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ON THE STRUCTURE OF HYPER-REAL
z-ULTRAFILTERS

J. GLENN BROOKSHEAR

This paper investigates the structure of hyper-real z-
ultrafilters on completely regular, Hausdorff spaces in an
attempt to describe their structure in manageable terms.
A consequence of this investigation is a scheme for classify-
ing these ̂ -filters based on the complexity of their structure.
It is shown that the real numbers with the usual topology
exhibit hyper-real ^-ultrafilters within each category of the
classification. The paper closes with a discussion of how
the action of ^-filters in one category influence those in the
other categories with particular applications to the study
of C#(X).

v

The study of βX, the Stone-Cech compactiίication of the com-
pletely regular Hausdorff space X, has proven to be a useful yet
complex subject. Many results in the area (for example, in the non-
homogeneity question of βX\X) have had their foundations in an
understanding of the structure of the £-ultrafilters on X. For
example, remote points, although defined as points in βX\vX which
are not in the ^jX-closure of a discrete subspace of X, were first
shown to exist by showing the existence of a free 2-ultrafilter no
element of which is nowhere dense.

This paper investigates the structure of hyper-real ^-ultrafilters
on completely regular, Hausdorff spaces. The object is to describe
these filters (or, more accurately, their bases) in terms that provide
an insight into their structure. This is done by observing that
every hyper-real z-ultrafilter has the structure of a free ultrafilter
on N, the discrete space of natural numbers, underlying it. This
underlying structure is formalized in terms of a skeleton. It is
shown that many hyper-real ^-ultrafilters can be realized as being
built up from a skeleton using other ^-ultrafilters (one for each element
in N) in a way which closely resembles that of a subdirect product.
In such cases, the original ^-ultrafilter is said to be real-decomposable
or hyper-decomposable depending on whether or not these other
2-ultrafilters can be chosen to be real z-nltrafilters. Although there
are hyper-real ^-ultrafilters that defy such decomposition, the present
theory provides insight into the structure of a significant set of
hyper-real ^-ultrafilters as shown by the fact that the set of points
associated with the decomposable ^-ultrafilters is dense in βX\vX. A
consequence of the present theory is a classification of the hyper-real
z-ultrafilters into three classes; namely, real-decomposable, hyper-
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decomposable, and nondecomposable.
Ample background can be obtained from [3] and [7]. All spaces

are assumed to be completely regular, Hausdorff. The z-ultrafilter
on X associated with a point p e βX will be denoted by Ap. Such
a distinction between the points of βX and the z-ultrafilters on X,
although theoretically unnecessary, is maintained since the emphasis
here is on the structure of the filters.

DEFINITION 1. A skelton on a space X is a free ultrafilter
on N together with a countable collection {Ws.ieN} of mutually
disjoint zero-sets such that the function that has value i at each
point of Wi can be extended continuously to X. Such a skelton will
be denoted by i^A^ {W{: i eJV}). It is said to be a skelton of the
hyper-real ^-ultrafilter % provided Ne^K if and only if \Jiex Wt e ̂ Γ,
i.e., the z-filter generated by {\JieN Wt: NeΛ^} is in ξT.

One will recognize that saying (Λ^ {Wt: i eN}) is a skelton for
Ap is equivalent to saying peclβΣ(\JieN W4) if and only if NeΛ^
i.e., ^y = {N: N £ N and p e cl,z (\JieN W<)}.

Observe that if the points of a C-embedded copy of N are
themselves zero-sets then, by letting each Wt be one of these points,
one can obtain 2C skeltons from the copy of N (one from each free
ultrafilter on N). On the other hand, if each Wt in a single point
(identified as pf), then these points form a C-embedded copy of N.
(If {r,:ieN} is a countable subset of R, the space of real numbers
with the usual topology, there must be a g e C(X) with g(pt) = r̂
for each ieN. This is obtained by choosing h e C(R) so that h(i) — rt

and, by the properties of a skelton, picking feC(X) with f{pτ) = i
for each 'ieN. Now define g — h°f.)

Next it is shown that every hyper-real ^-ultrafilter has a skelton.
The idea here is quite similar to that of 2.1 in [2].

THEOREM 2. Every hyper-real z-ultrafilter has a skelton.

Proof. Let J be a hyper-real ^-ultrafilter. Then there is a
nonnegative feC(X) which is unbounded on each Ze%*. Observe
that if At SLiί Bt are the closed intervals [2i — 2, 2i — 1] and [2i — 1, 2i]
respectively for each ieN, then at least one of the zero-sets
U<βJvjΓ[AJ or U<β */*"[#J must belong to JT. Let TF, = /^[AJ or
/*"[JBJ respectively for each ieiV. Then {TΓiiieiV} is a countable
collection of mutually disjoint zero-sets. Moreover, there is a g e C(X)
such that g(x) = ΐ for each a 6 W*.

Now for each Z e 3£ let Nz be the subset of natural numbers
i for which Z ΠWi Φ 0 (which must occur for an infinite subset
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of N since {JieNWiβ βf and / is bounded on each WJ. Then

^Γ = {Nz:Ze^} is a free ultrafilter on N, and Ne<yΓ if and
only if \JieNWie^. Consequently, {^V] {Wt: i eiV}) is a skeleton
for %-.

Theorem 2 has several consequences that will not be pursued
here. One is that no hyper-real £-ultrafilter can have a base of
connected zero-sets. In fact, any base must contain zero-sets with
an infinite number of components. Another is the fact that for any
hyper-real ^-ultrafilter there is a function (one which is i on each
Wi) whose range on each member of some base of the filter has
cardinality equal to that of N. (Each member of a base must meet
infinitely many Wt'&.)

The consequence of Theorem 2 that is relevant here is the fact
that any hyper-real ^-ultrafilter has as its fundation the structure
of a free ultrafilter on N. It follows that the simplest hyper-real
^-ultrafilters are those with no additional structure, e.g., the free
ultrafilters on N itself.

To motivate the following theorem consider a hyper-real ^-ultra-
filter on R with the skelton (^7 {{rt}: i eiV}). Then the collection
of zero-sets of the form (JieN (Zt Π {rj) ( = Uie^W)» where Ne^yf^
and each Zi is a zero-set in the real ^-ultrafilter Ar*f is a base for
%*. It follows that the structure of 3f (especially a base for 2?) is
no more complex than the structure of ^

THEOREM 3. Let (^{WtiίeN}) be a skeleton on X and for
each ieN let ϊfτ be a z-ultr a filter on X containing W{. Then Γ̂o =
{\JisN (ZiΓiWi): Zte ^ and Ne^yf^} is a base for a hyper-real z-
ultrafilter 5£ on X with skeleton

Proof. Since the sets Wt are the zero-sets in a skeleton, each
member of ^ is a zero-set. Furthermore, Γ̂o is a base for a ^-filter
since if \JieNl {ZiΛ n Wt) and \JieN2 (Zit2 Π Wt) are in JT0 then
UieNtΠNi (Zitl Γi Zit2 Π Wt) e %*0 is contained in their intersection.

Suppose now that Z is a zero-set that meets every member of ^ 0 .
Then for some Ne^Γ, Ze^ for each ieN. Thus, \JieN{ZViWt)
is in ^ 0 and is contained in Z. Consequently, J is a 2-ultrafilter.
Finally, ^ is hyper-real since there is a function that is i on each
Wi and thus unbounded on every member of ?€.

The fact that ( ^ {Wt\ ieN}) is a skelton for %* follows directly
from the definition of .T.

DEFINITION 4. A hyper-real ^-ultrafilter % that can be defined
in terms of a skeleton as in Theorem 3 will be called decomposable.
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If for some skelton of ^Γ each ^ can be chosen to be a real z-
ultraίilter then %* will be called real-composable. If 3£ is de-
composable but not real-decomposable, it will be called hyper-
decomposable.

Thus, a hyper-real z-ultrafilter is decomposable if it has a base
whose trace on each Wt in one of its skeltons is a z-filter base
(disregarding the occurrences of 0) . It is real-decomposable if each
of these filter bases is fixed. Observe that in Theorem 3 % Φ ^
for each ίeN. Thus, a hyper-real z-ultrafilter will never occur in
its own decomposition.

Since the real z-ultrafilters are the simplest z-ultrafilters (each
being the collection of zero-sets containing a given p e uX), the real-
decomposable z-ultrafilters are the least complex hyper-real ^-ultra-
filters. In particular, every hyper-real z-ultrafilter on N is real-
decomposable. More generally, if X is realcompact, then the
structure of a real-decomposable z-ultrafilter is very closely related
to a free ultrafilter on the set of points associated with the z-
ultrafilters into which it is decomposed. Such a relationship is most
explicit when these points themselves are zero-sets as already
observed in the case of R. The following characterization of de-
composable z-ultrafilters extends this line of thought.

THEOREM 5. A point p e βX\υX corresponds to a decomposable
z-ultrafilter if and only if p is the βX-closure of a countably infinite
set D that is C-embedded in D U oX. It is associated with a real-
decomposable z-ultrafilter if and only if D can be chosen in υX.

Proof. If Ap is decomposable into the filter Adί for i e N then
{dii ίeN} is the desired set D. Note that it is C-embedded in D U oX
since each d<ecl^ Wt for some skelton (,yY] {W%\ i eN}). Moreover,
if Ap is real-decomposable D C υX.

Conversely, suppose p e c\βx D where D — {dt\ i e N) is a C-
embedded copy of N in D U υX. Pick fe C(D U υX) such that f(dt) - i
for each ieN and define W, = u l n / 1 ΐ - 1/3, i + 1/3]. Now let
^//" be the ultrafilter on N consisting of the sets Nz where ZeAp

and Nz = {i: Z Γ[Wt Φ 0}. Then Ap is decomposable in terms of the
skelton (^ {Wt: i e N}) and the z-ultrafilers Adκ

PROPOSITION 6. // %* is a real-decomposable and f e C(X) then
f[Z] is countable for some Ze J".

Proof, If %" is decomposable into t h e real z-ultrafilters ^ for

ieN using t h e skelton (,yl^ {Wt: i eN}), then for each ieN t h e r e
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is a Z < e ^ on which / is constant. Thus, /[UU^vC^ Π Wt)] is
countable and UieN (Zt Π Wt) e %.

An example of a hyper-decomposable 2-ultrafilter is now at hand.
For each i e N let Wi Q R be the union of the closed intervals of
the form [2n+i + 2(i - 1), 2n+i + 2(i - 1) + 1] where n e N. Then
{TΓiiieiV} is a mutually disjoint family of zero-sets in R for which
there is an feC(R) with f(χ) = i if xeWt. Moreover, for each
ieN there is a 2-ultrafilter ^ containing ΫF; and consisting only of
sets with infinite measure. (To obtain such a z-ultrafilter let ^ e
C(R) map each interval [2n+1 + 2(< - 1), 2%+ί + 2(i - 1) + 1] of W,
linearly onto the interval [n, n + 1]. Then for each zero-set Z of
R, gT[Z] Π TFi is a zero-set. Thus, the existence of %*t above follows
from the existence of a £-ultrafilter on R containing only sets of
infinite measure [3, 6U.5].) Now pick <yir to be a free ultrafilter
on N and % be the hyper-real ^-ultrafilter on R with base
{\JieN{Zir\Wz):Zie%'i and Ne^K}. Then 5£ is decomposable but
each of its members has infinite measure. Thus, the function
mapping each [r eR to itself has uncontable range on each zero-set
in % so, by Proposition 6, 3? is not real-decomposable.

The preceding example also shows that a hyper-real ^-ultrafilter
may be decomposed in terms of one of its skeltons but not in terms
of another. Consider the skelton of the above ^-ultrafilter obtained
via the proof of Theorem 2 with the function /(r) = | r | . Any
hyper-real ^-ultrafilter decomposable in terms of this skelton must
be real-decomposable since each zero-set in the skelton is compact.

Therefore, to demonstrate the existence of a nondecomposable
^-ultrafilter it is not sufficient to exhibit a hyper-real ^-ultrafilter
that is not decomposable in terms of one of its skeltons. However,
the existence of nondecomposable z-ultrafilters follows from Theorem
5, and the existence of remote points that are also P-points in
βX\υX. Indeed it is shown in [6] that there is a dense set of 2C

points in βR\R that are both remote points of βR and P-points of
βR\R. It therefore follows from Theorem 5 that the z-ultrafilters
associated with these points are not decomposable. Observe that
both conditions are required since the hyper-decomposable z-ultrafilter
following Proposition 6 is associated with a remote point [7.4.40(b)]
and all the P-points in βN\N are associated with real-decomposable
^-ultrafilter s.

Thus, there are cases where nondecomposable z-ultrafilters are
abundant. On the other hand, if pX denotes the subspace of βX
consisting of υX and the points associated with real-decomposable
z-ultrafilters, then pX is pseudocompact. (If a function were un-
bounded on pX its restriction to υX would be unbounded on a C-
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embedded copy of N. This restriction therefore could not be
extended to pX by Theorem 5 which is an obvious contraction.)
Thus, by 8.3 of [7], pX\υX is dense in βX\υX. In other words,
real-decomposable 2-ultrafilters are always abundant when hyper-real
2-ultrafilters are present.

This denseness of real-decomposable z-ultrafilters together with
their relationship to the C-embedded copies of N in υX indicate that
their properties should have a strong influence on the properties of
the other z-ultrafilter s and thus on the space in general. The follow-
ing theorem is an example of this phenomenon. (If /: X-> Y then
the image of a 2-filter % of X will be the collection of zero-sets in
Y whose preimages are in

THEOREM 7. // /: X —> Y is a continuous surjection and each
point of Y is a zero-set, then the following are equivalent.

( i ) The image of each real-decomposable z-ultrafilter on X is
a fixed z-ultrafilter.

(ii) In each z-ultrafilter on X there is a zero-set on which f
is constant.

(iii) The image of each z-ultrafilter on X is a fixed z-ultrafilter.
(iv) The image of every zero-set is compact.

Proof, (i) implies (ii). Since each point of Y is a zero-set, (i)
implies that each real-decomposable £-ultrafilter contains a zero-set on
which / is constant. Suppose / is not constant on any zero-set in Ap

for some p e βX\pX. Then the image of each zero-set in Ap must be
infinite. Consequently, if {Wi'.ieN} is the collection of zero-sets in
a skelton for Ap, then a point dt can be chosen in each Wt so that
the image of the set {d^. ieN} is infinite. Let D be a C-embedded
copy of N obtained from {d^ieN} by discarding any dά such that
f(dt) =f(dj) for some i < j . Then / cannot be constant on any zero-set
in a real-decomposable 2-ultrafilter associated with a point in cl^x D.

(ii) implies (iii). If peβXand ZeAp with f[Z] = {y}, then the
image of Ap is Ay.

(iii) implies (iv). First extend / to fβ: βX-+ βY and observe,
by (iii) that Y - βY. Thus, if Z is a zero-set in X, then fβ[c\βx Z]
is a compact subset of Y. Moreover, if pec\βzZ\Z, then both Z
and f*~[fβ(p)] must be in Ap. Consequently, there is an xeZ such
that f(χ) = p{p) so f[Z] = P[d,zZ].

(iv) implies (i). Extend / to fβ: βX -> β Y = Y. Let pepX and
V = P(p) Since {y} is a zero-set in Y, f*~[{y}] is a zero-set in X.
The proof is completed by showing f*~[{y}] e Ap since this implies the
image of Ap is Ay. Suppose that ZeAp. Since f[Z] is compact, it is
closed and thus fβ*~[f[Z]] is a closed set containing Z. But p e c\βx Z
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so p e/*-[/[£]]. Consequently, y e f[Z] so ZΠf-[{y)]'Φ 0 . There-
fore, f[{j/}]6A'.

Consider now the ring C\X) consisting of those feC(X) whose
image M(f) in the residue class ring C(X)/M is real for every
maximal ideal M in C(X). The basic properties of this ring are
discussed in [1] and [5], and its relationship to the Freudenthal
compactification is investigated in [4]. The following is a list of con-
ditions appearing in either [1] or [5] that are equivalent to feC\X).

(A) Every z-ultrafilter on X has a member on which / is
constant.

(B) feC*(X) and the image of every 2-ultrafilter on X is a z~
ultrafilter.

(C) fe C*(X) and f[D] is finite for every C-embedded copy D
of N.

(D) fe C*(X) and f[Z] is closed for every zero-set Z in X.
One will observe that the equivalence of these conditions is a

direct result of Theorems 5 and 7. Moreover, condition C shows that
the ring C\X) arises as a natural restriction to the statement of
Theorem 6. Finally, Theorem 7 provides the following additional
characterization of C*(X).

COROLLARY 8. The following are equivalent.
( i ) feC\X).
(ii) M(f) is real for each maximal ideal M associated with a

real-decomposable z-ultrafilter.

Proof. This is obtained as a direct result of condition (i) and
(ii) of Theorem 7 by setting Y = R.
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