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ON THE SOLVABILITY OF BOUNDARY AND INITIAL-
BOUNDARY VALUE PROBLEMS FOR THE NAVIER-
STOKES SYSTEM IN DOMAINS WITH
NONCOMPACT BOUNDARIES

V. A. SOLONNIKOV

In the present paper the solvability of boundary value
problems for the Stokes and Navier-Stokes equations is
proved for noncompact domains with several ‘‘exits’’ to
infinity. In these problems the velocity satisfies usual
boundary conditions and has a bounded Dirichlet integral
and the pressure has prescribed limiting values at infinity
in some ‘‘exits’’.

1. Preface. It was shown by J. Heywood [1] that solutions of
the Navier-Stokes system (even linearized) are not uniquely deter-
mined by the usual boundary and initial conditions in some domains
with noncompact boundaries. It is connected with the possible non-
coincidence of some spaces of divergence free vector fields defined
in these domains. These spaces and linear sets of vector fields
generating them are introduced as follows.

Let 2 be a domain in R", n = 2, 3, &5°(2) — the set of all infinitely
differentiable functions with compact supports contained in 2, _#~(2)—
the set of all divergence-free vector fields % e&°(R2) (i.e., vector
ﬁelds satisfying the equation V-4 = 3,7, (ou,/ox,) = 0), and ﬁ’ (2) and
' (2) — the completions of %(2) in the norms 1% lwiery = V' (y w)®
and ||%||. oy = V'[%, 4] respectively, where (&, 9)® = Sg(u B+, v,)de,
[, 9] = u DA%, UV = D Uy Uy Uy = D7y (0U,/0%;)(00,/0;). Let
j 9] and H(Q) be completions of #~(2) in these norms and / (2),
H(.Q)—the subspaces of all divegence-free vector fields in Wz(.Q) and
i (2). Clearly, / @)> _~Z(2) and H(Q)DH(.Q) In [1] it is shown
there are domains for which the quotient spaces / @/ _~ ),
H(Q)/H(Q) are finite-dimensional, i.e., nontrivial (for instance, the
domain 2°=R’S, S={x ¢ R* x,=0, x}+x;>1} possesses this property).
A large class of such domains is found by O. Ladyzhenskaya, K.
Piletskas and the author in [2, 3]. To describe the domains 2 con-

sidered in this paper, we define a standard domain G — R* given by
the inequality

(1) 2| < 9(z,), 2.0,

where |2'| = |z,] for n = 2, |2'| = V2! + 22 for n = 3 and the function
g(t) satisfies the conditions
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(2) g®)z9>0, [g@) —9@)=Mt—1t], Vt.>0.

We impose the following requirements on 2:

(1) £is an open connected set; 2 = 2,U (U™, ®,), 2, is a bounded
domain, the ®; are unbounded and w, N w; = @ for © + j.

(2) G,cw,cG: where G, and G¢! are domains defined by
inequalities of the form (I) in a certain cartesian coordinate system
{#"}, more precisely, by inequalities

(3) [2'9] < g,(2), [29] < agy=d),

with @ > 1, and functions g, satisfying (2) and
Swg:”_l(t)dt<00 fOl‘ ’i‘-‘—“l’o..’,r’ 1§1’§m,
0
Corat = for i=r+1,m.
0

To formulate further restrictions we introduce the following
notations: w;(t) is the subdomain of w, where 0 < z{’ < ¢, wi(t) =
0,\w,(@), T,(t) is the intersection of @, with the plane (the straight line
for n = 2) 2z = t; and 2, = 2Q\U™, 0i(t). We assume:

(3) H®,) = H,) for all t = 0.

(4) Every function q(x)e€ L,(B;(t)) satisfying in the domain
B,(t) = w;(t + ¢,(t))\®;(t) the condition | gdx = 0 can be represented
in the form ¢ = F-%(x) where ie (B:z%)) (see [2], Lemma 2.5) and
1% |l2@m,0 = €ll@ll,e,00, the constant ¢ being independent of g, 4, ¢.

(5) The domain 2, with some fixed ¢, > 0 possesses the same
property.

Sometimes we shall replace (2) by

(2) G,cw,cG: where G,, G¢ are domains defined by (3) and

S:oy{”_”z“(t)dt = oo , 1 = ]_, e,
Smg;”_1+2a(t)dt < oo, i=r+1 ---,m; acl0,1].
0

The conditions (1)-(5) determine a somewhat more general class
of domains than considered in [3]. On the other hand, the condition
w, C G¢ is not satisfied for the domain £2° mentioned above. This
condition is also not satisfied for domains considered in [2], for which
®,; may contain unbounded cones (i.e., for which m = = and g,(t) =
N(E + b)), Ny, b, > 0). For such domains the conditions (2) should be
replaced by the restrictions formulated in §4 of the paper [2].

THEOREM 1. If (1)-(5) hold, then dim H(Q)/H(Q) = r —1; if the
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conditions (1), (3)-(5) and (2') with a =1 are fulfilled, then
dim f @ FQ)=r—1. In H(Q)/H®Q) and in j Q)] _F (2) there
exist r — 1 linearly independent vector fields d,(x) which are infinitely
differentiable in each ®;, which vanish in a meighborhood of 902 N
ow;, for each w;, and for |x| > 1, zcw;, j=1r +1, -+, m, and which
satisfy the imequalities

G
= o)’
This theorem can be proved in the same way as Theorem 4.2 [2] or
Theorem 4 [3].

If H(Q) =+ H(Q), the boundary value problem for stationary
Navier-Stokes system must contain, beyond the usual boundary con-
ditions at 02 and at infinity, some additional conditions. One can
prescribe the flows of the velocity vector across sections of some ®;.
Boundary value problems of this type are studied in the papers [1, 3, 4].
On the other hand, in [1] another form of additional condition is
found. It is shown that the assignment of the difference of limiting
values of the pressure for |x|— o, 2€w, 7 =1, 2 also determines

uniquely the solution of the boundary value problem for the Stokes
system in the domain 2°.

C, 9d,(x) |
() @l = =0 |5,

rew;, j=1 -, 7

2. Preliminaries. We begin with the construction of an auxiliary
divergence-free vector field in the domain (1) which is necessary for
subsequent considerations and which can be used also for the con-

struction of a basis in H(Q)/H(2) and / @)/ _F@). At first let
n = 8 and define the vector

(5) a(z) =V x L(@b(z)) = F{(z) x bz ,

where b = @2r)(—2.|2" | 2|22 0), 2" = (2, 2,), and {(2) e 7(Q) is
a function which equals one in a neighbourhood of the surface
I':|2'| = g(z,) and vanishes for small |2’|. Consequently, @ Z*(®),
d = 0 near I and for small |7'|,7-d = 0 and

' = b.dl = L 2 A
Sa(t)aadz Sau(t)Cb dl 21 Swm( |2 |2d |[2"|? dzz> 1

(o(t) is the intersection of G with the plane z, = £). In the case n =
2 the vector

oy 1 38k ()
(6) i) = 5(- 52, Z8),

where e @=(G@), = 0 for small |2,], L = +1 near I'*:z, = +g(z,),
possesses all these properties.
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It is convenient to choose the function { in a special way. For
n = 3 take

- (%]

(7) t@ = w(smGH)

where o, € E=(R"), () =0 for t < 0,4 () =1 for ¢t >1, p(t) =t
for t > d > 0, p(t) = p, > 0 for t < (d/2), p(t) = ¢, p'(¢) = 0, oo, d, € are
positive constants, and 4(z) is a regularized distance from z to I’
(see [5], Ch. VI). In the case n = 2, take { = ¢ for 2z, >0, and £ =
—{ for 2z, < 0. It is easy to see that {(z) =0 for || < o, 0. > O,
provided p, is sufficiently small.

LEMMA 1. For the vector d defined by (5) or (6) the inequalities

C, o0a(z) C,

(%) @@= ey Toa | = 7

v

hold.

Proof. To be definite consider the three-dimensional case. The
support of @ is contained in the domain 4(z) < p(|2'|) < €”°4(2). As
the function ¢ satisfies the Lipshitz condition (2), the regularized
distance 4 is a quantity of the same order as the distance from z to
00(z,), i.e., C,4(z) =< g(z,) — |7'| = Cyd(?), C,, C; > 0. Thus for z€suppa
we have ¢/°4(z) = p(|7’[) = (Cod(z) + [#')(C;+ 1) = (C, + 1)7'g(z;). In
particular, [2'| = p(|#']) = (C, + 1)7'g(2;) for [2'|=d. For 2’| =d,
zesuppa the inequalities g¢(2;) =< (9(z:;) — [7']) + || < Cyd(2) +
d < Cp(7'|) +d = Cp(d) +d hold and consequently [2'|=p, =
09 (#:)(Coo(d) +d)™*.  So for all zesuppd we have e"4(z) >
e(|2') = (C; + 1)7'g (2,), |2'| = Cig(2,). Differentiating { and taking
into account the fact that | =°4(z)| < C,47'*+(z), see [5], we obtain
| 2 (z)] < Cig~'*'(2;). The same inequality holds for the function 4
in the case » = 2. The estimates (8) follow from these inequalities.
The lemma is proved.

Let 2 satisfy the conditions (I)-(5). Consider the operator which

assigns the function ¢ = V-4 to every vector e (2). Denote by
A () the range of this operator and define in _#Z(2) the norm

lgll.ew = _Inf |9l = [| Phllzwo ;
ve D (R)
7u=q

here P is a projection on the space i (2O H(Q). Clearly, #(2)C
L(2). Let _#Z*(2) be the dual space to Z(2) with respect to the

bilinear form (p, q) = Sgpqu, so that
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| pads
ol = 2

eer@ ||q|] s

We investigate below the behavior of p(x)e #Z*(2) for |z| — o
and show that in some sense p(z) —0 when |z]|— o, 2e®, 7 =
1, -, 7

Let @ be one of the w, t=1, ---, m, v =0w\3(0) (v is the
“lateral surface” of ), and &°(Q2)—the set of all infinitely differen-

tiable functions vanishing near v and for [2| = 0. Define .907(0)) as
the closure of &°(2) in the norm < (w) and .# (w) as the closure of
&°(2) in the norm ||| f]||, corresponding to the scalar product

(9) Sy W = | F@n@dz + | FOHOG @t

where F(t) = g f(z)dz provided rg‘”“(t)dt < oo and F(t) =
0

— f (?)dz in the opposite case. The formula (9) has a sense

for a]l £ he #Z (w), F(t) being the primitive function for S fdz'

Bt
vanishing at infinity (or, more exactly, having the finite integral

S“Fz(t)g—%—l(t)dt) in the case S“’g—%—l(t)dt = co.
0 0

THEOREM 2. If iiej,(w), then f = V-ie _# (w) and
(10) 1Mo = Cill||ow -

For any function fe _#Z (o) there exists a vector % € e@:(a)) such that
=V and

(11) N%lzw = Celll flla -
The constants C, and C, do not depend on % and f.
Proof. Let 4e& (@), f =V-u. Clearly,
(12) Ny = Csll 8|z -
It follows from the relations
S fR)dz = S u,dz’
) (t) 2(¢t) :
S fR)dz = S u,dz’ — S u,dz’
w(t) 2(t) 2(0)

that
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S:g‘”" @) F(8)dt < 2 g:g"‘“(t)dtls u,,dz'r

), w7 | = Gl ,

which with (12) proves the estimate (10).

To prove the second part of the theorem, take an arbitrary
function f € &°(w) and define the vector w(2) = F(z,)d(z), where d(z)
is given by (5) or (6) for z€ G, @ = 0 for ze w\G and F is the same
as in (9). In virtue of (8)

6(I F(2,)|97"(2,) + 01a97""(2,) I Sz(,,,)f dz' l ) ,

so that

LD ELAS

Now consider the function h = f —V-% = f — a,(?) ; fdz'. Itis
(2q)
easy to see that S hdz' = 0 and hence S hdz = 0 for all ¢ >0

(we recall that B(t) = @(t + g®)\@(@). Split ® into layers B; by
planes (straight lines) 2z, = t; where t; =1¢;_, + g(¢;_,), t, = 0. In virtue
of the property 4) of .Q in every B; one can represent k in the form
h =V -9 where 'v"’ € =@(B,) and ||99]|5;, =C, || h|1ye),; Consequently

the vector ¥ € & (w) which equals 9'(z) for z € B; satisfies the equation
V-9 =h and

1915w = 2 1197Ew, = G 3 Ibllye) = Cillblhw = Cull fllkw -

Clearly, the vector @ + ¥ = % is that which is sought. The theorem
is proved.

REMARK 1. For g(t) = M¢ + b), b > 0, we have

o
0

so that . Z(®) = L,().

|, 79| = Cliflkw,

REMARK 2. If S g~ (t)dt < oo, then wej(w) and hence % e
T (w).

Now define the space .#Z(2) as the completion of &5°(2) in the
norm ||| f||l¢ which corresponds to the scalar product

i=1 Jo

(19) S = | shds + 5o F@HWMa,
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where F(t) = )f dx fort =1, .-+, r, and F, is a primitive function
w;(t
for Sx ( )fdz’ vanishing at infinity if i = r + 1, -, m.
it
THEOREM 3. If e D(Q), then f =V -lie A#(2) and
(14) e = Cll#@|2 -

For every function f e A (2) one can find a vector ieT (2) such
that f =V-4 and

(15) %]lz@ = Cilll fllle -

Proof. The first statement is a consequence of the corresponding
statement of Theorem 2. We now prove the second part of the
theorem. If foe A (2), then f L,,ie./%~ (w,) and by Theorem 2 there
exist vectors 4 € =, (w,) in domains w,, i = r + 1, - -+, m, such that
S=r-4? and [|4?||swy = Gl f|ll.,, Let #eC(2) be a function which
is equal to 1 in £, and to zero in 2\2, (2, is just the same as in
condiotion (5), SI) and 0 < ¢ < 1. The vectors 3" = %' (1 — ) belong
to D (w,), satisfy the equation V-9 = f(1 — p) — u'“-Fpt and the
inequality |97 (|swy = G||4? ||20p = CGll| fllo,, Further, let ke
L,(2,) be a function which is equal to zero in 2, to w?”-F¢ in w,,
t=2r+1,-:--,m and to Apu(l — ) in w,7=1, ---, r, the constant
h, being chosen in such a way that ) h(x)dx = —Sg furdx (since >
1, h, is determined uniquelly). " o

It is clear that

1y S CIL oy + 35 18w ) < Colll £l -

By the condition (5) §1, there exists a vector W e T (2;,) such that
V-w=frr+h and ||[®|lsw,y = Cllfllzyay + 1Ally00,) = Clll Fllle-
Setting @ = 0 in 2\2,, we obtain an element of T Q).

Finally we find in w, 72 =1, ---, 7, vectors “ ¢ T (w,) such that
forzew, V-9 = f(1 — ) — hand [|9”||swy = Gl A — £9) — Rlllo, =
Golll fllle- Their existence is a consequence of Theorem 2 and Remark
2. The vector % =% + ¥ e.@o(.Q), where ¥ = 9 forxew,and ¥ = 0
for x € Q,, satisfies the equation /-% = f and the inequality (15). The
theorem is proved.

COROLLARY. .#Z(Q) = #(Q) and the norms || f|l_ca and ||| f]lle
are equivalent.

THEOREM 4. Any function p(x) € #Z*(2) can be represented in



450 V. A. SOLONNIKOV

the form
(l)

16) @) = f@) +zxw>§ e W FC0) I OB

=0 70

where fe _#Z(2) = A (2) and X, is the characteristic function of ®,.
The inequality el fllle = |2l sy = Gl fllle holds with constants
C, C, independent on p.

Proof. By the Riesz theorem, any linear functional of € _Z(Q)
can be represented in the form (13) with fe #Z(2). If he&(2),
then, changing the orders of integration in the right-hand side of

(13), we obtain the formula {f, h), = Sgphdx where p is the function
(16). Hence follows the statement of the theorem.

COROLLARY. Amny function p(x) e # *(2) tends to zero as |x|—
o, LEW, 1 =1, -, 7.
Indeed, for rew, 1 < 7,

(@t dit

p(x) = f(2) + S 0 Fut ey

where f(x) € Ly(w,) and

>0 .

2 dt (= di
IS 1) F)—— n+1(t) = S S)F’? gt Sz,‘f’ grt 2P oo
THEOREM 5. Any linear functional U(P) of ¢e@°f (2) vanishing
for e H(2) can be represented in a wnique way in the form

1@ = | p7-pdo,

where pe #Z*(2), and the norm of the functional is equivalent to
|21 reor-

Proof. By the Riesz theorem, there exists a vector @ eé ) e
H(Q) such that (@) = [, ] = [, P?]. The right-hand side is a linear
bounded functional of h =V7-p e _#Z(2) and from this fact follows
the statement of theorem.

An analoguous theory can be developed for weighted spaces.
We formulate here the corresponding definitions and results.

Let .92(.9) and H,(2) be completions of the sets of vectors C*(2)
and _#%~(2) in the norm ||%||s o which is generated by the scalar
product
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j=1

[4, ¥], = S U, V,dx + Z S U1 + g3z8 (x)]*dx

H () is the subspace of divergence-free vectors from .@:(Q), A (2)
is the set of functions ¢ = V-4, ﬁe;@i(ﬂ) with the norm ||q||, 2y =
inf, 7., 119 ||2aw), 45 (2) is the space dual to _Z,(2) with respect to
the bilinear form pqdac The following propositions are valid.

(a) If the domam 2 satisfies (1), (2’), (3)-(5), then dlmHa(.Q)/H(.Q)
r — 1 and there exists a basis {@, (), - - -, @,_,(x)} in H,/H,, the vectors
d, being linearly independent and satisfying the inequalities (4) for
2] > 1.

(b) The space _Z(R2) consists of functions which can be approx-
imated by functions from Z5*(2) in the norm ||| f||l.,e0:

17 1s = {, 1 1de + 5, {1718 + e @)lrda
+ Z Swg‘”—ma(t)dt LJ(” fd ‘2

+ 3 So gt () di Sw mfdx' ,

j=r+1

and this norm is equivalent to the norm || f||_,q0-
(¢) Any funection from _~#.*(2) can be represented in the form

m z;j)(z) dt
F(t)——— E ZSO Fj(t)m ,

(J) n+1 2a(t)

18) p@) =@+ 3 0@)|

where f and F'; are functions with finite norms

(g |/ Pl + ZS Sirgn g:?:”’@))]«)m’ <S:° :;’i@zadtyz

(d) * Any linear functional of @ e@l(.@) vanishing for e H,(Q)
can be represented in a unique way in the form (17) with
P € _AHK2).

All these propositions can be proved in the same way as were
Theorems 1-5.

Let » = 3 and let 2 satisfy the conditions (1), (2"), (3)-(5) with
@ = 1. Define the space N(2) as the range of the operator /-4, u €

5(2), and set ||q|ly@ = inf, .3, ”mlwg(a)-
Denote by N*(2) its dual space with the norm

Hmwm=mf§fW4

e ||q ”N(m
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THEOREM 6. (Q) C Wi(Q), N(2) D _#(Q), and N*(2) C_#*(%).

Proof. Let ﬁe.@o(ﬂ) Since G;Cw,CG}, we have [|%|[,c;un <
g3t 1%l Sz [|%alligwy = C S |4, ]g,(z"’(w))dw and consequently

18 lter < Callllbymr i€, F(@)CWi(Q). Thus, _#(2)C N(Q) and
Q) > N*(Q).

3. Stationary problems. Consider in a domain £ satisfying
conditions (1)-(5) the boundary value problem

19) ~VF+Ip=F, V5=0, Bla=0, B, =0
with additional conditions

(20) pi—p'r:Bi’ ?:=1;"',’r—1’

where p; = lim,,.. p(&). The constant p, can be considered as an
arbitrary constant in the definition of the function o(x).

Now we give a generalized formulation of the problem (19), (20).
If %, p is its classical solution, then for any e HQ) we have

-

@1) Sg‘f-q')’dx=s 3, @,dw-}-Z(S | pp-iidS — S 9% *ds)

i) -,(t)an

where 7 is the unit normal vector to Y,(t), directed exterior to £,.
Suppose that for zew,, |x| > 1, we have p(x) = ¢q(x) + p; where ge
A*(2). Then passing to the limit in (21) as ¢t — « (at least along
a certain sequence), we obtain

| 5.000 + S0, | posias = | F-pda.
2 i=1 55 2

Since >;_ IS 90 -71dS = 0 (it follows from Theorem 3 of [3] that
P-ndS = 0 for j=r+1, , m, P e H(Q)), the relation

Ea

So,| #ids =5 o, - )| #7ds
= I; i=1 z;
holds. These arguments give us the motivation for the following
definition.

A weak solution of the problem (19), (20) is a vector ve HR)
which satisfies for all @ e H(2) the integral identity

22) S 3, P.do + 56| pnidS — | F-pdo=0.
2 J=1 z; 2
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THEOREM 7. Let L f-o.dz be a linear functional of @'eé (2),

ie., for all e Q) ‘ng-é)’dx‘ < C,\|®llowe. Then the problem

19), (20) has a wunique weak solution. Moreover, there evists o
unique, modulo a constant summand, function p(x)e L,...(2) satis-

fying for all Pe a (N2 c 2, 2 compact) the relation

(23) Sg'ﬁxw}ixdx = SQ, Fopdn + SQ,pV-é'de .

Proof. The first statement follows from the Riesz theorem on
the general form of a functional in a Hilbert space (see [6], Ch. I,
§1). To prove the second statement note that for any @ e H(Q2,) =
H(2) (2, is a bounded subdomain of 2 with a Lipshitzean boundary)

the identity (22) takes the form Q“@}z-@’,dw = SQ f -Bdx. As is shown
in [2], for 3 € Z(Q,), we then have '

S B, 3.dx — g f-Pda = g pV-Pdx , for some p, € Ly(2,),
2, 24 2
and the functions p, and p, corresponding to two intersecting domains

2, and 2, differ from each other by a constant. Therefore it is
possible to define in £ a function p € L, ,..(2) satisfying (23). ]

Now let us show that as |z| — «, x€®,, © = r, the function p(x)
tends to a constant and that (20) is satisfied. The expression

1@ = | 5.0 + 3 6,]_p1ds | -pio
i= i

is a linear functional of p ¢ T (£2) vanishing for @ ¢ H(2), so by virtue
of Theorem 6

r—1 —
@ | 5-5.d0+ Sef pias - Frgde = o7-pdo,
Q2 g=1 Z'j 2 2

where qe #Z*(2) and $ is an arbitrary element of T (2). The
sections J; of w; in (22) may be chosen arbitrarily but in (24) they
should be fixed; the function ¢ depends on ¥;. Let 3; = 3;(0) and
take in (24) e F(2') where Q' Cw;, j<r 2 N3, =@. Then in
virtue of (23) we have

(25) |, @ 3. = F-prdn = | p7-gdw = | or-pds

and consequently in w;, p = q¢ + p;, p; = const. Analogous arguments
show that in 2, Uw,, p = ¢q + ..
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Now let 2'c 2 be a bounded domain which is divided by the
surface X; into two subdomains, 2, and 2,C ;. In this case we
have, instead of (25),

|7 3ds + ;| pitas = | o7-pdo=| -y e
b J

2

+, @ —wor-pde = | pr-gds + (o, — p) | p-7ds .
25 2! 55

Consequently, B, = p; — », and we have justified the above definition
of weak solution of the problem (19), (20).
Consider now the nonlinear problem

VB + @+ Vp=f, V-5=0,

(26) . . v
’Ulaa=0,v|;z!=w=0, py‘_pr:lgj’ .7=17°"i7'—'1y

in a domain 2 c R? satisfying the conditions (1)-(5). Let %(Q) be
the linear set of vector fields @ = >iZiN;@; + 7j(x) where N\;€R', 7)€
S0"(2) and the d,(x) are vectors forxiling a basis in H(Q)/H(2) and
satisfying (4). This set is dense in H(Q).

Denote by &5(2z) the set of infinitely differentiable vectors
defined in the domain 2, and vanishing near the surface S; =
02:\Ui-: 33 (R), by ,@OR(.QR) the completion of &5(2;) in the norm of
g (‘QOR)’ and by H'(2;) the set of all divergence-free vectors belonging
to 2:(92).

Define a weak solution of (26) to be a vector ¥ € H(Q) satisfying
for all ?,569%(9) the integral identity

@7) Sgﬁ,-gﬁxdm - Sg?‘;’-(T;-V)édx - ng-q’idx ~3 8 L 3-ndS
=1 j
(the convergence of the integral SDE-(TJ-V)édx with e H(Q), §e
S (2) follows from the estimates (4)).
THEOREM 8. Suppose that the domain Q2 C R® satisfies the con-

ditions (1)-(5), g:(t)ime —> 0 for ¢ =1, -+, 7, f satisfies the conditions
of Theorem T, and that for all @ e H'(2z),

|, 7-7dz| < CHIB 2 0
R

(C% does mot depvend on R or P). Then problem (26) has at least one
weak solution.

Proof. Consider in 2, an auxiliary problem of finding a vector
v® e H'(2,) which satisfies the integral identity
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|, 5.0 = | 3@ ppae + 25| @mEnas

2p 2p 2 =)z

(28) ) -

- S Fgde — S S @-idS
2r j=1 z;

for all @ € H'(2;) (we suppose that ¥;c 2,).
Taking @ = %® in (28) it is easy to show that for any solution
of this problem the estimate

(29) 15%l5000 = C; + C5, 1851

holds. Therefore the existence of a solution may be derived from
the Leray-Schauder theorem in the same way as in [6], Ch. V, §1.
Moreover, it follows from (29) that there exists a sequence
R, —  such that: (1) the sequence VEe = 0v™/ox, for x € 24, VEe =0
for x € 2\Q2,, converges weakly in L,(2; to 0v/ox,, Zv’e.@z(!?), 2) the
sequence ¥* converges in L,(2) to ¥ for any fixed M. Now let
R, — o and pass to the limit in (28). Clearly, for ® ¢ _#~(2), this
passage leads us to (27). The same is true for @ = d;, since

S (6Rk-%)(5Rk-aj)dS| §Clg;2(RK)S |37 *d,S
f,;(Rk)

25 (Rg)
< Cll 5% |12 10,y 9™ (B — 0

and, for R, > M,

S VFE. Bk )G — S 5}-(5'17)6;“193]
'QRk 2

80) < | Sgywm (@%-F) — B-(5-7)]3,- do (

+ca(z

g=1 Sa)j(Rk)\wj(M)

5% 52 (@) + D,
J

|, lorgreds) .
=1Joj\e;(M)

The second term in the right-hand side does not exceed
C.(35 590 07O 15 [Lomy + 0711515 cr0) 5
=1 t>M

consequently, it can be made less than any fixed ¢ > 0 by an appro-
priate choice of the number M > 1. After that we can make the
first term less than ¢ by taking R, large enough. This shows that

S BRe (5% 1) e ——HS B-(3-7)dde .

2Ry, Ry — o0 2
Hence, ¥(x) satisfies (27) for any @ =7 + >3; \,0; e 7).

The justification of the above definition of a weak solution can
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not be carried out in the same way as for the linear problem, since
the functional

@) 1@ = 3,940 + 56, | #7as - | 5@ rpae — | Fopas,

i

with 7 e H(Q2), may not be defined for all q’)’e‘@o(.@) (clearly, it is
continuous if e H(Q) N L,(2)). We carry out the justification with
some additional restrictions on 2.

THEOREM 9. Let Swg; @)dt < o for 1 =1, ---,r. Then there
0
exists @ unique function g€ _#5(2) such that U(P) = quV -pdx  for
all @€ Z,,,(0Q).

Proof. As 9?(!2) is dense in H,,(2) under the conditions of the
theorem, it suffices to prove that I($) is a continuous functional in

.9?3,2(9). This fact is evident for all terms on the right-hand side
of (31) except perhaps the integral

T3] = Sg%-(i}’-V}gb‘dw —S (B-P)@ds + zg @-")pda .

We have

|, 3@ Ppda| < CilIB I 131han
0

|, 5-@-npde| < G| 15 Faite @nam)

where

0 = G, | Ills0 T

< Cysup |13 lhsyn || 1198, zj005" 0t
< ol | 131t = GBIy -

Consequently, | .7 [8]| = Gil|V]|%@ || Plloyye and [UP)| = Col| Pz, -
O

It follows from this theorem that the pressure »(x) corresponding
to the weak solution %(x) of (26) differs from ¢(x) in every “exit” w
by a constant p; and p; — », = B;. It is seen from (18) that any
function qe_#%(2) in a certain sense tends to zero when |[x| — o,
so that p; = lim;,|_.. p(x).

ze(l)j
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4. Non-stationary problems. If the domain 2 satisfies the
conditions (1), (2"), (8)-(6) with a =1, it is possible to prove the
solvability of initial-boundary value problems for the non-stationary
Navier-Stokes system with additional conditions of the form (20). We
restrict overselves to consideration of the linear problem

% —VB+Vp=f(x,t), V=0 el te(0, T)),
(32) 6]t=0=60(w)1 6139':0; allxl—mzoy
() —p(t) =B, +=1,--+,r—1

where p,(t) = lim ;o .co, D, ). Denote by _£'(Qr), Q@ = 2x(0, T),
the space of divergence-free vectors with a finite norm

T 1/2

[S Sg(?ﬁ B+ ?Ji)dwdt]

0
belonging to j (2) for almost all te(0, T). Define a weak solution
of (32) as a vector ¥€ _Z'(Q,) satisfying the initial condition 9|,., =
P,(x) and the integral identity

T r—1
0 j=1

(33) S:Sgwt.ry + 3, 7.)dadt = S Sg Fondedt — S S:Bj(t)dt SE 7-#dS

J

for all 7 e L,(0, T; H(Q)).

THEOREM 10. Let the domain 2 C R® satisfy (1), (27, (8)-(5) with
a =1, Then for any f € Ly Q;), B;(t) € W0, T), ¥,€ H(R) the problem
(32) has a unique weak solution.

This theorem may be proved by Galerkin’s method (see [6], Ch.
VI, §6). The proof is based on two estimates for Galerkin approxima-
tions. The first estimate is the energy inequality

sup Sg| 3@, 7)[dw + SS{J 3. ['dad

ze (0,T)
= c| m@rds + | 7@, dideds + 5 ['16,1002),

which can be easily obtained from (33) after the substitution 7(x, t) =
¥, t) for 0=t =<7,7=0 for t<t=<7T. Taking in (83) 7 =%,
and making the transformation

S:ﬁf(t)dt Lia,-fnds - — SOT—d%dt Ljii-%ds

+ 6T) | 90w, T)-idS — 80) | 7,7,

we obtain an estimate for Sngﬁfdxdt in terms of the data. As the
0
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Galerkin approximations satisfy an equality of the form (33), both
estimates are valid for them. The proof of the existence of a weak
solution is quite standard and may be omitted. Now, taking in (33)
7w, t) = E)P(x), P € H(Q), we see that for almost all te (0, T),

- r—1
1@ =\ 07 + 5.5, — F-p)o + S 8,0 | p-7ds =0,
i=1 j

hence, for Pe W;(Q), Up) = Lq(x, tyW-pdx and qe N*(Q)c M*(Q).
From the estimate

- r—1
gl = C(11B 10 + 192 lior + 11 Fler + = 18:0) )

we deduce that g(zx, t) € L,(0, T; N*(Q)) C L,(0, T; M3#(2)) and therefore
in a certain sense ¢ — 0, as |#| — . Repeating the arguments of
§3, it is easy to prove that in w,;, j=1, ---, »r — 1,

o, 1) = qx, 1) + p;(t) , 2;t) — () = B;i(t) .

Thus, we see that tThe presence in the integral identity (33) of
an additional term 37! S ,Bj(t)dtgz 7-7ndS does not lead to any essential
o )

change in the well-known proof of the solvability of the linear non-
stationary problem. The same is true for the non-linear problem
with additional conditions of the type (20). As in [6], it is possible
to prove that the non-linear problem with these additional conditions
is solvable locally with respect to ¢.
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