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TENSOR PRODUCTS OF BANACH BUNDLES

J. W. KiTCHEN AND D. A. ROBBINS

This paper is concerned with projective and inductive
tensor products of bundles of Banach spaces. Let =: E—> S
and p: F—> T be bundles of Banach spaces over the locally
compact Hausdorff spaces S and 7, with fibers {E,;:scS}
and {F,:te T}, respectively. Let I'((z) and [',(0) be their
spaces of sections which disappear at infinity. We show the

existence of a bundle = ®p: E’@F — S X T whose fibers are
{E.® E:(s,t)eS x T}; if o€ y(x) and ceIy(p), then their
pointwise tensor ¢ (@ 7 defined by (¢ ® 7)(s, t) =a(s) ® z(t) is
a section of the bundle n® o: E@AF—»SAX T. Further, we
show the exisjence of a bundle z@p: E’@ F->SxT whosAe
fibers are {F. @Ain (s,t)e S X T}, and demonstrate that Iy(x) ®
Io(p) and I'y(x ®p) are isometrically isomorphic.

The present paper continues the study begun in [5] of the
relationships between Banach modules and bundles of Banach spaces.
Specifically, it concerns tensor produects of such objects.

Given two bundles of Banach spaces n: £E—S and p: F— T
having locally compact base spaces we show that there is a bundle
of Banach spaces 0: G — S x T having the following properties:

(1) for each pair (s,t) in S x T the stalk G,, = 67'({(s, t)}) is
E,® F,, where, as in [5], E, = z~'({s}) and F, = o' {th;

(2) given two sections gel'(n) and 7€ l'(p) their pointwise
tensor product o (® ¢ defined by

(6 @7)(s, 1) = a(s) Q(t)

is a section of the bundle §: G — S x T. (Here again the reader is
referred to [5] for notation and terminology.)

The bundle §: G — S x T is called the projective temsor product
of the given bundles and is denoted by 7® p: EQ F— S x T.

Tensor products of Banach bundles relate to tensor products of
Banach modules in the following fashion. Suppose that A and B
are commutative Banach algebras with maximal ideals spaces S and
T. Suppose further that (M, A) and (NN, B) are Banach modules
which satisfy the (KR) condition. Then

(1) the Banach module (M ® N, A® B) also satisfies the (KR)
condition;

(2) the canonical bundle associated with (M ® N, AR B) is
(bundle isomorphic to) the tensor product of the canonical bundles
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of the given modules;
(8) for any elements xc M and y< N the Gelfand transform
of x Qv is the pointwise tensor product of the transforms % and 4.

The order in which these results are developed is possibly not
what one might expect. In the first section a study is begun of the
canonical bundle and Gelfand representation of the tensor product
module (M ® N, A®B). In the the second section, the tensor
product bundle is defined essentially to be the canonical bundle of
(") ® I'(0), C«(S) ® C(T)). Afterwards, the results of section one
are reinterpreted in terms of tensor products of bundles. Section
3 treats further properties of projective tensor products, while the
fourth and final section deals with inductive tensor products. Given
two bundles of Banach spaces n: K — S and p: ¥ — T with locally

compact base spaces, their inductive tensor product 7 ® o: E@F -
Sx T is con§tructed and itAis shown that there is a natural isomor-

phism I'y(7) ® I'y(o) = I'(w & o).

1. Tensor products of Banach modules and their Gelfand
representations. In this section we shall begin to study the Gelfand
representation of a tensor product of Banach modules. We prove
first that the (KR) condition is preserved under the formation of
tensor products.

Suppose (M, A) is a Banach module, where A is a commutative
Banach algebra with maximal ideal space S. If seS, we denote by
I, the maximal ideal associated with s and by J, the closed linear
span of the set {ax:acl, x € M}. As in[5], we also denote by (M*),
the set of all functionals F' in M* for which the identity

F(ax) = a(s)F(x)

holds for all ac A and xe M. The module (M, A) is said to satisfy
the (KR) condition if for each seS, (J,)", the annihilator of J, in
M*, is equal to (M*),. Since the inclusion (M*), C (J,)* always holds,
the (KR) condition is equivalent to the inclusions (J,)' < (M*), for
all seS.

PROPOSITION 1.1. Let A and B be commutative Banach algebras
with maximal idal spaces S and T respectively. ILf (M, A) and (N, B)
are Banach modules which satisfy the (KR) condition, then the tensor
product module (M & N, AQ B) also satisfies the (KR) condition.

Proof. Recall that the maximal ideal space of A@B can be
identified with S x T in such a way that



TENSOR PRODUCTS OF BANACH BUNDLES 153

(@ ®b)(s, t) = @(s)b(t)

for all ac A,beB,scS, and teT. Recall also that the way in which
M@ N is a module over A Q B is characterized by the identity:

(@ @by = (ax) Q (by) ,

which holds for all ac A,be B, x€ M, and y € N.
Let (s,t)eS x T be arbitrary. We denote by I, the maximal
ideal in A@B corresponding to (s,t) and by J,, the closed linear

span of {¢z:cel,, z¢ M & N}. We must show that (J,,)* c((M® N)*)g,.
Suppose, then, that F e (J,,)*. Because of the linearity and continuity
of F' it suffices to show that

Fla®b)(xX®y) = (a@b)(s, )Flx Q y)
= ()b Fxz ® y)

for all ac A, be B, x€ M, and ye N.
We let R, be the element of Hom(M, N*) associated with F, that
is,
Flx ®@vy) = <y, Bs(x)) ,

for all xe M and yeN. Similarly, we let R7 be the element of
Hom(N, M*) associated with F, that isﬁ, FlxQy) = {z, R:(y)y. If
bel, and ac A, then (a ®b)(s, t) = a(s)b(t) = 0, so (a®b)el,, and
thus

by, Brlax)) = Flax @by) = F(a ®b)(x ® y)) = 0

for all (x, y)e M x N. Thus, Ry(ax)c (J,)* = (N*), for all ac A and
xc M. Hence for arbitrary ac A,be B, x€ M, ye N we have

Flax ®by) = by, Ry(ax)) = b(t)(y, Ry(ax))
=b)Flar R y) .

Since (M, A) satisfies the (KR) condition, the module is essential,
and it then follows from (*) that

Fz®by) = bO)F&®1v)

for all xe M,be B, and y € N. Similarly, using R’ one can show that
Flaz Qy) = a(s)F(z @ y)

for all ae A, xe M, and ye€ N. Finally, we have

Fla ®b)(z®vy) = Flaz ® by) = b@t)Flaz ® v)
= abOF R y),

")
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for all ac A, be B, xc M, yc N. 1

Thus, if the modules (M, A) and (N, B) satisfy the hypotheses
of Proposition 1.1, then we can consider the canonical bundles and
Gelfand representations for the modules (M, A), (N, B), and (M @ N,
A®B). Let us denote by m: E— S, 0: F—1T, and 0: H—-S x T
respectively the canonical bundles for these three modules. We will
show that the stalk H,, = 67*({(s, t)}) is isomorphic to the tensor
product of the stalks E, = z7'({s}) and F, = p7*({t}). In doing so, we
make use of a lemma concerning bilinear maps on quotient spaces.

LEMMA 1.2. Suppose we are given the followiug:
(1) Banach spaces X, Y, and Z;

(2) a bounded bilinear map f: X XY — Z;

(8) subsets MC X and NCY such that

flx,y) =0 for all ze€M and yeY
and
fl,y) =0 for all z¢X and yeN.

Then, if we denote by M' and N’ the closed linear spans of M
and N respectively, it follows that there exists a unique bounded
bilinear map

F (XIM') x (Y/N') — Z
such that
fo+ M,y +N) = flx, v,

for all € X and ye Y. Moreover, f has the same norm as f.
The proof is straightforward and is therefore omitted.

PROPOSITION 1.3. Suppose that the hypotheses of Proposition 1.1
are satisfied. Let m: K — S, 0: F — T, and 0: H—S X T be the ca-
nonical bundles corresponding to the modules (M, A), (N, B), and
(M ® N, A®B) respectively. For each pair (s, t) in S X T therc
exists an isometric isomorphism ¢, F, ®Ft — H,, such that

$.(2(8) ® §(B) = (x @ ¥) (s, ©)
Jor all xe M and y e N.

Proof. We define a map f: M X N— H, by setting
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f@,y) = @@y (1) .

Then f is clearly a bilinear map with norm one or less. Moreover,
for all acA,be B, xc M, and ye N we have

flawz, by) = (ax @ by)"(s, t)
= (e ®b)(x Q@ ¥) (s, t)
= (a ®b) (s, )(x QX ¥y) (s, t)
= a(s)b(t)x ® ¥) (s, 1) .

It is clear, then, that f(ax, by) = 0 if either a € I, or b€ I,. Because
(M, A) and (N, B) are essential modules, it follows that

flax, y) =0 for all acl,xe M,ye N

and
flx,by) =0 for all bel,xeM yeN.

By the previous lemma, it follows that there is a unique bilinear map
FfE x F,= (M]J,) x (N/J,) — H,,
such that || f]| = ||f]| =1 and
F@s), 40) = fl@ + Joy + J) = f@,9) = @@ 9) (s, 1),

for all xe M, ye N. By the universal mapping property of tensor
products it follows, ﬁnglly, that there is a linear map ¢: £, Q F, —
H,, such that [[¢|| = [|f]| =1 and

8(@(s) ® J(t) = F(@(s), It) = = @ 1) (s, B)

for all xe M, ye N.
We next define a map +: H, — E, ®Ft which will turn out to
be the inverse of ¢. We do this in stages. First we define a map

g: M x N— E’s® F', by setting
g(z, y) = 2(s) ® F(0) .

Clearly, g is bilinear and ||g|]| £ 1. It follows that there is a unique
linear map §: M&® N — E, ® F, such that ||§|| = ||g|| < 1 and

Jx®y) = g(=, y) = 2(s) ® F() .
In addition, the function § has the following property:
(*) g(ez) = 6(s, 1)7(2)

for all ccAQ® B and all z6e MQ® N. Because of the linearity and
continuity of §, it suffices to check (*) when ¢ is of the form a ® b
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and z is of the form x @ ¥, and that is easily done:
§((a ®b)(x ® v)) = Jlax Q dby)

= aa(s) ® by(t) = a(e)bB)E(s) ® §(®)
= (@ @b) (s, Hi® Q v) -

From (*), it follows that §(cz) = 0 whenever é(s, t) = 0, that is, ce
I,. Thus, §(z) = 0 whenever z belongs to J,;, the closed linear span
of {cz:cel,, ze MQ N}. Hence there is a unique linear map

y: H, = (MQ N)/J,,— E, & F,
such that ||| = ||§]] =1 and
(@ Q@ Y) (5, 1) = v QU + J,) = & Qy) = &(s) R 4(t) ,

for all xe M and y e N.

The rest is easy. One checks that +ro¢ and g0+ are the identity
on ES®Ft and H,, respectively. Thus, the map ¢: E8®F, — H,, is
bijective and +r is its inverse. Furthermore, since ¢ and + are both
norm decreasing, they are, in fact norm preserving. N

2. The construction of projective tensor products of bundles.
We now apply Proposition 1.3 to construct the tensor product of
Banach bundles.

THEOREM 2.1. Let n: E— S and o: F— T be bundles of Banach
spaces for which the base spaces S and T are locally compact Haus-
dorff. Then there exists a unique bundle of Banach spaces ¢: G —
S X T with the following properties:

(1) for each pair (s, t) in S X T the stalk G, = 07'({(s, t)}) is
E, @Ft, where E, = t7'({s}) and F, = p~'({t});

(2) 6:G— S X T is bundle isomorphic to the canonical bundle
for the module (I'\(x) ®F 2(0), C(S) ® C(T)); more precisely, if
0:H—S X T is the canonical bundle for the latter module then
there exists a norm preserving bundle isomorphism ¢: G — H such
that

#o(s) ® (1)) = (6 ® 1) (s, 1)

for all cel'y(w), telp),seS,teT.

(8) the temsor map Q: K X F— G, which assigns to each pair
(x, y) in E X F its tensor @y in the stalk E,f(x)®F,,(y,, 18 con-
tinuous.

Proof. We can identify the given bundle w: E— S with the
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canonical bundle the module (/'(%), C,(S)) in such a way that the
Gelfand representation of the module is simply the identity map.
(See [5], §3.) The same is true, of course, for the bundle p: 7' — T.
If we denote by ¢': H— S x T the canonical bundle for the module

('@ & T'(p), C(S) ® C(T)) ,

then for each pair (s, ¢) in S x T Proposition 1.3 assures us of the

existence of a unique isometric isomorphism ¢,.: E, X F,— H, such
that

$.(0(s) ® 7(t)) = 8,(3(s) ® E(t)) = (6 ® 7)"(s, ¥)

for all o€ '(x) and tel'|(p). If we now let G be the disjoint union
of the family of Banach spaces {Es@) F,.seS,teT}, then we have
a bijection ¢: G — H whose restrictions to stalks are the maps 4,,.
We topologize G by transplanting the topology from H to G via the
map ¢~ '. Then 6:G— S X T becomes a bundle of Banach spaces (6
being the natural surjection), ¢ becomes an isometric bundle isomor-
phism, and (2) is obviously satisfied.

Thus, if we identify G and H via ¢, then the Gelfand transform
of 0 ® 7 is simply the pointwise tensor product ¢ ® r as defined in
the introduction, that is,

(0®71) (s, 1) = 0(s) D (t) = (6@ 7)(s, 1) .

In proving continuity of the tensor map ®: K X F'— G we shall make
this identification.

Let (x, y) be an arbitrary element of £ x F. We will show that
® is continuous at (z, y). Set s =7n(x) and t = p(y) and choose
sections oe'(7) and 7el(p) such that o(s) =, (t) =y, llo]| =
llz]], and ||z]| = ||y||l. (See [5], Corollary 1.2.) Then the section
(6 ®7)" = 0@® T passes through = ® y, that is,

(0@7)s8, ) =0(6)Rl) =2R Yy .

Consider now a neighborhood of x ® »¥. We may assume that
it is of the form

W ={zeG: ||z — (6 ®7)0)] <e, 0(z) e W},

where W is a neighborhood of (s, ¢). Inside W is a neighborhood of
the form U x V, where U is a neighborhood of s and V is a neigh-
borhood of t. We then set

% =o' e B:||2" — o(@@) || <e, n(@) e U}

and
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7=y el|y — oyl <&, 0y)e V},

where ¢, = ¢/2(]|y]|+ 1) and &, = 1/2min(1, ¢/(||x|| +1)). Then % x 7"
is a neighborhood of (x, ¥). Suppose, then, that (@', y)e % x 7°
If we set 8’ = z(2') and ¢’ = p(y'), then s'e¢ U and t'e V, so that
0x' Qy') = (s', t') belongs to W. Furthermore,

Y — ey NIl + =) ||

'l =
se+lcll=1+lyll

and

2" @y" — (6 @ )0 @y
=o' QY — a(s") @)l
=y — a6 @Yl

T o) Q@Y — o(s) @ ()]
= |lo" — o(@@) Il |yl

+ o Ty — (o]
<&l + [yl + lelle, <e.

Hence #' ® ¥’ belongs to the neighborhood 77 of © ® y. This proves
continuity of the tensor map at (z, ¥). ]

The bundle 0: G— S x T will be called the projective temsor
product of the given bundles 7: E— S and po: F— T, and we will
henceforth denote it by 7 &® o B Q F— SxT. Note that if we have
two sections oe/'(w) and ze€l',(0), then, as we observed in the
previous proof, their pointwise tensor product ¢ (® z, defined by

(0®7)(s, 1) = a(s) Q) ,

is a section of the tensor product bundle. Moreover, because of the
continuity of the tensor map ®: E x F — E® F, it follows that the
pointwise tensor product of two local sections (possibly unbounded)
is a local section of the tensor product bundle.

We can now reinterpret Proposition 1.3.

THEOREM 2.2. Let A and B be commutative Banach algebras
with maximal ideal spaces S and T respectively. Suppose that (M, A)
and (N, B) are mormed modules which satisfy the (KR) condition.
Then the module (M ® N, A@B) also satisfies the (KR) condition
and the canonical bundle for this product module can be naturally
identified with the projective tensor product of the canonical bundles
of the given modules. So identified, the Gelfand transform of an
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element in M ®N of the form x @y ts simply the pointwise tensor
product of the transformations & and 7.

Note that the Gelfand representation ~: M ® N— [(x ® 0) need
not be surjective. For example, let S and 7T be infinite compact
Hausdorff spaces. Then C(S) and C(T) are (may be identified with)
spaces of sections of bundles 7: E— S and o: F— T, all of whose
stalks are C. With this identification, the sectional Gelfand re-
presentation of an element in C(S)@C(T) of the form f®g is
simply the function fge C(S x T), where (fg)(s, t) = f(s)g(t). Thus,
the range of the Gelfand representation is the proper subspace of
C(S x T) consisting of all functions expressible as the sum of series
of products fg.

Nor need the Gelfand representation ~: M ® N — I'\(x @p) be
injective, even when both ~: M — I'(x) and ": N — I",(0) are injective.
To see this, let A and B be commutative semisimple Banach algebras
with identities such that A ® B is not semisimple. (See [6].) The
sectional Gelfand representation of the module (4 &) B, AX B) is
(may be identified with) the classical Gelfand representation of A ® B,
and so the sectional Gelfand representation is not injective.

3. Further results. The first theorem in this section of the
paper is analogous to results in Gelbaum [3]. Since the proofs are
also similar, they are omitted.

THEOREM 3.1. Suppose that (M, A) and (N, B) are modules which
satisfy the hypotheses of Theorem 2.2.

(1) For all xe M and ye N the support of (x @ y)" is the
Cartesian product of the supports of T and 7.

(2) If the sets {x € M: supp Z is compact} and {y € N:suppy s
compact} are dense in M and N respectively, then the set {ze M @
N:supp 2 s compact} is dense in M® N.

If M and N are Banach modules over a commutative Banach
algebra A, then one can form their A-tensor product, M @, N, which
is defined to be the quotient space (M @ N)/K, where K is the smallest
closed subspace containing all elements of the form (ax) Yy — 2 &
(ay) (where ac A, xe M, and ye N). Given xc M and yeN, 2@,y
is defined to be the coset * ® y + K. Clearly, for all ac 4, xe M,
and ye N

(a2) @,y = 2@, (ay) ;

moreover, M@, N can be made into a Banach A-module in just one
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way so that both sides of the preceding equation are equal to
a(x @.y). (See Rieffel [7].) For such modules we have the following
analogue of Theorem 2.2.

THEOREM 3.2. Let A be a commutative Banach algebra with
maximal ideal space S. Suppose that (M, A) and (N, A) are
Banach modules which satisfy the (KR) condition and denote by
w: E— S and p: F— S their respective canonical bundles. Then the
module (M@, N, A) also satisfies the (KR) condition and its canonical
bundle can be identified with the product bundle =& p: EQ F —
S x S restricted to the diagonal of S X S. More precisely, if 6: H—
S denotes the canonical bundle of (M@, N, A), then for each s€8

there is an 1sometric isomorphism ¢,: H, — Es® F'; such that
$:((x @1 ¥)"(8)) = 2(s) ® (s)
for all xe M and y e N.

The next series of results concerns tensor products of bundles
and their sections. We begin with a variant of Tietze’s Extension
Theorem.

LEMMA 8.8 (Tietze’s Extension Theorem for Sections). Let
w: E— S be a bundle of Bamach spaces, where S is a compact Hous-
dorff space. Let K be a closed subset of S. Then every local section
0: K — E can be extended without imcrease of norm to a global section
:S—E.

Proof. Let M be the set consisting of restrictions to K of global
sections of the bundle n: E— S. If e M, and if feC(K), then o
is the restriction of some global section &, while f is the restriction
of some feC(S) (by the usual Tietze Extension Theorem). It follows
that fo is the restriction to K of the global section f&, so that
foe M. Thus, M is a C(K)-submodule of I'(z | K), where I'(z | K)
denotes the sections of the restricted bundle = | K: EN 7 '(K) — K.
Moreover, since 7: E— S is a full bundle, so is the restricted bundle,
so that M is dense in I'(x | K) by the Stone-Weierstrass theorem for
sections. (See, for example, [4].)

To show that M is actually all of I'(z | K) and to complete the
proof it suffices to prove the following: if o€ M, then there exists
a del'(n) such that ¢ =& ' K and ||&|| = ||o||]. (That M is closed
and hence all of I'(x | K) will then follow from the completeness of
the spaces I'(w | K) and I'(w).) To extend o< M appropriately we
proceed as follows: We first select any section & € I'(x) (with possibly
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larger norm than ¢) with ¢ | K = 0. For each positive integer n we
set

— A 2"
V.= {ses:a@ll < SE—llol} .
Then V, is an open neighborhood of K, and we may choose a con-
tinuous funetion f,: S — [0, 1] such that f, has the value 1 on K and
the value zero off V,. We set

f=§°_i2““f,,, and 7 = f§ .

It may then be easily verified that 7 is a global section extending
o and that ||Z(s)]| < ||o|| whenever s lies outside K. Thus, [|T]| =

llall. ]

(Compare this lemma with a weaker version in Fell [2].)

THEOREM 3.4. Suppose that w: E— S and p: F— T are bundles
of Bamnach spaces, where S and T are compact Hausdorff. Then each
section of the product bundle w ® o: B ® F— 8 x T can be uniformly
approximated by sums of sections of the form o (®t, where o€ I'(x)
and 7el(p).

Proof. Let M be the closure in F(n’@p) of finite sums of
sections of the form o @®@<r. Clearly, M is a closed subspace of
F(n@p). It is, moreover, a C(S x T)-submodule: for if we M and
heC(S x T), then ® can be approximated by sections of the form
S0, ®7, and h can be approximated by functions of the form
>ifi ® g;, where f;e€C(S) and ¢g;€C(T) for each j, and where
(f; ®g,)(s, t) = f;(s)g;(t). Hence hw can be approximated by sections
of the form

(2600 )(So@n) =5 (o0 © @,

so that hwe M. The conclusion now follows again by the bundle
version of the Stone-Weierstrass theorem. |

COROLLARY 3.5. Suppose that n: E—S and p: F—T are
bundles of Bamnach spaces, where S and T are locally compact
Hoausdorff spaces. Then every section in I'|(w ®p) can be uniformly

approximated by sums of sections of the form o (® z, where g € I'(x)
and T e 'y(0).
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Proof. It suffices to prove the theorem for compactly supported
sections in l’o(n:@p), since they are dense in 'z ® 0).

Consider, then, a section a)el’o(n'@p) which is supported on a
compact set K. We may assume that K = S’X7T’, where S’ and 71"
are compact. (We can take S’ and 7" to be the coordinate projections
of the original set K onto S and T respectively.) Let ¢ >0 be
arbitrary. By the theorem we can find sections o¢;: S — E and
7, T" — F such that

o — 20, @7 <e¢f2

on the set S'xT'. By the Tietze extension (applied to the one-point
compactifications of S and T) we may extend the o,’s and z,’s to
sections on S and T which vanish at infinity. Because of upper-
semicontinuity of the norm it follows, then, that the inequality

[[o -0, @7 <e

will hold throughout some neighborhood of S’ x T7’. By a compactness
argument, we may assume that the neighborhood is of the form
S” x T"” where S” and T” are compact. (Let V be the original
neighborhood of S x T. First fix se€S’. Each point of the compact
cross section C, = {s} x T’ has a neighborhood S x TcV, S and T
compact. It follows that C, can be covered by the interiors of a
finite number of such neighborhoods, say S, x T, S, x T, ---, S, X
T.. If we set

Ds

AS3 = Sk and Ts = ].!:J Tk 5

k

1

then S, x T, is a neighborhood of C, which is inside V. We now let
s vary over S’. The interiors of the sets S, x T, provide an open
cover of S’ X T'. Hence there are a finite number of these sets,
say S, x Ty, S,, x Ty, ---, S,, x T,,, whose interiors cover S x T’.
We now set

29

§'=US, and T"=(T,.

Then S” and 7" are compact and S’ X T'c interior of S” x T" C V.)
Since ® is zero outside S’ x T’ it follows that

2o, @7l <e

on (8" x T")\(S" x T"). Now choose continuous functions f: S — [0, 1]
and g: T— [0, 1] such that f =1 on S, f=0off S”,g=1 on T,
and g = 0 off 7. Then it follows easily that

o - (f®9) X0 @7 =llo—->3(fo)® @)l <e
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at all points of S x T. |

We conclude this section by constructing a tensor product of
bundle maps.

THEOREM 3.6. Suppose we have four Banach bundles, n,;: E, — S,,
and p;: F,— S, 1 =1,2, where S, and S, are locally compact Haus-
dorff. Suppose also that we are given two bundle maps ¢;: 7, — 0,
1 =1, 2, as tndicated in the diagram:

AN /
=N\ S
S, .
Then there exists a unique bundle map ¢, ® By T, ® Ty — 0y ® 0, as
indreated below

¢1®¢2

E1®E2 —’_’F1®F2
N\ /.
ﬂ1®7’~'2\ /P1®Pz
S, xS,

such that (6, 62)ie = By @ (8, for all (s, 8)€S, x S, (Here,
we are denoting by ¢, the restriction of the bundle map ¢ to the fiber
E, above s€8.)

Moreover, for all sections o,€l'(w,), 1 =1, 2, we have (g, ® B,) ©
(01 @ 02) = (¢1 ° 01) @ (¢2 © 02) ero(‘ol ®|02)y and ”951 ®¢2” = ”¢1” ”¢2“

Proof. A bundle map is determined locally by its action on
individual fibers, and locally the base spaces are compact. We may
thus assume without loss of generality that S, and S, are, in fact,
compact.

Rather than define our bundle map directly, we begin by defining
the map which it induces on sections. Given a section w € I'(x, ® ),

define a selection (not necessarily continuous, yet) @: S, x S, — F1®
F, by setting

W(sy, 8,) = [(¢1)31 ® (¢2)32]((0(Sl, 82)

for all (s, s;) €S, x S,. It is clear that this selection @ is bounded
by ll¢.ll |l .1l || @]l, and that the map w — @ is linear. Thus, we obtain
a bounded linear map ~ from F(7z1®7r2) to the Banach space of all
bounded selections of the bundle p, @ 0:2 By @ F,— S, x 8,. Infact,
~ maps ]“(m@n:g) into F(pl®p2), for, if w = 01®02, where o0, €
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(7)), 1=1,2, then

(s, 8;) = [(¢1)31 &® <¢2)32]<0—1(31) & 0y(s,))
= ¢,(0,(5) K 6:(0,(s,))
= ((gro0) @ (g, 0 0,))(s,, 82) -

Thus, @& = (g, 0,) ® (g,°0,) eF(pl®p2). In the general case, w is a
uniform limit of sums of such tensor products, so that & is likewise

a uniform limit of sums of tensor products, and thus is in I'(o, & 02)-

It is then easy to check that the map ~: [’ (7r1®7r2) — I (p1®p2)
is a sectional representation of Gelfand type of the module (I'(z, ® 7.),
C(S,) ® C(S,)); the universal mapping property of the Gelfand repre-
sentation [see 5] then asserts the existence and uniqueness of a bundle

map ¢, ®¢2: 711@ 7z2—>pl®pz such that
D= (3R6)00= (3 Q)

for every we I'(xm, ® w,). The rest is now easy. ]

4. Inductive tensor products. Up to this point we have con-
sidered only projective tensor products (of both modules and bundles).
In this final section we turn our attention to other cross norms,
especially the inductive one. One particularly interesting fact about
inductAive tensor products is that there is a natural isomorphism
Cy(S) ® C(T) = Cy(S x T), where S and T are locally compact Haus-
dorff spaces. In the present section we prove a substantial gen-
eralization of this result. If 7: £ — S and p: F— T are any two
bundles of Banach spaces, where S and 7T are again locally compact
Hausdorff, then we show that there is a bundle n@p: E’@F—>S x T,
which we shall call the inductive tensor product of the given bundles,
such that .

(1) the stalk above any point (s, ¢) in S x T is E3®Ft;

(2) the spaces I o(n)@)F ,(0) and Fo(ﬂ:®p) are isometrically
isomorphic. More precisely, there is a unique linear map 4: Fo(ﬂ.’)®
o) — I'y(w ® ©0) such that ¢(c ®r7) =0®7 for all oel,(7) and
T e l'(p); this map ¢ is an isometric isomorphism.

The map ¢ is (Amodulo bundle isomorphisms) the Gelfand repre-
sentation of I’O(n)®Fo(,o) as a Banach module over CO(S)®CO(T).
In this respect the situation for inductive tensor products is nicer
than it is for projective ones. In the projective case we again have
a linear map ¢: ['(7) ® I'y(p) — (7 ® ©) such that (0 Q7)) =0 @7,
and, again modulo bundle isomorphisms, ¢ is the Gelfand represen-
tation of I'y(w) ® I'y(0). In this case, however, ¢ is usually neither
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surjective nor norm-preserving (nor injective, for that matter). (See

§2.)

The final theorem in this section concerns modules (M, A) and
(N, B) which satisfyA the (KR) condition. It describes a representation

of the module (M ® N, A@B) by sections of the inductive tensor
product of the canonical bundles of the given modules.

PRrOPOSITION 4.1. Suppose that (M, A) and (N, B) are Banach
modules, where A and B are commutative. If a 1is any uniform
cross norm on M@ N, then there is a unique way in which M@, N

can be made into a Banach module over A®B so that

(*) (@ ®b)(x®y) = (ax) ® (by)
holds for all ac A,be B, x€ M, and y e N.

Proof. By the universal property of tensor products one can
show that there is a unique bilinear map P:(A® B) X (M@ N) —
M@ N such that Pla @b, x Q y) = (ax) ® (by) for all ac A, beB,
xe M, and ye€ N. We then write P(c, z) = cz.

Given a€ A and beB, we define a linear map ¢,,: M Q N —
M@N by ¢,,(2) =(@@®b)z for all zin MR N. If we write z =

> %, ® vy, then

($4,4(2)) = a((a ® b)(X = ® ¥,))

= a(X(az;) @ (by) = lla]l 0] a(X »;, Q@ v.)

= lla|l [[b]]a(2) .
(Since « is a uniform cross norm, we have more generally, a(3(Sz,) ®
(Ty)) < IS T|laS 2, ® y,;) for all bounded linear maps S: M — M
and 7: N— N.) It follows that ¢,, can be uniquely extended to a
bounded linear map ¢,,: MQ, N— M @, N with ||é,,l| = |lall||b]].
The map ¢:A X B—>BM@, N, M@,N) which sends (a, d) into
d.» is a bounded bilinear map of norm one or less. Hence, there
is a unique linear map

$:A® B—> BM®,N, M®, N)

such that ¢(a ®b) = ¢,, for all ac A and be B. Moreover, |[§] =
4]l £ 1. We now define a map

P:(AQB) x (M®,N)— M®,N
by setting P'(c, z) = [#(c)](z). Then P’ is visibly bilinear,
a(P'(c, 2)) = ||g(0)]|a(z) < |le]"alz) ,
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and P'(a®b, Q@ ¥) = ¢.s(x ®Y) = (a @ b)x Q ») = (ax) Q (by), i.e., P’

is an extension of P. We then agree to write P'(c, 2) = ¢z, ete. []

In the proof of the next theorem we will need a few facts about
the dual space of I'y(w), where z: E — S is a bundle of Banach spaces
and S is locally compact. For each point seS, there is a natural
isometric embedding ~: (E,)* — I'(7)* which is characterized by the
identity F(o) = F(o(s)) for all Fe(E)* and gel(x). If we let

K = {F:Fe(E)* for some se&,|F| =1}

then K is a weak-* compact subset of I'(w)*. Moreover, if we have
a convergent net of elements in S, say lims, = s, and if, for each
a, F, is an element of the unit ball of (X, )*, then there is a subnet
of {F} which converges weakly-* to a functional of the form F,
where F belongs to the unit ball of (E,)*. (For more details the
reader can consult the Appendix in [5].)

THEOREM 4.2. Let n: E— S and p: F— T be bundles of Banach
spaces, where S and T are locally compgct Haysdowﬁ. Then there
18 a unique bundle of Banach spaces n'@ o: E® F— SX T such that

A( 1) for each point (s,t) im S X T the fiber above (s, t) s
E, ® F; .

(2) the tensor map Q: E X F—>E®F, zi)hich assigns to any
pair (x, y) € B X F its tensor product in E., ® E,,, is continuous;

(3) if o:U—E and 7:V—F are local sections of w wngl 0
respectively, then o0 ®7:U XV — K ® F is a localA section of w @ 0;

(4) there is a unique linear map ¢: () ® I'(p) — I'(w ® 0)
such that ¢(c Q) = a @z for all cel'(x) and T '(p); the map s
an isometric isomorphism.

Proof. We leE E @F be the disjoint union of thAe family of

Banach spaces {F,® F,:seS,te T} and we letn@p:E@F—»Sx T
be the natural Asurjection. We denote by >, the set of allAselections
0:Sx T>EQXF,i.e., for all seS and teT, a(s, e B, QF,. We
also denote by >; the set of bounded selections in >}; >}, is a Banach
space with respect to the usual pointwise operations and sup norm:
lle]| = sup{llo(s, 1)[[*:s€ S, ¢e T}

Using the universal property of tensor products one can show
that there is a unique linear map 6: I'(w) ® I'y(p) — ¥ such that
0lc ®7)=0@®@t for all oel(w) and tel (o). We will show that
0 maps I'y(7) @ I'(p) into X,, and, more importantly, that ¢ is an
isometry. In so doing, we use a characterization of inductive cross
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norms found in [1], p. 63. It will also be convenient to borrow
a bit of notation from the same reference: we denote by OX the
closed unit ball of a Banach space X.
Consider, now, an arbitrary element in /I'(7) ® '), say >, 0, &
7,. Then
12 0@zl = sup [[ 3 G(c)ol]

GeOly(o

= sup _sup 113 G(x)o.s)]]

=sup || Sofs) @lF (in E Qo)
=sup sup | > F(o(s)7;]]

seS FeO(rg)*

=supsup sup || > F(o,(s))r.(0)]|

seES tel FeO(E*

= sup sup 113 0:(8) @ T,() |17
= supSlelpHZU ® 78, O

ses

=[Xo@7l =030, Q7).

For the same element 3.0, & 7, in ['(7) ® ['(0) we now define
a real-valued function f on S X T by setting

fs,0) =20, @), O
= vsup ! Z <O-z(8)y F> <Tz(t>y G>| .
FeO(E*Ge0(Fg)*
We will show that f is upper semicontinuous on S x T. Suppose
that f fails to be upper semicontinuous at some point (s, t) in S x T.
Then there exists an ¢ >0 and a net {(s,, f,)} which converges to
(s,t) such that f(s,, t.) = f(s,t) + ¢ for all a. Choose F,cO(K,)*
and G,eO(F,)* such that

f(say ta) = ] Z <ai(802y Fa> <zi(ta)y Ga>l
= [ Z <0i, Fa> <Ti’ Ga> [ .

Since the functionals ¥, belong to the weak-* compact subset K of
I'(7)*, we may assume by passing to subnets if necessary, that {F}
converges weakly-* to some functional. Furthermore, the limit
functional will be of the form # for some FeO(E)*. Similarly, we
may assume that lim G, = G for some GeO(F,)*. Then

f(sy t) + € é lim f(sm ta)
= lz<ai)F~><Tiy G>i
= |2 (oi(s), F)<Tld), G| = f(s, 1)

which is impossible.
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We can now apply an existence theorem on bundles due to
Hofmann, speciﬁca}lly Proposition 3.6 inA [4]. IAt follows that there is
a topology on E®F which makes 7z:®‘o: EX®F—Sx T a bundle
of Banach spaces and makes every selection of the form >, 0,® 7, a
section of the bundle. Moreover, it is easily argued that each of
these sections vanishes at o. Thus, we have a isometric linear map

0: I'(m) ® I'(p) — I'(x @ p) .

By the same argument used to prove Corollary 3.5, one can show

that the image of # is dense in F0(7r®p). It follows then that ¢
can be uniquely extended to an isometric isomorphism

0: I'(w) ® ') — 'z @ p) -

Properties (2) and (3) follow by previous arguments. The existence
theorem of Hofmann, which we invoked in the preceding paragraph,
does not guarantee the uniqueness of the topology on the fiber space.
But now we can see that this topology is unique, since the topology
is determined by the space of sections, which consists, in the case,
of all uniform limits of selections of the form > 0,® .. O

We note three corollaries of the theorem. The first two are
known. (See [1], p. 64.)

COROLLARY 4.3. Let S and T be locally compact Hausdorff spaces.
Then

Ci(S) ® C(T) = C(S x T) .

More precisely, there is a unique isometric isomorvhism 0: C,(S) ®
C(T)— C(S x T) such that 6(f ® 9) = f ® g, where (f ®g)(s,t) =
F(8)9(@).

Proof. Apply the theorem to the constant C-bundles over S
and T.

COROLLARY 4.4. Let S be a locally compact Hausdorff space and
let X be any Banach space. Then
C(S)® X
is isometrically isomorphic to C\(S, X), the space of continuous X-

valued funmctions on S which vanish at infinity.

Proof. Let one bundle be the constant C-bundle over S and
let the second bundle have X as its one and only fiber.



TENSOR PRODUCTS OF BANACH BUNDLES 169

COROLLARY 4.5. Let S and T be locally compact Hausdorf spaces
and let X and Y be Banach spaces. Then

CiS, X) Q@ CAT, V) = C(S x T, XRY) .

Proof. Use the bundles whose fiber spacesare S x Xand TX Y
with the product topologies.

THEOREM 4.6. Let (M, A) and (N, B) be Banach modules which
satisfy the (KR) condition and let w: B — S and 0: F — T be their

respective canonical bundles. Then the module (M & N, A ® B) also
satiszies the (KR) condition and there exists a unique linear map

0: M@N—>Fo(ﬂr®p) such that 0(x@y) =2 @ F for all xe M and
yeN. Moreover, 0 is a morm-decreasing sectional representation
of Gelfand type.

Proof. The map 6 is simply the inductive tensor product of the
Gelfand representations ~: M — I'(z) and ~: N — I',(p), followed by the

natural isomorphism from I’ 0(7r)®F0(p) into I’ 0(7r®p). It is a
straightforward matter to check that 6 is of Gelfand type, i.e., that

6(cz) = é0(z) for allce AR B and ze M é N. (Because of continuity
and bilinearity it suffices to consider monomials ¢ = a @b and z =

x @y, ete.) Finally, the proof that (M ® N, A®B) satisfies the
(KR) condition is the same as in the projective case.
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