2n) when n =3. If
dim, Cp(a) = (1/3)d, then the inequality (1/3)dn* = d(n® — 2n) gives
n =38, so that c(x)=38d =d®n®—2n), and case (4) holds. If
dim, Cy(a) = (1/2)d, we similarly find that » = 8 and case (3) holds,
or n = 4 and case (4) holds. If dim, C,(a) = d, then case (1) holds.

If n,=%—1, then »<2. If =2, then V has n —1 com-
ponents of length 1 with irreducible divisor ¢ — a, and one of length
1 with irreducible divisor ¢ — g, where g8 is not conjugate to a under
the inner automorphism group of D. Now, ¢(x) = (r — 1)*dim, Cp(a) +
dim, C,(8). We must have dim, C,(a) = (1/2)d, since (1/3)d(n — 1)* +
d < d(n* —2n) when n =38. If dim,C,(a) = (1/2)d, the inequality
c(x) = d(n* — 2n) gives n =3, e Z(D), and c¢(x) = 3d = d(n* — 2n),
so that case (4) holds. If dim,Cy(a) = d, then case (2) holds.

If » =1, then V has n — 2 components of length 1 and one of
length 2, all with irreducible divisor ¢ — a«. If W is the component
of length 2, we find that

c(x) = (n* — 2n) dim, Cp(a) + dim, Hom (W, W) .

There is a submodule X of W such that X and W/X are each ir-
reducible, with irreducible divisor ¢ — «. As in the remark following
Proposition 6,

Hom (W, X) = Hom (W, W/X) = Cy(a) .
Now the exact sequence
0 — Hom (W, X) — Hom (W, W) — Hom (W, W/X)

shows that dim, Hom (W, W) = 2dim, Cp(a), so that e¢(x) < (n* —
2n + 2) dim, Cp(«). We must have a € Z(D), since (1/2)d(n* —2n + 2) <
d(n® — 2n) when n = 3. Thus, c¢x) = d(n* — 2n + 2), and case (2)
holds.

This proves Proposition 8.

3. Lie algebras of linear type. If A is an associative algebra
over a field %, then A becomes a Lie algebra under the operation
[z, y] = 2y — yx. If A is noncommutative and simple, with center
Z(A), then [A, AJ/[A, Al N Z(A) is a simple Lie algebra, except when
k has characteristic 2 and A is 4-dimensional over Z(A) [1, p. 17].
By Wedderburn’s theorem, if A is finite-dimensional over %, then 4
is isomorphic with the complete algebra L(V) of linear transforma-
tions on an nm-dimensional vector space V over an associative division
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algebra D of finite dimension over k. Here Z(A) corresponds to the
set of all central homotheties on V, and [A4, A] to the kernel of the
trace map from L(V) to D/[D, D] mentioned in §1.

We shall find the bijective semilinear maps preserving zero Lie
products in a general situation having as special cases both the simple
Lie algebra associated with L(V) and the complete algebra L(V)
itself. Let L be any k-subspace of A containing [A, A], where 4 =
L(V), and let E be any k-subspace of L N Z(A). Then L is a Lie
subalgebra of L(V), E is a central ideal of L, and we can form the
Lie algebra L = L/E. We are interested in the group G(L) of all
bijective semilinear maps on L which preserve zero Lie products.
Since every semilinear map on L lifts to one on L, we need to find
all the bijective semilinear maps f on L with the properties that
f(E)=E, and [f(x), f(y)]€ E whenever [z, yl€ E. We say that such
a map preserves zero Lie products (mod E).

THEOREM II. Let D be a finite-dimensional associative division
algebra over a field k, and V a left vector space of finite dimension
n over D. Let A be the algebra L(V) of all linear transformations
on V, and S the set of all central homotheties on V. Suppose L is
a k-subspace of A containing [A, Al, and E a k-subspace of LN S.
Assume that n = 3. If n = 4 and D is commutative of characteristic
2, assume that E+ S or L+[A, Al. Ifn = 3, assume that L +[A, Al,
and that D does mot contain an element « such that dim, Cpla) =
(1/2) dim, D. If f is a bijective map on L which is semilinear with
respect to an automorphism (¢ of k, such that f preserves zero Lie
products (mod E), then one of the following holds.

(1) pt can be extended to an automorphism o of D, and there
exist a bijective o-semilinear transformation h on V, a monzero
element s of S, and a p-semilinear map v: L — S, such that

f(x) = hxesh™ + r(x) ,

for all xe L.

(2) t can be extended to an anti-automorphism o of D, and
there exist a bijective o-semilinear map h of the dual space V' onto
V, a nonzero element s of S, and a pt-semilinear map r: L — S, such
that

flx) = h(zs)h™ + r(x) ,
for all xe L, where (xs)’ denotes the adjoint of xs.
Proof. Identifying A with U® V, where U is the dual space

V', we shall apply Theorem I. Since the trace map induces an iso-
morphism of A/[A, A] with D/|D, D], we have
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L = {xe A|trz e C/[D, D]},

where C is a k-subspace of D containing [D, D]. We note that S is
a l-dimensional Z(D)-subspace of A containing no elements of rank
1 or 2, and that S contains an element of rank 3 only when n = 3,
in which case C contains [D, D] properly, since L = [A4, A]. We need
to determine the structure of f(x), where 2 has rank 1.

For any element x of L, we let C(x) denote the centralizer of
2 in A, and ¢(x) = dim, C(x), as in §2. Also set

C.l)=Cx)NL, cz)=dim,C.x),
C*x) = {yeL|[x,yle E}, c¢*(x) = dim, C*(x) .

Let d =dim,D, ¢=dim,C, e=dim,E. Then ¢=<d, and e <
dim, Z(D) < d. Since A/L is isomorphic with D/C (as k-vector spaces),
we have

cx) —d+c=<cx) < cx) .

The map ¥ — [z, ¥] is a k-linear map of C*(x) into E, with kernel
C.(x), so that

c(x) = ¢*(@) = e(x) + e .
Thus, we have
cx) —d+ec=c*@) S elx) +e.

The condition that f preserves zero Lie products (mod E) implies
that f(C*(x)) & C*(f(x)), so that ¢*(x) < ¢*(f(x)). From the last in-
equalities we get

cx) —d+c=ce(f(x) +e.

Now suppose that x € L NS, so that x is a central homothety, and
c¢(x) = dn®. Then,

c(fx)) =2dn* —d+c¢c—e=dn*—2).

By Proposition 8, f(x)e LN S. Since f is injective and L NS is a
k-subspace of L, f(LNS)=LNS.

Next suppose « has rank 1. By what we have just proved, f(x)
is not a central homothety. Now, c¢(x) = d(n — 1)* + dim, C,(B), for
some element B of D. Note that dim, C,(8) = dim, Z(D) = ¢. Then,

e(f(@)) Z d(n* — 2n) + ¢ + (dim, Cp(B) — e) .

By Proposition 8, and our assumptions for the case n =3, f(x) is
the sum of a central homothety and a linear transformation of rank
1, except possibly when n = 4, ¢ =0, and dim, C,(8) =e¢. In the latter
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case, D is commutative, since C contains [D, D], and so C,(B) = D.
Then ¢ =d, so that E=S. Also, L =[A4, A], since C = [D, D].
Since S & L, every homothety has trace 0, so that the characteristic
of & must be 2. This case is ruled out by hypothesis.

We can now apply Theorem I, with V=V, and U= U, = V’,
the dual space of V.

Cases (i) and (ii) of Theorem I do not hold, since f is assumed
to be bijective. Suppose case (iii) of Theorem I holds. Then ¢ can
be extended to an automorphism ¢ of D, and there exist a bijective
o-semilinear transformation %z on V, a bijective ¢~'-semilinear trans-
formation g on V, and a pg-semilinear map 7: L — S, such that

f(x) = hxg + r(x),

for all xe L. (Here g is the adjoint of the map denoted g in Theorem
I (ii).)

Let W be any 1l-dimensional subspace of V, H any hyperplane
of V containing W. Let X be a hyperplane of V containing both
W and g(h(W)). Let x be a linear transformation on V with kernel
X and image W, and y a linear transformation on V with kernel
H and image W. Then « and y have rank 1, and lie in L since
they have zero trace. Since a2y = yx = 0, and f preserves zero Lie
products (mod F),

[hag, hygl = [f(®), f(x)]e E .

Since hxg and hyg have rank 1, the left side has rank at most 2.
Since E contains no nonzero elements of rank less than %, we have
[hxg, hyg] = 0. Since g(h(W)) < X, hxghyg = 0. Thus hyghxg = 0,
so that yghx = 0, since g and h are bijective. Henece, g(h(W))< H.
Since W is the intersection of all hyperplanes A which contain it,
g(h(W)) = W. Since gh is linear, this implies that gh = s, where s
is a nonzero central homothety. Then g = sh~!, so that case (1) of
Theorem II holds.

Finally suppose case (iv) of Theorem I holds. Then g can be
extended to an anti-automorphism ¢ of D, and there exist a bijective
o-semilinear map % of the dual space V’ onto V, a bijective o
semilinear map g of V onto V', and a pt-semilinear map »: L — S such
that

Sf@) = ha'g + r(@) ,

for all x € L, where 2’ is the adjoint of x. (Here g is the adjoint
of the map denoted g in Theorem I (iv).)

If z, y are elements of rank 1 in L such that [z, y] = 0, then,
as in the previous case, we see that
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[n2'g, hy'g] = [f(x), f(y)] = 0.

Taking adjoints, we see that [g'zh’, g’yh'] = 0. The same method as
before shows that h’g’ = s, where s is a nonzero central homothety.
Then gh = s, g = s’h™*, so that case (2) of Theorem II holds.

This completes the proof of Theorem II.

We remark that Pierce and Watkins obtained the case of Theo-
rem II when % = D, f is linear, L is the whole algebra L(V), and
E = 0 [6], extending the earlier paper [7] of Watkins, in which the
additional assumptions that % is algebraically closed and n = 4 were
made. Watkins also pointed out that the conclusion of the theorem
does not hold when » = 2. When n = 3, 4, the cases not covered
by the theorem remain open.

If s is a central homothety, then the map x — xs is an element
of the centroid of the Lie algebra A. In case (1) of the theorem,
the map z — hah™' is a semilinear automorphism of A; and in case
(2), the map x — ha'h~" is a semilinear anti-automorphism of A. It
is not clear that L is always invariant under these maps. How-
ever, this is so in the case L = [4, A]. We obtain the following
result.

COROLLARY 9. Let A be a finite-dimensional simple associative
algebra over a field k, such that A can be written as the direct sum
of 4 nonzero right ideals. If k has characteristic 2, assume further
that the dimension of A over its center Z(A) is greater than 16.
Let L be the simple Lie algebra [A, Al/[4, Al N Z(A) associated with
A. Then every bijective semilinear map on L which preserves zero
Lie products is the product of an element of the unit group of the
centroid of L with a semilinear automorphism or anti-automorphism
of L.
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